1. Trang chủ
  2. » Giáo án - Bài giảng

Đề cương học kỳ I ban nâng cao Toán 10 - ( chương trình hết tuần 16 )

2 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 189,9 KB

Nội dung

3 Cách giải và biện luận phương trình , hệ phương trình bậc nhất và bậc hai 1 ẩn , 2 ẩn 4 Cách giải hệ phương trình bậc hai hai ẩn bằng phương pháp viet và cộng đại số.. 5 Bất đẳng thức [r]

(1)ĐỀ CƯƠNG HỌC KỲ I BAN N ĐNG CAO - ( Chương trình hết tuần 16 ) Học sinh cần nắm các kiến thức sau :  A LÝ THUYẾT I Đại số : 1) Tìm tập xác định hàm số , cách c/m hàm số đồng biến , nghịch biến , hàm số chẵn , lẻ 2) Xét chiều biến thiên ,tìm các hệ số và vẽ đồ thị hàm số hàm số bậc , bậc hai 3) Cách giải và biện luận phương trình , hệ phương trình bậc và bậc hai ẩn , ẩn 4) Cách giải hệ phương trình bậc hai hai ẩn phương pháp viet và cộng đại số 5) Bất đẳng thức và chứng minh bất đẳng thức II Hình học : 1) Cách ch/ minh đẳng thức vectơ từ các qui tắc điểm , hình bình hành , trung điểm ,trọng tâm 2) Dùng phương pháp tọa độ tính chu vi , diện tích , góc tam giác , tích vô hướng 3) Cách tính giác trị lượng giác các góc đặc biệt và chứng minh đẳng thức lượng giác B BÀI TẬP : Giải các bài tập sách giáo khoa và tham khảo thêm số bài tập sau : Tìm tập xác định hàm số: a/ y  x  3x  x  4x  b/ y  2x  c/ y   5x  x2  d/ y = x- 2 Xác định tính chẵn lẻ hàm số : a/ y = | x + 2| - | x - 2| b/ y  x2 1 x 1 c/ y = x x d/ y = | x3 - 2x | Cho hàm số: y = (2m - 1)x + m - m : tham số a Định m để hàm số đồng biến trên R ; nghịch biến trên R b Định m để hàm số qua điểm A(0;2), khảo sát và vẽ đồ thị hàmsố ứng với giá trị m tìm Cho hàm số: y = ax2 + bx + c (P) a Xác định a,b,c biết (P) có trục đối xứng là đường thẳng x = và điểm cực đại có tung độ 4, đồng thời đồ thị hàm số qua A(3;0) b Khảo sát và vẽ đồ thị ứng với a,b,c tìm câu a Viết phương trình đường thẳng qua giao điểm hai đường: (P1): y = x2 - 1; (P2): y = - x2 + 2x + , đó vẽ (P1), (P2) trên cùng hệ trục tọa độ a Xét biến thiên và vẽ đồ thị hàm số y = x2 - 2x (C) b Dựa vào đồ thị (C) , biện luận theo m số nghiệm phương trình : x2 - 2x - m = Giải và biện luận phương trình và hệ phương trình sau: x- m x- a/ m2(x - 1) = 2(mx - 2) b/ c/ x - m = x + 2 + = x- x- m ìï ax - y = a ìï (m - 1)x + y = m ìï (m - 1)x + 2my = - ï ï ï d/ í e/ í f/ ïí ïï x + (m - 1)y = ïï 2mx + (m - 1)y = m - ïï bx - y = b2 ïî ïî ïî ïìï (k + 1)x + (3k + 1)y = - k , k là tham số Cho hệ phương trình: í ïï 2x + (k + 2)y = ïî a Giải và biện luận phương trình b Giả sử hệ có nghiệm (x,y), tìm hệ thức liên hệ các nghiệm độc lập với k c Tìm k  Z để hệ có nghiệm (x,y) mà x,y là các số nguyên Tìm các nghiệm tương ứng Cho phæång trçnh : mx2 – (m – 3)x + m – = a Định m để pt có nghiệm (-1) và tính nghiệm còn lại phương trình Lop10.com (2) b Định m để pt có hai nghiệm phân biệt ; hai nghiệm trái dấu ; hai nghiệm cùng âm ; hai nghiệm cùng dương ; có đúng nghiệm dương ; có nghiệm cho : x1< < x2 10 Giải các phương trình và hệ phương trình sau : a/ x4 - 9x2 + = d/ 2x - x2 + x  12 x   c/ x  x    b/ x4 - 15x2 - = e/ x2 + x  x  11  x  f/ x(x+1)(x2 +x +1) = 42  x  y  xy  13 x  y  g/ - 5x + = a/  b/  x  y    x  y  xy  2 2 x  xy  x  x  y  x  y   x  xy  y  11  y  xy  x c/  d/  e/  g/  2 2 2 y  xy  y   xy  x  y  1  x  3( x  y )  y  28 1  x y  x 6x4 5x3 38x2 11 Chứng minh các bất đẳng thức sau: a/ a2 + 4b2 + 3c2 + 13  2a + 12b + 6c , a,b,c c/ (a + b)(ab + 1)  4ab , a,b > a b c + + ³ d/ , a,b,c > e/ (a + 1)(b + 1)(c + 1)  (1  abc ) với a,b,c >0 b+ c c + a a + b 12 Cho ABC nội tiếp đường tròn tâm O, H là trực tâm ABC, D là điểm đối xứng với A qua O a/ CMR: HBDC laì hçnh bçnh haình uuur uuur uuur uuur uuur uuur uuur uuur b/ CMR: HA + HB + HC = 2HO , OA + OB + OC = OH uuur uuur c/ Gọi G là trọng tâm ABC, Chứng minh: OH = 3OG Kết luận gì điểm O,H,G ? 13 Trong mặt phẳng (Oxy) cho ABC có A(-1 ; 1), B(2 ; -1), C(3 ; 3) a/ Tính chu vi và diện tích ABC b/ Tìm điểm D để tứ giác ABCD là hình bình hành uuur uuur uuur uuur uuur r c/ Tính tích vô hướng: AB AC suy CosA d/ Tìm điểm M cho: MA - 3MB + MC = e/ Tìm tọa độ trọng tâm ,trực tâm và tâm đường tròn ngoại tiếp ABC ,c/m điểm trên thẳng hàng 14 Chứng minh các đẳng thức sau: a/ Cosa  Sina   Sina Cosa b/  Sin 2 Cos 2   Sin Cos  Cot  tan  d/ + Sin(90o - ).Cos(180o - ) = Sin2 e/ sin c/ - Sin b + Sin b - t an b = + Sin b - Sin b Cosb a + cos6a + 3sin2 a.cos2a = 15 Cho ABC có các cạnh là a,b,c ,bán kính đường tròn nội tiếp và ngoại tiếp là r và R a/ Cho: a = ,b=2,c= + , tênh goïc A,B,C , , R b/ Giả sử ABC vuông A Chứng minh rằng: 2 i/ r = (b + c - b + c ) · i/ Gọi M là điểm thuộc cạnh BC cho: BAM = a Chứng minh: AM = bc bCos a + c.Sin a CHÚC CÁC EM ÔN TẬP VAÌ LAÌM BAÌI TỐT Lop10.com (3)

Ngày đăng: 03/04/2021, 00:37

TỪ KHÓA LIÊN QUAN

w