ordinal response (ordered probit model – not covered. in this lecture).[r]
(1)MULTINOMIAL LOGIT MODEL
(2)Multinomial responses
logit/probit model: dependent variable = 0/1 What if more than categories?
Example: long term effect of the exposure to
radiation may be
1 – dead of cancer
(3)Multinomial responses
Example: choice of health care providers
1 – public hospital
2 – private hospital/clinic 3 – “lang y”
4 – self-treatment
Other examples:
choice of car (Y = Toyota, Honda, Suzuki, Mazda, KIA…) choice of specialization at university
choice of occupation
(4)Multinomial logistic regression model
Multinomial logit model (MNL) is used to analyze
the relationship between categorical variables and other explanatory variables
Notice:
nominal response (MNL)
ordinal response (ordered probit model – not covered
(5)The dependent variable
The occurrence of an alternative j for individual i Probability of occurrence of each alternative
1, 2, 3, ,
i
Y J
i1 i2 i3
iJ
1 probability = 2 probability = 3 probability =
probability =
i
p p
Y p
J p
(6)The logit (log-odds ratio) Logit i1 i1 i2 i1 i3 i1 1 log 2 log 3 log 0 i iJ i iJ i iJ i iJ p Y h p p Y h p p Y h p
Y J h
(7)Modelling the logits i1 i1 1 i2 i1 2 i3 i1 3 1 log 2 log 3 log 0 i i iJ i i iJ i i iJ i iJ p
Y h X
p p
Y h X
p p
Y h X
p
Y J h
(8)Modeling the probabilities i1 1 i2 1 i3 1 iJ 1
1 probability =
2 probability =
3 probability =
(9)Maximum likelihood estimation
MNL model is estimated by maximizing the
log-likelihood function
1 1
log ln
N J
ij ij i j
L y p
0 if j is NOT chosen
1 if j is chosen
(10)Data
id case choice thunhap gioitinh …
1 1 2 12 1
1 2 4 12 1
2 1 3 21 1
3 1 17 0
3 2 17 0
3 3 17 0
…
Choice: = Commune health center; = Public hospital; = Private hospital; = Lang y; 5 = Individual health care provider
(11)Estimate MNL in Stata mlogit choice thunhap gioitinh
(choice==2 is the base outcome)
_cons -2.872579 .1263704 -22.73 0.000 -3.12026 -2.624898 gioitinh 0954035 .1621446 0.59 0.556 -.222394 413201 thunhap 1.97e-06 4.44e-07 4.43 0.000 1.10e-06 2.84e-06
_cons -3.795684 .3483009 -10.90 0.000 -4.478342 -3.113027 gioitinh 1885005 .3481328 0.54 0.588 -.4938273 .8708283 thunhap -8.18e-06 4.17e-06 -1.96 0.050 -.0000164 -1.22e-08
_cons -1.763979 .0821101 -21.48 0.000 -1.924912 -1.603046 gioitinh 2087203 .0979244 2.13 0.033 016792 .4006485 thunhap 1.81e-06 4.19e-07 4.32 0.000 9.90e-07 2.63e-06
_cons -1.180521 .1060245 -11.13 0.000 -1.388325 -.9727166 gioitinh 1822304 .1061043 1.72 0.086 -.0257303 .3901911 thunhap -9.39e-06 1.29e-06 -7.29 0.000 -.0000119 -6.86e-06
(12)Explain the estimation results
Suppose there are persons of same sex, A’s
income is mil VND higher than that of B, so
A:
B:
i1
1 1 1 1
log i i i
iJ p
X thunhap gioitinh
p
1
1 1 1
log A A A
AJ
p
thunhap gioitinh p
1
1 1 1
log B A 1 B
BJ
p
(13)Explain the estimation results
the estimated coefficient indicates the responses
of log-odds ratio for a unit change in explanatory variable
1
1 1
1
1 log log log
B B A BJ
A BJ AJ
AJ
p
p p p
p
p p
p
(14)Hypothesis testing Test the null hypothesis
1 2 1
H0: j J 0
Prob > chi2 = 0.0000 chi2( 4) = 82.49 ( 4) [5]thunhap = 0
(15)Hypothesis testing Kiểm định giả thuyết
1
H0: 0
Prob > chi2 = 0.0000 chi2( 1) = 53.17 ( 1) [1]thunhap = 0
(16)Kiểm định
Test the null hypothesis: all coefs in [1] =
Prob > chi2 = 0.0000 chi2( 2) = 56.38 ( 2) [1]gioitinh = 0
( 1) [1]thunhap = 0 test [1]
Prob > chi2 = 0.0000 chi2( 2) = 56.38 ( 2) [1]gioitinh = 0
( 1) [1]thunhap = 0
(17)Marginal effect
What happens to the probability of choosing [1] if
income increase by mil VND?
(*) dy/dx is for discrete change of dummy variable from to 1
gioitinh* .0132477 00985 1.34 0.179 -.006067 032563 .527194 thunhap -.0009239 .0001 -8.99 0.000 -.001125 -.000723 82.9054 variable dy/dx Std Err z P>|z| [ 95% C.I ] X = 10632185
y = Pr(choice==1) (predict, p outcome(1)) Marginal effects after mlogit
(18)Marginal effect
For a female with income 500 mil VND/year, the
probability of choosing [1] if income increase by mil VND?
(*) dy/dx is for discrete change of dummy variable from to 1
gioitinh* .0002118 00023 0.91 0.364 -.000246 000669 1 thunhap -.0000202 00001 -2.23 0.026 -.000038 -2.4e-06 500 variable dy/dx Std Err z P>|z| [ 95% C.I ] X = 00199241
y = Pr(choice==1) (predict, p outcome(1)) Marginal effects after mlogit
(19)Prediction
Predict the probability of choosing private
hospitals/clinic
bvtu 3475 .1502158 .0348196 .1121532 .6523073 Variable Obs Mean Std Dev Min Max sum bvtu