1. Trang chủ
  2. » Giáo án - Bài giảng

BO CAU HOI TRAC NGHIEM TOAN 9

25 14 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 1,25 MB

Nội dung

A PHẦN ĐẠI SỐ I/ ĐIỀU KIỆN XÁC ĐỊNH CỦA BIỂU THỨC – CĂN THỨC: Hãy chọn câu trả lời câu sau: Căn bậc hai số học số a khơng âm là: A số có bình phương a C B  a D � a a Căn bậc hai số học (3) : A 3 B C 81 D 81 Cho hàm số y  f ( x)  x  Biến số x có giá trị sau đây: A x �1 B x �1 C x �1 D x �1 Biến số x có giá trị sau đây: x 1 Cho hàm số: y  f ( x)  A x �1 B x �1 C x �0 D x �1 B C 4 D �4 B 5 C �5 D 25 Căn bậc hai số học 52  32 là: A 16 Căn bậc ba 125 là: A Kết phép tính A 17 B 169 C 13 D �13 Biểu thức 3 x xác định khi: x 1 A x �3 x �1 B x �0 x �1 C x �0 x �1 C x �0 x �1 52  (5) có kết là: Tính B 10 A 10 Tính:  1  C 50 D 10 C D 1 C x �� D x �1  có kết là: A  2 11 25  144 là: B 2   x  x  xác định khi: A x �R 12 Rút gọn biểu thức:  A  x B x  x2 với x > có kết là: x B 1 C 1 D x 13 Nếu a  a : B a  1 A a �0 D a  C x �R D x �0 x2 xác định khi: x 1 14 Biểu thức A x  1 15 Rút gọn C a �0 B x �1  ta kết quả: A  B  C 1 D 32 16 Tính 17  33 17  33 có kết là: A �16 B �256 C 256 D 16 17 Tính  0,1 0, kết là: B 0, A 0, 18 Biểu thức 4 100 D 100 2 xác định : x 1 B x  A x >1 19 Rút gọn biểu thức 20 Rút gọn biểu thức:   x 1 C a D  a B    D x 1 x 1 a3 với a < 0, ta kết là: a B a2 A a D x �0 x  x  với x �0, kết là: A � x  21 Rút gọn biểu thức C x < a3 với a > 0, kết là: a B �a A a C C C  |a| D  a 22 Cho a, b  R Trong khẳng định sau khẳng định đúng: a a  (với a  0; b > 0) b b A a b  ab B C a  b  a  b (với a, b  0) D A, B, C 23 Trong biểu thức đây, biểu thức xác định với x �R  x  1  x   A x2  x 1 B C x2  x  D Cả A, B C 24 Sau rút gọn, biểu thức A   13  48 số sau đây: A  B  C  D 2 25 Giá trị lớn y  16  x số sau đây: A B C 16 D Một kết khác 26 Giá trị nhỏ y   x  x  số sau đây: A  B  C  D  27 Câu sau đúng: A �B �0 AB�� �A  B C A  B � A  B B A0 � A B 0� � B0 � D Chỉ có A 1 , ta được: 28 So sánh M   N  A M = N B M < N D M  N C M > N 29 Cho ba biểu thức : P  x y  y x ; Q  x x  y y  x y  x y  ( với x, y dương) A P B Q 30 Biểu thức    1 3 1  A 31 Biểu thức   x  x2  C R D P R C D -2 bằng: B 3 A  x  x  32 Giá trị ; R  x  y Biểu thức x   B 2   3x   C   3x  D  1  3x   9a b   4b a = b   , số sau đây:  A  33 Biểu thức P    B  x1  C   D Một số khác xác định với giá trị x thoả mãn: A x 1 34 Nếu thoả mãn điều kiện A  B x 0 C x 0 x 1 D x   x  2 x nhận giá trị bằng: B - C 17 D 35 Điều kiện xác định biểu thức P ( x )  x  10 là: A x  10 B x 10 C x  10 36 Điều kiện xác định biểu thức  x : D x   10 B x �1 A x �� 37 Biểu thức C x  D x �1  x2 xác định x thuộc tập hợp đây: x2 1 A  x / x �1 B  x / x ��1 C  x / x � 1;1  D Chỉ có A, C 38 Kết biểu thức: M  A   7  2   B 39 Phương trình là: C D 10 x   x   có tập nghiệm S là: A S   1; 4 B S   1 40 Nghiệm phương trình A x  x2 x 1  D S   4 C S  � x2 thoả điều kiện sau đây: x 1 C x  B x �2 D Một điều kiện khác 41 Giá trị biểu thức S     là: A D 4 C 2 B 42 Giá trị biểu thức M  (1  3)  (1  3)3 A  B  43 Trục thức mẫu biểu thức A 7 B C D 1  ta có kết quả: 3 5 7 C 7 D 7 44 Giá trị biểu thức A    19  là: A  B  D  2 2a  4a  với a   : 45 Giá trị biểu thức A B D  C 2 10   12 46 Kết phép tính A B C 2 D 2 25 16  có kết quả: (  2) (  2) 47 Thực phép tính A  48 Giá trị biểu thức: C  B   6  C   120 là: D 32 A 21 B 11 49 Thực phép tính C 11 D 3 ta có kết quả: 62 4 A B 50 Thực phép tính 17  12 B  51 Thực phép tính C 1 D  6 D     ta có kết quả: A B 52 Thực phép tính 6 ta có kết 3 2 A  2 C  A 3  32 B  D 2 C 2 2  3  ta có kết quả: 1 C  3 D 3  � 3 � �3  �  53 Thực phép tính � � � � 1 � �   1� �ta có kết là: � � � � B 2 A C 2 D C 81 D 81 C x � 3 D x � 54 Số có bậc hai số học