1. Trang chủ
  2. » Giáo án - Bài giảng

Tài liệu Thi thử Đại học 12A1 (12/1/2011

5 325 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 685,5 KB

Nội dung

http://huongphuong.tk đề thi thử đại học lần 1 năm 2011 Môn: TOáN ; Khối: A,B (Thời gian làm bài: 180 phút) Câu I (2 điểm) Cho hàm số 2 1 1 x y x + = + 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2. Tìm trên (C) những điểm có tổng khoảng cách đến hai tiệm cận của (C) nhỏ nhất. Câu II (2 điểm) 1. Giải hệ phơng trình: 1 1 4 6 4 6 x y x y + + = + + + = 2. Giải phơng trình: 1 2(cos sin ) tan cot 2 cot 1 x x x x x = + Câu III (1 điểm) Tính tích phân: I = 1 2 1 1 1 dx x x + + + Câu IV (1 điểm) Trong mặt phẳng (P) cho đờng tròn (C) tâm O đờng kính AB = 2R. Trên đờng thẳng vuông góc với (P) tại O lấy điểm S sao cho OS = R 3 . I là điểm thuộc đoạn OS với SI = 2 3 R . M là một điểm thuộc (C). H là hình chiếu của I trên SM. Tìm vị trí của M trên (C) để tứ diện ABHM có thể tích lớn nhất. Tìm giá trị lớn nhất đó. Câu V (1 điểm) Cho x, y, z là 3 số thực dơng thỏa mãn xyz=1. Chứng minh rằng 1 1 1 1 1 1 1x y y z z x + + + + + + + + Câu VI (1 điểm) Trong mặt phẳng Oxy cho tam giác ABC biết (2; 3)A , (3; 2)B , có diện tích bằng 3 2 và trọng tâm thuộc đờng thẳng : 3 8 0x y = . Tìm tọa độ đỉnh C. Câu VII (2 điểm) 1) Từ các chữ số 0, 1, 2, 3, 6, 7, 8, 9 có thể lập đợc bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau ( chữ số đầu tiên phải khác 0) trong đó phải có chữ số 7. 2) Tìm a để bất phơng trình sau có nghiệm: 2 1 1 3 3 log 1 log ( )x ax a + > + ------------ Hết ------------- 1 http://huongphuong.tk đáp án - thang điểm đề thi thử đại học lần 1 năm 2011 Lu ý:Mọi cách giải đúng và ngắn gọn đều cho điểm tối đa Câu Đáp án Điểm I 1.(1,0 điểm) Khảo sát . . . (2,0 điểm) * Tập xác định: D = R\{ - 1} * Sự biến thiên - Giới hạn và tiệm cận: lim lim 2 x x y y + = = ; tiệm cận ngang: y = 2 ( 1) ( 1) lim ; lim x x y y + = + = ; tiệm cận đứng: x = - 1 0,25 - Bảng biến thiên Ta có 2 1 ' 0 ( 1) y x = > + với mọi x - 1 x - -1 + y + + y + 2 2 - Hàm số đồng biến trên mỗi khoảng (- ; -1) và ( -1; + ) 0,5 * Đồ thị 0,25 2. (1,0 điểm) Tìm trên (C) những điểm. . . Gọi M(x 0 ;y 0 ) là một điểm thuộc (C), (x 0 - 1) thì 0 0 0 2 1 1 x y x + = + Gọi A, B lần lợt là hình chiếu của M trên TCĐ và TCN thì MA = |x 0 +1| , MB = | y 0 - 2| = | 0 0 2 1 1 x x + + - 2| = | 0 1 1x + | = 0 1 1x + Theo Cauchy thì MA + MB 2 0 0 1 x 1 . 1x + + =2 0,25 0,25 0,25 2 http://huongphuong.tk MA + MB nhỏ nhất bằng 2 0 2 0 0 0 0 0 1 1 ( 1) 1 2 1 x x x x x = + = + = = + Nh vậy ta có hai điểm cần tìm là (0;1) và (-2;3) 0,25 II 1.