là: B 3 A  3x là: 55 Điều kiện xác định biểu thức A x � B x �  1 3 56 Rút gọn biểu thức P  A 2 A  59 Phương trình A x=4  1   kết là: C 32  y x D bằng: B  58 Rút gọn biểu thức y  B 2 57 Giá trị biểu thức  A C D  3 x2 (với x  0; y  ) kết là: y4 B 1 y D  y C y 3.x  12 có nghiệm là: B x=36 60 Điều kiện xác định biểu thức C x=6 D x=2 3x  là: 5 A x � B x � 61 Giá trị biểu thức: B   3 C x � 62 Phương trình D x �  bằng: B  13 A 13 C  D x    có nghiệm x bằng: A B 11 C 121 D 25 63 Điều kiện biểu thức P  x   2013  2014 x là: A x  2013 2014 B x  2013 2014 64 Kết rút gọn biểu thức A  A  2013 C x � 2014  3  B  2 5 2013 D x � 2014  là: C D 65 Điều kiện xác định biểu thức A  2014  2015 x là: 2014 A x � 2015 66 Khi x < x A x 2014 B x � 2015 2015 C x � 2014 2015 D x � 2014 B x C D  1 bằng: x2 II/ HÀM SỐ BẬC NHẤT, TÍNH ĐỒNG BIẾN NGHỊCH BIẾN Trong phương trình sau, phương trình phương trình bậc hai ẩn x, y: A ax + by = c (a, b, c  R) B ax + by = c (a, b, c  R, c0) C ax + by = c (a, b, c  R, b0 c0) D A, B, C Cho hàm số y  f ( x) điểm A(a ; b) Điểm A thuộc đồ thị hàm số y  f ( x) khi: A b  f (a) B a  f (b) C f (b)  D f ( a)  Cho hàm số y  f ( x) xác định với giá trị x thuộc R Ta nói hàm số y  f ( x) đồng biến R khi: A Với x1 , x2 �R; x1  x2 � f ( x1 )  f ( x2 ) B Với x1 , x2 �R; x1  x2 � f ( x1 )  f ( x2 ) C Với x1 , x2 �R; x1  x2 � f ( x1 )  f ( x2 ) D Với x1 , x2 ι R; x1 Cặp số sau nghiệm phương trình A   2;1  B 1;   x2 f ( x1 ) f ( x2 ) x  y  5   C  2; 1   D  2;1 Cho hàm số y  f ( x) xác định với x �R Ta nói hàm số y  f ( x) nghịch biến R khi: A Với x1 , x2 �R; x1  x2 � f ( x1 )  f ( x2 ) B Với x1 , x2 �R; x1  x2 � f ( x1 )  f ( x2 ) C Với x1 , x2 �R; x1  x2 � f ( x1 )  f ( x2 ) D Với x1 , x2 �R; x1  x2 � f ( x1 )  f ( x2 ) 6 Cho hàm số bậc nhất: y  A m �1 2 x  Tìm m để hàm số đồng biến R, ta có kết là: m 1 B m �1 C m  1 D m  1 Trong hàm số sau hàm số hàm số bậc nhất: A y  3 x B y  ax  b(a, b �R ) C y  x  D Có câu �x  C � �y  D Có câu Nghiệm tổng quát phương trình : x  y  là: � 3 y  �x  A � � �y �R Cho hàm số y  �x �R � B � y   x  1 � � m2 x  m  Tìm m để hàm số nghịch biến, ta có kết sau: m2  A m  2 C m  2 B m ��1 D m �2 10 Đồ thị hàm số y  ax  b  a �0  là: A Một đường thẳng qua gốc toạ độ b B Một đường thẳng qua điểm M  b;0  N (0;  ) a C Một đường cong Parabol b D Một đường thẳng qua điểm A(0; b) B ( ;0) a 11 Nghiệm tổng quát phương trình : 3 x  y  là: �x �R � A � y  x 1 � � � �x  y  B � � �y �R �x  C � �y  D Có hai câu 12 Cho đường thẳng (d): y  2mx   m �0  (d'): y   m  1 x  m  m �1 Nếu (d) // (d') thì: A m �1 B m  3 C m  1 D m �3 1� � k �0; k � � Hai đường thẳng cắt khi: 13 Cho đường thẳng: y   kx  y   2k  1 x  k � 2� � A k � B k �3 C k   D k  3 � 3� 14 Cho đường thẳng y   m  1 x  2k  m �1 y   2m  3 x  k  �m � � Hai đường thẳng � 2� trùng : A m  hay k   C m  k �R B m  k   D k   k �R 15 Biết điểm A  1;  thuộc đường thẳng y  ax   a �0  Hệ số đường thẳng bằng: A C 1 B  D  16 Điểm sau thuộc đồ thị hàm số : y   x   A M 0;   B N   2;     C P  2;3  2 D Q  2;0  17 Nghiệm tổng quát phương trình : 20x + 0y = 25 �x  1, 25 A � �y  �x  1, 25 B � �y �R �x �R C � �y �R D A, B C m 1 D m 0 18 Hàm số y  m  1 x  hàm số bậc khi: A m   B m 1 19 Biết hàm số y  2a  1 x  nghịch biến tập R Khi đó: A a   B a  2 C a   D a  20 Cho hàm số y   m  1 x  (biến x) nghịch biến, giá trị m thoả mãn: A m  B m  C m  21 Số nghiệm phương trình : ax  by  c  a, b, c  R; a A Vô số B D m  0  b �0 ) là: C D 22 Cho hai đường thẳng (D): y  mx  (D'): y   2m  1 x  Ta có (D) // (D') khi: A m  B m �1 C m �0 D A, B, C sai 23 Cho phương trình : x  x  m  Phương trình có hai nghiệm phân biệt thì: A m  B m  1 C m  D A, B, C sai �ax  y  24 Cho hệ phương trình � với giá trị a, b để hệ phường trình có cặp nghiệm (- 1; 2): �x  by  2 a2 � � A � b � � �a  B � b0 � a2 � � C � b � � a  2 � � D � b � � 25 Với giá trị a, b hai đường thẳng sau trùng 2x+3y+5=0 y=ax+b A a  ; b  3 B a   ; b   3 C a  ; b  3 D a   ; b   3 �   a x  y 1  26 Với giá trị a hệ phường trình � vơ nghiệm ax  y   � A a = B a = C a = D a = 27 Với giá trị k đường thẳng y  (3  2k ) x  3k qua điểm A( - 1; 1) A k = -1 B k = C k = D k = - 28 Với giá trị a, b đường thẳng y = ax + b qua điểm A(- 1; 3) song song với đường x thẳng y    2 A a   ; b  B a  ; b  2 C a   ; b  2 D a   ; b   2 29 Cho hai đường thẳng y  x  3m y  (2k  3) x  m  với giá trị m k thi hai đường thẳng trùng 1 A k  ; m  2 1 B k   ; m  2 1 C k  ; m   2 1 D k   ; m   2 30 Với giá trị a đường thẳng : y = (3- a)x + a – vng góc với đường thẳng y= 2x+3 A a = B a = C a = D a =  31 Với giá trị m đồ thị hàm số y = 2x + m +3 y = 3x+5 – m cắt điểm trục tung: A m = B m = - C m = D m = 32 Với giá trị a b đường thẳng y = (a – 3)x + b qua hai điểm A (1; 2) B(- 3; 4) A a  0; b  B a  0; b  5 5 C a  ; b  2 5 D a  ; b   2 33 Phương trình đường thẳng qua điểm A(1; - 1) B( 2;  ) : A y  x 3 B y  x 3 C y  x  2 x D y    2 34 Cho hàm số y  (2  m) x  m  với giá trị m hàm số nghịch biến R A m = B m < C m > D m = 35 Đường thẳng y  ax  qua điểm M(-1;3) hệ số góc bằng: A -1 B -2 C D C y  x  D y     x  36 Trong hàm số sau hàm số nghịch biến ? A y  1  x B y   2x 37 Hàm số y   m   x  hàm số đồng biến khi: A m  B m  C m  D m  2 38 Hàm số y  2015  m x  hàm số bậc khi: A m �2015 B m  2015 C m  2015 D m �2015 III/HÀM SỐ, PHƯƠNG TRÌNH BẬC 2, NGHIỆM CỦA PHƯƠNG TRÌNH BẬC 2 Phương trình x  x   có nghiệm : B  A 1 C D 2 Cho phương trình : x  x   có tập nghiệm là: 1� � B �1;  � � A  1 � 1� C �1; � � D � � 1�  � C � �2 1� � D �1;  � � Phương trình x  x   có tập nghiệm : A  1 B � Phương trình sau có hai nghiệm phân biệt: A x  x   B x  x   C 371x  x   D x  Cho phương trình x  x   phương trình có : A Vơ nghiệm B Nghiệm kép C nghiệm phân biệt D Vô số nghiệm Hàm số y  100 x đồng biến : A x  B x  C x �R D x �0 Cho phương trình : ax  bx  c  (a �0) Nếu b  4ac  phương trình có nghiệm là: A x1  b   b   ; x2  a a B x1    b  b ; x2  2a 2a C x1  b  b  ; x2  2a 2a D A, B, C sai Cho phương trình : ax  bx  c   a �0  Nếu b  4ac  phương trình có nghiệm là: A x1  x2   a 2b B x1  x2   b a C x1  x2   c a b D x1  x2   a Hàm số y   x đồng biến khi: A x > B x < C x �R D Có hai câu C x = D x < 10 Hàm số y   x nghịch biến khi: A x �R B x > 11 Cho hàm số y  ax  a �0  có đồ thị parabol (P) Tìm a biết điểm A  4; 1 thuộc (P) ta có kết sau: A a  16 B a  16 C a   16 D Một kết khác 12 Phương trình x 2  x   có nghiệm là: A 6 B 6 C 10 6 2 D A B 13 Số nghiệm phương trình : x  x   A nghiệm B nghiệm C nghiệm D.Vô nghiệm 14 Cho phương trình : ax  bx  c   a �0  Tổng tích nghiệm x1 ; x2 phương trình là: b � x  x  � � a A � �x x  c �1 a b � x  x  � � a C � �x x  c �1 a b � x  x  � � a B � �x x  c �1 a D A, B, C sai 15 Hàm số hàm số sau đồng biến R: A y   x B y  x C y  x  D B, C 16 Nếu hai số x, y có tổng x + y = S xy = P, x, y hai nghiệm phương trình: A X  SX  P  B X  SX  P  C ax  bx  c  D X  SX  P  17 Cho phương trình : mx  x   (m : tham số ; x: ẩn số) Nếu phương trình có hai nghiệm phân biệt m có giá trị sau đây: A m  B m  m �0 C m  D m �R 18 Nếu a  b  c  ab  bc  ca (a, b, c ba số thực dương) thì: A a  b  c B a  2b  3c C 2a  b  2c D Khơng số 19 Phương trình bậc hai: x  x  0 có hai nghiệm là: A x = - 1; x = - B x = 1; x = C x = 1; x = - D x = - 1; x = 20 Cho phương trình x  x  0 có nghiệm x : A B  C  D 21 Phương trình x  x  0 có: A Hai nghiệm phân biệt dương B Hai nghiệm phân biệt âm C Hai nghiệm trái dấu D Hai nghiệm 22 Giả sử x1 , x2 hai nghiệm phương trình x  3x  10  Khi tích x1.x2 bằng: A B  C 5 D 23 Trong phương trình sau phương trình có nghiệm phân biệt: A x  x   B x  x   C x  x   D x  x   24 Với giá trị m phương trình x  x  m  có nghiệm kép: A m =1 B m = - C m = 11 D m = - 25 Phương trình bậc sau có nghiệm : A x  x   B x  x    3 C x  x   D x  3x   2 26 Với giá trị m phương trình x  x  3m   có nghiệm x1 ; x2 thoả mãn x1  x2  10 A m   B m  C m   D m  27 Với giá trị m phương trình x  mx   có nghiệm kép: A m = B m = - C m = m = - D m = 28 Với giá trị m phương trình x  x  2m  vô nghiệm A m > C m  B m < D m  2 29 Giả sử x1 ; x2 nghiệm phương trình x  x   Biểu thức x1  x2 có giá trị là: A 29 B 29 C 29 D 25 30 Cho phương trình  m  1 x   m  1 x  m   với giá trị m phương trình có nghiệm A m  B m  C m  hay m  D Cả câu sai 31 Với giá trị m phương trình  m  1 x   m  1 x  m   vô nghiệm A m < C m �1 B m > D m �1 32 Với giá trị m phương trình x  (3m  1) x  m   có nghiệm x  1 A m = B m   C m  D m  33 Với giá trị m phương trình x  mx   vô nghiệm A m < - hay m > B m  C m �2 D m ��2 C x2 + 5x + = D x2+3x + = 34 Phương trình nao sau có nghiệm trái dấu: A x2 – 3x + = B x2 – x – = 35 Cho phương trình x2 – 4x + – m = 0, với giá trị m phương trình có nghiệm thoả mãn hệ thức:  x1  x2   x1 x2  A m = B m = - C m = - D Khơng có giá trị 36 Phương trình x4 + 4x2 + = có nghiệm A x  �1 B x  � 37 Đường thẳng (d): y = - x + C Vô nghiệm D x  �1 hay x  � Parabol (P): y = x2 A Tiếp xúc B Cắt điểm A(- 3;9) B(2;4) C Không cắt D Kết khác 38 Toạ độ giao điểm đường thẳng (d): y = x – Parabol (P): y = - x2 là: 12 A (1;1) (-2;4) B (1;-1) (-2;-4) C (-1;-1) (2;-4) D (1;-1) (2;-4) 39 Với giá trị m phương trình sau có nghiệm kép x  mx   A m  �3 B m  �6 40 Giữa (P): y =  A (d) tiếp xúc (P) C m  D m  6 x2 đường thẳng (d): y = x + có vị trí tương đối sau: B (d) cắt (P) C (d) vng góc với (P) D Khơng cắt 41 Đường thẳng sau không cắt Parabol y = x2 A y=2x+5 B y=-3x-6 42 Đồ thị hàm số y=2x y=  A (0;0) C y=-3x+5 D y=-3x-1 x2 cắt điểm: B (-4;-8) C.(0;-4) D (0;0) (-4;-8) 43 Phương trình x  3x   có tổng hai nghiệm bằng: A B –3 C D – 44 Tích hai nghiệm phương trình  x  x   là: A B –6 C D –5 45 Số nghiệm phương trình : x  3x   là: A B C D C y  x D y  x  46 Điểm M  2,5;0  thuộc đồ thị hàm số nào: A y  x B y  x 2  1; 2  , hệ số a bằng: 47 Biết hàm số y  ax qua điểm có tọa độ A B  C D – 2 48 Phương trình x  x   có biệt thức ∆’ bằng: A –8 B C 10 D 40 49 Phương trình x  x   có tổng hai nghiệm bằng: A B –3 C D –1 C x ∈ R D x ≠ 50 Hàm số y   x đồng biến : A x > B x < 51 Với giá trị tham số m phương trình: x  x  m   có hai nghiệm phân biệt? A m B m C m D m 52 Điểm M  1; 2  thuộc đồ thị hàm số y  mx giá trị m bằng: A –4 B –2 C 13 D 53 Phương trình x  x   có tập nghiệm là: A  1; 2 B  2 C  2;    D 1;1; 2;   54 Gọi S P tổng tích hai nghiệm phương trình: x  x  10  Khi S + P bằng: A –15 B –10 C –5 D 55 Phương trình x  x   có biệt thức ∆’ bằng: A B –2 C D 56 Phương trình 3x  x   có tích hai nghiệm bằng: A B –6 C  D  57 Phương trình x  x   có tổng nghiệm bằng: A –2 B –1 C D –3 58 Hệ số b’ phương trình x   2m  1 x  2m  có giá trị sau ? A 2m  B 2m C 2  2m  1 D  2m 59 Gọi P tích hai nghiệm phương trình x  x  16  Khi P bằng: A –5 B C 16 D –16 � �2 m  �x đồng biến x < nếu: 60 Hàm số y  � � 2� A m  B m  C m  D m  61 Phương trình sau phương trình bậc hai ẩn ? A 5 x  x   B x  x   C x  xy   D x  x   C x  1; x  D x  1; x  2 62 Phương trình x  3x   có hai nghiệm là: A x  1; x  B x  1; x  2 63 Đồ thị hàm số y  ax qua điểm A(1;1) Khi hệ số a bằng: A 1 B C ±1 D 64 Tích hai nghiệm phương trình  x  x   có giá trị ? A B –8 C 14 D –7 B PHẦN HÌNH HỌC I/ HỆ THỨC LƯỢNG TRONG TAM