(1,0 điểm) Giải hệ . . . (2,0 điểm) Điều kiện: x -1, y 1 Cộng vế theo vế rồi trừ vế theo vế ta có hệ 1 6 1 4 10 6 1 4 1 2 x x y y x x y y + + + + + + = + + + + = Đặt u= 1 6x x + + + , v = 1 4y y + + . Ta có hệ 10 5 5 2 u v u v + = + = { 5 5 u v = = { 3 5 x y = = là nghiệm của hệ 0,25 0,25 0,25 0,25 2. (1,0 điểm) Giải phơng trình . . . Điều kiện:sinx.cosx 0 và cotx 1 Phơng trình tơng đơng 1 2(cos sin ) sin cos 2 cos 1 cos sin 2 sin x x x x x x x x = + cosx = 2 2 x = 2 4 k + Đối chiếu điều kiện pt có 1 họ nghiệm x = 2 4 k + 0,25 0,25 0,25 0,25 III Tính tích phân . . . Đặt u = x+ 2 1 x + thì u - x= 2 1 x + 2 2 2 2 1x ux u x + = + 2 2 1 1 1 1 2 2 u x dx du u u = = + ữ Đổi cận x= - 1 thì u = 2 -1 x = 1 thì u = 2 +1 2 1 2 1 2 1 2 2 2 1 2 1 2 1 1 1 1 1 1 2 1 2 1 2 (1 ) du du du u I u u u u + + + + ữ = = + + + + = 2 1 2 1 2 2 1 2 1 1 1 1 1 1 2 1 2 1 du du u u u u + + + + ữ + + =1 0,25 0,25 0,25 0,25 3 http://huongphuong.tk IV Tìm vị trí . . . (1,0 điểm) S H I O B M A Tứ giác IHMO nội tiếp nên SH.SM = SI.SO mà OS = R 3 , SI = 2 3 R , SM = 2 2 2SO OM R + = SH = R hay H là trung điểm của SM Gọi K là hình chiếu vuông góc của H lên mp(MAB) thì HK = 1 2 SO= 3 2 R , (không đổi) V BAHM lớn nhất khi dt( MAB) lớn nhất M là điểm giữa của cung AB Khi đó V BAHM = 3 3 6 R (đvtt) 0,25 0,25 0,5 Câu V (1,0 điểm) Đặt x=a 3 y=b 3 z=c 3 thì x, y, z >0 và abc=1.Ta có a 3 + b 3 =(a+b)(a 2 +b 2 -ab) (a+b)ab, do a+b>0 và a 2 +b 2 -ab ab a 3 + b 3 +1 (a+b)ab+abc=ab(a+b+c)>0 ( ) 3 3 1 1 a b 1 ab a b c + + + + Tơng tự ta có ( ) 3 3 1 1 c 1 bc a b cb + + + + , ( ) 3 3 1 1 a 1 ca a b cc + + + + Cộng theo vế ta có 1 1 1 1 1 1x y y z z x + + + + + + + + = 3 3 1 a b 1 + + + 3 3 1 c 1b + + + 3 3 1 a 1c + + ( ) 1 1 1 1 a b c ab bc ca + + ữ + + = ( ) ( ) 1 1 a b c c a b+ + = + + Dấu bằng xảy ra khi x=y=z=1 0,25 0,5 0,25 4 http://huongphuong.tk VI. a Tìm tọa độ . . . (1,0 điểm) Ta có: AB = 2 , M = ( 5 5 ; 2 2 ), pt AB: x y 5 = 0 S ABC = 1 2 d(C, AB).AB = 3 2 d(C, AB)= 3 2 Gọi G(t;3t-8) là trọng tâm tam giác ABC thì d(G, AB)= 1 2 d(G, AB)= (3 8) 5 2 t t = 1 2 t = 1 hoặc t = 2 G(1; - 5) hoặc G(2; - 2) Mà 3CM GM = uuuur uuuur C = (-2; 10) hoặc C = (1; -4) 0,25 0,5 0,25 VII Từ các chữ số . . . 1) (1,0 điểm) Gọi số có 6 chữ số là abcdef Nếu a = 7 thì có 7 cách chọn b, 6 cách chọn c, 5 cách chọn d, 4 cách chọn e, 3 cách chọn f. ở đây có 7.6.5.4.3 = 2520số Nếu b = 7 thì có 6 cách chọn a, 6 cách chọn c, 5 cách chọn d, 4 cách chọn e, 3 cách chọn f. ở đây có 6.6.5.4.3 = 2160số Tơng tự với c, d, e, f Vậy tất cả có 2520+5.2160 = 13320 số 0,25 0,5 0,25 VII Tìm a để . . . 2) (1,0 điểm) Điều kiện: ax + a > 0 Bpt tơng đơng 2 1 ( 1)x a x+ < + Nếu a>0 thì x +1 >0.Ta có 2 1 1 x a x + < + Nếu a<0 thì x +1 <0.Ta có 2 1 1 x a x + > + Xét hàm số y = 2 1 1 x x + + với x - 1 y = 2 2 1 ( 1) 1 x x x + + =0 khi x=1 x - -1 1 + y - || - 0 + y -1 + 1 - 2 2 a> 2 2 hoặc a < - 1 0,25 0,25 0,25 0,25 5 . đề thi thử đại học lần 1 năm 2011 Môn: TOáN ; Khối: A,B (Thời gian làm bài: 180 phút) Câu I (2 điểm) Cho hàm số 2 1 1 x y x + = + 1. Khảo sát sự biến thi n. ------------ Hết ------------- 1 http://huongphuong.tk đáp án - thang điểm đề thi thử đại học lần 1 năm 2011 Lu ý:Mọi cách giải đúng và ngắn gọn đều cho điểm tối

Ngày đăng: 28/11/2013, 08:11

HÌNH ẢNH LIÊN QUAN

Gọi K là hình chiếu vuông góc của H lên mp(MAB) thì HK =1 - Tài liệu Thi thử Đại học 12A1 (12/1/2011
i K là hình chiếu vuông góc của H lên mp(MAB) thì HK =1 (Trang 4)

TỪ KHÓA LIÊN QUAN

w