GIÁC VNG Trong hình bên, độ dài AH bằng: A 12 B H B 2, C A D 2, 4 C Cho ABC có AH đường cao xuất phát từ A (H  BC) hệ thức chứng tỏ ABC vuông A A BC2 = AB2 + AC2 B AH2 = HB HC C AB2 = BH BC D A, B, C �  900 hệ thức Cho ABC có AH đường cao xuất phát từ A (H  BC) Nếu BAC đúng: A AB2 = AC2 + CB2 B AH2 = HB BC C AB2 = BH BC D Không câu �C � = 900 AH đường cao xuất phát từ A (H thuộc đường thẳng BC) Câu sau Cho ABC có B đúng: A 1   2 AH AB AC B AH  HB.HC C A B D Chỉ có A Cho tứ giác ABCD có hai đường chéo AC BD vng góc với tạo O M trung điểm AB, N trung điểm CD Tìm câu đúng: B OM  CD A AB  CD  AD  BC C ON  AB D Cả ba câu ABC vng có đường cao AH (H thuộc cạnh BC) Hình chiếu H AB D, AC E Câu sau sai: A AH = DE B C AB AD = AC AE 1   2 DE AB AC D A, B, C Cho ABC vuông A, có AB=3cm; AC=4cm Độ dài đường cao AH là: A 5cm B 2cm C 2,6cm D 2,4cm Cho ABC vng A, có AB=9cm; AC=12cm Độ dài đường cao AH là: A 7,2cm B 5cm C 6,4cm D 5,4cm ABC nội tiếp đường trịn đường kính BC = 10cm Cạnh AB=5cm, độ dài đường cao AH là: 15 A 4cm B cm C cm D cm 10 ABC vuông A, biết AB:AC = 3:4, BC = 15cm Độ dài cạnh AB là: A 9cm B 10cm C 6cm D 3cm 11 Hình thang ABCD vng góc A, D Đường chéo BD vng góc với cạnh bên BC, biết AD = 12cm, BC = 25cm Độ dài cạnh AB là: A 9cm B 9cm hay 16cm C 16cm D kết khác 12 ABC vng A có AB =2cm; AC =4cm Độ dài đường cao AH là: A cm B cm C cm D cm 13 Tam giác ABC vng A, có AB = 2cm; AC = 3cm Khi độ dài đường cao AH bằng: A 13 cm 13 13 cm B C 10 cm D 13 cm 13 14 Cho tam giác DEF vng D, có DE =3cm; DF =4cm Khi độ dài cạnh huyền : A 5cm2 B 7cm C 5cm D 10cm 15 Cho  ABC vuông A, đường cao AH Biết AB =5cm; BC = 13cm Độ dài CH bằng: A 25 cm 13 B 12 cm 13 C cm 13 D 144 cm 13 16 Tam giác ABC vuông A, đường cao AH Biết AB =3cm; AC =4cm Khi độ dài đoạn BH bằng: A 16 cm B cm C cm 16 D cm II/ TỶ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN Trong hình bên, SinB : A AH AB B H B CosC C AC BC D A, B, C C A Cho 00    900 Trong đẳng thức sau, đẳng thức đúng: B tg  = tg(900   ) A Sin  + Cos  = C Sin  = Cos(900   ) D A, B, C Trong hình bên, độ dài BC bằng: A C B B 300 D 2 16 A C Cho Cos  0 ;    90 ta có Sin bằng:  A  B � C Cho tam giác ABC vng C Ta có A D Một kết khác SinA tgA  bằng: CosB cot gB B C D Một kết khác � cạnh AB = 1, cạnh AC = Câu sau Cho biết ABC vuông A, góc   B sin   4cos  2sin   cos A 2cos  sin C B 2sin   cos D Có hai câu Cho biết tg 750   Tìm sin150, ta được: A 2 2 2 B C 2 2 2 D Cho biết cos  sin   m Tính P  cos  sin  theo m, ta được: A p   m B P  m  C P   m D A, B, C sai �   Tìm câu đúng, biết AH BK hai đường cao Cho ABC cân A có BAC A sin 2  BH AB B cos  10 Cho biết    900 sin  cos  A P  11 Cho biết cos  A 12 B P  AC AH C sin 2  2sin  cos D Câu C sai Tính P  sin   cos 4 , ta được: D P   C P  1 12 giá trị tg là: 13 B 12 C 13 D 15 �  600 Độ dài cạnh AC là: 12 ABC vuông A có AB = 3cm B A 6cm B cm C 3 D Một kết khác 13 ABC có đường cao AH trung tuyến AM Biết AH = 12cm, HB = 9cm; HC =16cm, Giá trị � : ( làm tròn chữ số thập phân) tg HAM A 0,6 B 0,28 C 0,75 D 0,29 �  Độ dài cạnh BC là: 14 ABC vng A có AB = 12cm tg B A 16cm B 18cm C 10 cm 17 D 10 cm 15 Cho biết cos  giá trị cot g là: A 15 15 B 15 C 16 ABC vuông A, đường cao AH Cho biết CH = 6cm sin B  A 2cm B cm C 4cm 15 D độ dài đường cao AH là: D cm 17 ABC vng A có AB = 3cm BC = 5cm cotgB + cotgC có giá trị bằng: A 12 25 B 25 12 18 ABC vuông A, biết sin B  A B C D 16 25 D D 20 cm cosC có giá trị bằng: 3 C �  300 AB = 10cm độ dài cạnh BC là: 19 ABC vng A có B A 10 cm B 20 cm C 10 cm 20 Cho tam giác ABC vuông A Khẳng định sau SAI ? A sinB=cosC B cotB=tanC C sin2B+cos2C=1 D tanB=cotC 21 Cho (O;10cm), dây đường trịn (O) có độ dài 12cm Khoảng cách từ tâm O đến dây là: A 10cm B 6cm C 8cm 22 Cho tam giác ABC vuông A Biết tanB= A 6cm B 5cm C 4cm D 11cm AB = 4cm Độ dài cạnh BC là: D 3cm 23 Cho đường tròn (O;5cm), dây AB có độ dài 6cm Khoảng cách từ tâm đường tròn đến dây AB là: A 4cm B 3cm C cm D cm 24.Cho đường trịn (O;5cm), dây AB khơng qua O Từ O kể OM vng góc với AB ( M �AB ), biết OM =3cm Khi độ dài dây AB bằng: A 4cm B 8cm C 6cm D 5cm 25 Cho tam giác DEF có độ dài cạnh 9cm Khi bán kính đường trịn ngoại tiếp tam giác DEF bằng: A 3cm B 3cm C 3cm D 3cm 26 Cho (O;10cm), điểm I cách O khoảng 6cm Qua I kẻ dây cung HK vuông góc với OI Khi độ dài dây HK là: A 8cm B 10cm C 12cm 18 D 16cm III/ GĨC VỚI ĐƯỜNG TRỊN Tâm đường trịn ngoại tiếp tam giác là: A Giao điểm đường phân giác tam giác B Giao điểm đường cao tam giác C Giao điểm đường trung tuyến tam giác D Giao điểm đường trung trực tam giác Đường trịn tâm A có bán kính 3cm tập hợp điểm: A Có khoảng cách đến điểm A nhỏ 3cm B Có khoảng cách đến A 3cm C Cách A D Có hai câu �  650 Kẻ OH  AB; OI  AC ; OK  BC So Cho ABC nội tiếp đường tròn tâm O Biết � A  500 ; B sánh OH, OI, OK ta có: A OH = OI = OK B OH = OI > OK C OH = OI < OK D Một kết khác Trong hình bên, biết BC = 8cm; OB = 5cm B Độ dài AB bằng: A 20 cm B cm C cm D Một kết khác O A H C Cho đường tròn (O ; R) dây AB = R , Ax tia tiếp tuyến A � là: đường tròn (O) Số đo xAB A 900 B 1200 C 600 D B C Cho đường tròn (O ; R) điểm A bên ngồi đường trịn Từ A vẽ tiếp tuyến AB (B tiếp điểm) cát tuyến AMN đến (O) Trong kết luận sau kết luận đúng: A AM AN = 2R2 B AB2 = AM MN C AO2 = AM AN D AM AN = AO2  R2 �  1240 số đo BAD � Cho tứ giác ABCD nội tiếp đường tròn (O) Biết BOD là: A 560 B 1180 C 1240 D 640 Cho hai đường tròn (O; 4cm) (O'; 3cm) có OO' = 5cm Hai đường trịn cắt A B Độ dài AB bằng: A 2,4cm B 4,8cm C cm 12 D 5cm Cho đường tròn (O; 2cm) Từ điểm A cho OA = 4cm vẽ hia tiếp tuyến AB, AC đến đường tròn (O) (B, C tiếp điểm) Chu vi ABC bằng: 19 A cm B cm C cm D �  1300 Số đo góc BOC � 10 Cho đường trịn (O) góc nội tiếp BAC là: A 130 B 100 C 2600 B D 500 O 130 A 11 Cho đường tròn (O ; R) Nếu bán kính R tăng 1,2 lần diện tích hình trịn (O ; R) tăng lần: C A 1,2 B 2,4 C 1,44 D Một kết khác 12 Cho ABC vuông cân A AC = Bán kính đường trịn ngoại tiếp ABC là: A B C 16 D 13 Cho đường tròn (O ; R) dây AB = R Diện tích hình viên phân giới hạn dây AB cung nhỏ AB là:  R2 A 3  4 12   R2 B    3 12 R2 C 4  12   R2 D 4  3 12  14 Trong mệnh đề sau, mệnh đề đúng: A Nếu đường thẳng tiếp tuyến đường trịn vng góc với bán kính qua tiếp điểm B Nếu đường thẳng vng góc với bán kính đường trịn đường thẳng tiếp tuyến đường trịn C Trong hai dây cung đường tròn, dây nhỏ gần tâm D A, B, C 15 Trong tam giác, đường tròn điểm qua điểm sau đây: A ba chân đường cao C ba đỉnh tam giác B ba chân đường phân giác D không câu 16 Cho đường tròn tâm O, ngoại tiếp ABC cân A Gọi D E trung điểm AC AB, G trọng tâm ABC Tìm câu đúng: A E, G, D thẳng hàng C O trực tâm BDG B OG  BD D A, B, C sai 17 Cho ABC vng cân A có trọng tâm G, câu sau đúng: A Đường trịn đường kính BC qua G B AG  C BG qua trung điểm AC AB D Không câu 20 18 Cho nửa đường trịn đường kính AB có điểm C Đường thẳng d vng góc với OC C, cắt AB E, Gọi D hình chiếu C lên AB Tìm câu đúng: A EC2 = ED DO C OB2 = OD OE B CD2 = OE ED D CA = EO 19 Tứ giác MNPQ nội tiếp đường tròn, biết Pˆ 3Mˆ Số đo góc P góc M là: A Mˆ 45 ; Pˆ 135 B Mˆ 60 ; Pˆ 120 C Mˆ 30 ; Pˆ 90 D Mˆ 45 ; Pˆ 90 20 Trong hình vẽ bên có: ABC cân A nội Tiếp đường tròn tâm O, số đo góc BAC 1200 Khi số đo góc ACO bằng: A 1200 B 600 C 450 D 300 21 Cho  ABC có diện tích Gọi M, N, P tương ứng trung điểm cạnh AB, BC, CA X, Y, Z tương ứng trung điểm cạnh PM, MN, NP Khi diện tích tam giác XYZ bằng: A B 16 C 32 D 22 Tam giác có cạnh 8cm bán kính đường trịn nội tiếp tam giác là: A cm B cm C cm 23 Một hình quạt trịn OAB đường trịn (O;R) có diện tích A 900 B 1500 C 1200 D cm 7 R � là: (đvdt) số đo AB 24 D 1050 �  300 nội tiếp đường tròn (O) Số đo cung AB � là: 24  ABC cân A, có BAC A 1500 B 1650 C 1350 D 1600 25 Độ dài cung AB đường tròn (O;5cm) 20cm, Diện tích hình quạt trịn OAB là: A 500cm2 B 100cm2 C 50cm2 D 20cm2 �  600 (   3,14 ) 26 Diện tích hình quạt trịn OAB đường tròn (O; 10cm) sđ AB A 48,67cm2 B 56,41cm2 C 52,33cm2 D 49,18cm2 27 Cho đường tròn (O;15cm) (I;13cm) cắt A, B Biết khoảng cách hai tâm 14cm Độ dài dây cung chung AB là: A 12cm B 24cm C 14cm D 28cm �  1000 � hình vẽ biết AOB 28 Tìm số đo góc xAB 21 � = 1300 A xAB � = 500 B xAB � = 1000 C xAB � = 1200 D xAB 29 Trên đường tròn (O;R) lấy điểm A, B cho AB = BC = R, M, N trung điểm cung nhỏ � số đo góc MBN � là: � BC AB A 1200 B 1500 C 2400 D 1050 �  45 AB = a Bán kính đường trịn (O) là: 30 Tam giác ABC nội tiếp đường tròn (O), biết C A a B a C a 2 D a 3 31 Tam giác ABC ngoại tiếp đường trịn có bán kính 1cm Diện tích tam giác ABC là: A 6cm2 cm2 B C 3 cm D 3 cm2 �  350 Vậy số đo cung lớn 32 Cho (O) MA, MB hai tiếp tuyến (A,B tiếp điểm) biết AMB AB là: A 1450 B 1900 C 2150 D 3150 33 Từ điểm M nằm ngồi đường trịn (O), vẽ cát tuyến MAB MCD (A nằm M B, C nằm � 300 số đo cung nhỏ BD � 800 Vậy số đo góc M là: M D) Cho biết số đo dây cung nhỏ AC A 500 B 400 C 150 D 250 34 Cho đường tròn (O; 8cm) (I; 6cm) tiếp xúc A, MN tiếp tuyến chung (O) (I), độ dài đoạn thẳng MN : A 8cm B cm C cm D cm 35 Tam giác ABC có cạnh 10cm nội tiếp đường trịn, bán kính đường trịn là: A cm B cm C 10 cm D cm 36 Hai bán kính OA, OB đường trịn (O;R) tạo với góc 750 độ dài cung nhỏ AB là: A 3 R B 5 R 12 C 7 R 24 D 4 R 37 Hình sau khơng nội tiếp đường trịn ? A Hình vngB Hình chữ nhật C Hình thoi D Hình thang cân 38 Hai tiếp tuyến hai điểm A, B đường trịn (O) cắt M, tạo thành góc AMB 50 Số đo góc tâm chắn cung AB là: A 500 B 400 C 1300 D 3100 39 Hai bán kính OA, OB đường trịn (O) tạo thành góc AOB 35 Số đo góc tù tạo hai tiếp tuyến A B (O) là: 22 A 350 B 550 C 3250 D 1450 40 Hình vng có diện tích 16 (cm2) diện tích hình trịn nội tiếp hình vng có diện tích là: A 4π (cm2) B 16π (cm2) C 2π (cm2) D 8π (cm2) 41 Hình vng có diện tích 16 (cm2) diện tích hình trịn ngoại tiếp hình vng có diện tích là: A 4π (cm2) B 16π (cm2) C 8π (cm2) D 2π (cm2) 42 Độ dài cung 300 đường trịn có bán kính 4(cm) bằng: A  (cm) B  (cm) C  (cm) D  (cm) 43 Diện tích hình quạt trịn có bán kính 6(cm), số đo cung 360 bằng: A   cm2  B 36 18   cm  C   cm  5 D 12   cm  44 Chu vi đường tròn 10π (cm) diện tích hình trịn là: A 10  cm  B 100  cm  C 25  cm  D 25  cm  45 Diện tích hình trịn 64π (cm2) chu vi đường trịn là: A 64π (cm) B 8π (cm) C 32π (cm) D 16π (cm) 46 Góc nội tiếp chắn nửa đường trịn là: A góc nhọn B góc vng C góc tù D góc bẹt 47 Cho đường trịn (O;3cm) hai điểm A, B nằm (O) cho số đo cung lớn AB 2400 Diện tích hình quạt trịn giới hạn hai bán kính OA, OB cung nhỏ AB A 3π (cm2) B 6π (cm2) C 9π (cm2) D 18π (cm2) 48 Cho đường tròn (O;3cm), số đo cung AB lớn 300 Diện tích hình quạt tạo hai bán kính OA, OB cung nhỏ AB là: A  cm   B 3 cm   2 C   cm  D  cm   IV/ HÌNH KHƠNG GIAN Cho hình chữ nhật ABCD (AB = 2a; BC = a) Quay hình chữ nhật xung quanh BC hình trụ tích V1; quay quanh AB hình trụ tích V2 Khi ta có: A V1 = V2 B V1 = 2V2 C V2 = 2V1 D V1 = 4V2 Cho tam giác ABC vuông A biết AB = 3cm; AC = 2cm, người ta quay tam giác ABC quanh cạnh AC hình nón, thể tích hình nón bằng: A 6 cm B 12 cm C 4 cm D 18 cm 3 Cho nửa đường trịn tâm O, đường kính AB = 6(cm) cố định Quay nửa hình trịn quanh AB hình cầu tích :    A 288 cm B 9 cm   C 27 cm 23   D 36 cm  Hình chữ nhật ABCD, AB = 10cm, AD = 12cm , quay hình chữ nhật ABCD quanh cạnh AB, thể tích hình sinh là: A 300  cm3 B 1440  cm3 C 1200  cm3 D 600  cm3 Hình nón có bán kính đáy 10cm, chiều cao 9cm thể tích hình nón là: A 912cm3 B 942cm3 C 932cm3 D 952cm3 Tam giác ABC vng A có AB = 6cm; AC = 8cm thể tích hình sinh quay tam giác ABC quay quanh AB : A 24  (cm3) B 32  (cm3) C 96  (cm3 ) D 128  (cm3) Một hình nón có diện tích xung quanh 72  cm2, bán kính đáy 6cm Độ dài đường sinh là: A 6cm B 8cm C 12cm D 13cm Một khối cầu tích 113,04cm3 Vậy diện tích mặt cầu là: A 200,96cm2 B 226,08cm2 C 150,72cm2 D 113,04cm2 Một hình trụ tích 785cm3 có chiều cao 10cm, bán kính đáy hình trụ là: A 10cm B 5cm C 20cm D 15cm 10 Diện tích xung quanh hình nón có chu vi đáy 40cm độ dài đường sinh 20cm là: A 400cm2 B 4000cm2 C 800cm2 D 480cm2 11 Hình nón có chu vi đáy 50,24cm, chiều cao 6cm Độ dài đường sinh là: A 9cm B 10cm C 10,5cm D 12cm 12 Một hình nón tích 4 a (đvtt) có chiều cao 2a có đơn vị độ dài bán kính đáy là: A a B 3a C a D a 13 Một hình trụ tích V  125 cm3 có chiều cao 5cm diện tích xung quanh hình trụ là: A 25  cm2 B 50  cm2 C.40  cm2 D 30  cm2 14 Một hình nón có diện tích xung quanh 20  cm2 bán kính đáy 4cm Đường cao hình nón bằng: A 5cm B 3cm C 4cm D 6cm 15 Cho hình vng ABCD nội tiếp đường trịn (O; R), cho hình vng ABCD quay xung quanh đương trung trực cạnh đối , phần thể tích khối cầu nằm khối trụ là: A  R3 83   B  R3 83   C  R3 83   D  R3 83 12   � có tâm A bán kính a Quay tam 16 Cho tam giác ABC vng cân A, có cạnh AB = a cung trịn BC � quanh cạnh AB, phần khối cầu nằm ngồi khối nón là: giác ABC BC A 2 a 3 B  a3 C 2 a D  a 17 Cho hình trụ ABCD nội tiếp khối cầu Tâm O bán kính R, biết AB = R Thể tích khối cầu nằm khối trụ là: 24 A  R3 43   B  R3 16  3 12   C  R3 83 12   D  R3 83 3   18 Hai hình trụ hình nón có bán kính đáy đường cao Gọi V thể tích hình trụ, V2 thể tích hình nón Tỷ số A V1 là: V2 B C D 19 Cho hình chữ nhật MNPQ có MN = 4cm; MQ =3cm Khi quay hình chữ nhật cho vòng quanh cạnh MN ta hình trụ tích : A 48 (cm3) B 36π (cm3) C 24π (cm3) D 72π (cm3) 20 Một hình cầu có diện tích mặt cầu 64π cm2 Thể tích hình cầu bằng: A 32 256  (cm3 ) B  (cm3 ) 3 C 64π (cm3) D 256π (cm3) 21.Cho hình chữ nhật có chiều dài 3m, chiều rộng 2m Quay hình chữ nhật vịng quanh chiều dài ta hình trụ, diện tích xung quanh hình trụ bằng: A 6π (m2) B π (m2) C 12 π (m2) D 18 π (m2) 22 Một hình trụ có diện tích đáy diện tích xung quanh 324 (m 2) Khi chiều cao hình trụ là: A 3,14(m) B 31,4(m) C 10(m) D 5(m) 23 Cho hình chữ nhật có chiều dài 4cm, chiều rộng 3cm Quay hình chữ nhật vịng quanh chiều dài ta hình trụ Diện tích xung quanh hình trụ là: A 12  cm  B 48  cm  C 24  cm  D 36  cm  24 Cho tam giác MNP vuông M, MP =3cm; MN =4cm Quay tam giác vịng quanh cạnh MN hình nón Diện tích xung quanh hình nón là: A 10  cm  B 20  cm  C 15  cm  D 12  cm  25 Hình trụ có chiều cao h = 8(cm) bán kính mặt đáy 3(cm) diện tích xung quanh là: A 16  cm  B 24  cm  C 32  cm  25 D 48  cm  ... cao 9cm thể tích hình nón là: A 91 2cm3 B 94 2cm3 C 93 2cm3 D 95 2cm3 Tam giác ABC vuông A có AB = 6cm; AC = 8cm thể tích hình sinh quay tam giác ABC quay quanh AB : A 24  (cm3) B 32  (cm3) C 96 ...  x  2m  vô nghiệm A m > C m  B m < D m  2 29 Giả sử x1 ; x2 nghiệm phương trình x  x   Biểu thức x1  x2 có giá trị là: A 29 B 29 C 29 D 25 30 Cho phương trình  m  1 x   m  1... 15cm Độ dài cạnh AB là: A 9cm B 10cm C 6cm D 3cm 11 Hình thang ABCD vng góc A, D Đường chéo BD vng góc với cạnh bên BC, biết AD = 12cm, BC = 25cm Độ dài cạnh AB là: A 9cm B 9cm hay 16cm C 16cm D

Ngày đăng: 03/04/2021, 18:35

w