1. Trang chủ
  2. » Mẫu Slide

Ôn thi Đại học & Cao đẳng môn Toán - Chương VIII: Phương trình lượng giác không mẫu mực

11 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 163,68 KB

Nội dung

CHÖÔNG VIII PHƯƠNG TRÌNH LƯỢNG GIÁC KHÔNG MẪU MỰC Trường hợp 1: TOÅNG HAI SOÁ KHOÂNG AÂM AÙ p duï n g Baø i 156... Phương pháp đối lập..[r]

(1)CHÖÔNG VIII PHƯƠNG TRÌNH LƯỢNG GIÁC KHÔNG MẪU MỰC Trường hợp 1: TOÅNG HAI SOÁ KHOÂNG AÂM AÙ p duï n g Baø i 156 Ta coù : ⎧A ≥ ∧ B ≥ thì A = B = ⎩A + B = Neá u ⎨ Giaû i phöông trình: cos2 x + 3tg x − cos x + 3tgx + = (*) ( (*) ⇔ cos x − ) +( 3tgx + ) =0 ⎧ ⎪cos x = ⎪ ⇔⎨ ⎪tgx = − ⎪⎩ π ⎧ ⎪⎪ x = ± + k2π, k ∈ ⇔⎨ ⎪tgx = − ⎪⎩ ⇔x=− Baø i 157 π + k2π, k ∈ Giaû i phöông trình: cos 4x.cos2 2x + − cos 3x + = ( *) Ta coù : ( *) ⇔ cos 4x (1 + cos 4x ) + + − cos 3x = ⇔ ( cos2 4x + cos 4x + 1) + − cos 3x = ⇔ ( cos 4x + 1) + − cos 3x = 1 ⎧ ⎧ ⎪cos 4x = − ⎪cos 4x = − ⇔⎨ 2⇔⎨ ⎪⎩cos 3x = ⎪⎩3x = k2π, k ∈ ⎧ ⎪⎪cos 4x = − ⇔⎨ ⎪ x = k2π , k ∈ (có đầ u ngọ n cung) ⎪⎩ Lop12.net (2) ⎧ = − cos 4x ⎪⎪ ⇔⎨ π 2π ⎪x = − +m2π hay x = m2π hay x = + m2π , m ∈ ⎪⎩ 3 2π ⇔x=± + m2π, m ∈ (ta nhậ n k = ±1 và loạ i k = ) Baø i 158 Giaû i phöông trình: sin 3x sin x + cos 3x sin3 x + sin 3x cos3 x ) = sin x sin 3x ( *) ( 3sin 4x Ta coù : cos 3x.sin3 3x + sin 3x.cos3 x = ( cos3 x − cos x ) sin x + ( sin x − sin x ) cos3 x = −3 cos x sin x + sin x cos3 x = sin x cos x ( cos2 x − sin x ) 3 sin 2x cos 2x = sin 4x Vaä y: ( *) ⇔ sin2 x + sin2 3x = sin x sin2 3x vaø sin 4x ≠ = 1 ⎛1 ⎞ ⇔ ⎜ sin2 3x − sin x ⎟ − sin4 3x + sin2 3x = vaø sin 4x ≠ 4 ⎝2 ⎠ ⎛1 ⎞ ⇔ ⎜ sin2 3x − sin x ⎟ + sin2 3x (1 − sin2 3x ) = vaø sin 4x ≠ ⎝2 ⎠ ⎛1 ⎞ ⇔ ⎜ sin 3x − sin x ⎟ + sin 6x = vaø sin 4x ≠ 16 ⎝2 ⎠ ⎧sin 4x ≠ ⎪1 ⎪ ⇔ ⎨ sin2 3x = sin x ⎪2 ⎪⎩sin 3x = ∨ cos 3x = ⎧sin 4x ≠ ⎧sin 4x ≠ ⎪ ⎪ ⎪1 ⇔ ⎨sin 3x = ∨ ⎨ = sin x ⎪sin x = (VN) ⎪ ⎩ ⎪⎩sin 3x = ±1 ⎧sin 4x ≠ ⎪ ⎪ ⇔ ⎨sin x = ⎪ ⎪⎩3 sin x − sin x = ±1 Lop12.net (3) ⎧sin 4x ≠ ⎪ ⇔⎨ ⎪⎩sin x = ⎧sin 4x ≠ ⎪ ⇔⎨ π 5π ⎪⎩ x = + k2π ∨ + k2π, k ∈ π 5π ⇔ x = + k2π ∨ x = + k2π, k ∈ 6 Trường hợp Phương pháp đối lập ⎧A ≤ M ≤ B thì A = B = M ⎩A = B Neáu ⎨ Baø i 159 Giaû i phöông trình: sin x − cos4 x = sin x + cos x (*) Ta coù : (*) ⇔ sin x − cos2 x = sin x + cos x ⇔ − cos 2x = sin x + cos x ⎧⎪cos 2x ≤ ⇔⎨ ⎪⎩cos 2x = + sin x cos x ⎧⎪cos 2x ≤ ⎧cos 2x ≤ ⇔⎨ ⇔⎨ ⎪⎩− sin 2x = sin 2x ⎩sin 2x = (cos 2x = ± ) ⇔ cos 2x = −1 π ⇔ x = + kπ, k ∈ Caùc h khaù c Ta coù sin x − cos4 x ≤ sin x ≤ sin x ≤ sin x + cos x Do đó Baø i 160: ⎧⎪cos x = π (*) ⇔ ⎨ ⇔ cos x = ⇔ x = + kπ, k ∈ ⎪⎩sin x = sin x Giaû i phöông trình: ( cos 2x − cos 4x ) = + sin 3x (*) Ta coù : (*) ⇔ sin2 3x.sin2 x = + 2sin 3x • Do: sin2 3x ≤ vaø sin2 x ≤ neâ n sin2 3x sin2 x ≤ • Do sin 3x ≥ −1 neân + sin 3x ≥ Vaäy sin2 3x sin2 x ≤ ≤ + 2sin 3x Dấu = phương trình (*) đú n g và Lop12.net (4) ⎧sin 3x = ⎧sin x = ⎪ ⎨sin x = ⇔ ⎨ ⎩sin 3x = −1 ⎪sin 3x = −1 ⎩ π ⎧ π ⎪ x = ± + k2π, k ∈ ⇔⎨ ⇔ x = + k2π, k ∈ 2 ⎪⎩sin 3x = −1 cos3 x − sin x = cos 2x (*) sin x + cos x Ñieà u kieän : sin x ≥ ∧ cos x ≥ Ta coù : (*) ⇔ ( cos x − sin x )(1 + sin x cos x ) = ( cos2 x − sin x ) sin x + cos x Baø i 161 Giaû i phöông trình: ( ⎡ cos x − sin x = ⇔⎢ ⎢⎣1 + sin x cos x = ( cos x + sin x ) sin x + cos x π Ta coù : i (1) ⇔ tgx = ⇔ x = + kπ, k ∈ i Xeù t (2) Ta coù : sin x ≥ thì sin x ≥ sin x ≥ sin2 x ( cos x ≥ cos x ≥ cos2 x sin x + cos x ≥ vaø sin x + cos x ≥ Vaäy Suy veá phaû i cuûa (2) thì ≥ Maø veá traù i cuûa (2): + sin 2x ≤ 2 Do đó (2) vô nghiệm π Vaäy : (*) ⇔ x = + kπ, k ∈ Tương tự Baø i 162: Giaû i phöông trình: Ta coù : (*) − cos x − cos x + = (*) ⇔ − cos x = + cos x + ⇔ − cos x = + cos x + cos x + ⇔ −2 ( cos x + 1) = cos x + Ta coù : −2 ( cos x + 1) ≤ ∀x maø cos x + ≥ ∀x Do đó dấ u = củ a (*) xả y ⇔ cos x = −1 ⇔ x = π + k2π , k ∈ Lop12.net ) (1) (2) ) (5) Baø i 163: Giaû i phöông trình: cos 3x + − cos2 3x = (1 + sin 2x ) (*) Do bấ t đẳ n g thức Bunhiacố p ski: AX + BY ≤ neâ n : A + B2 X + Y cos 3x + − cos2 3x ≤ cos2 3x + ( − cos2 3x ) = Daáu = xaûy ⇔ cos 3x = − cos2 3x ⎧cos 3x ≥ ⇔⎨ 2 ⎩cos 3x = − cos 3x Maë t khaùc : ⎧cos 3x ≥ ⇔⎨ ⇔ cos 3x = ⎩cos 3x = ±1 (1 + sin 2x ) ≥ daá u = xaû y ⇔ sin 2x = Vaäy : cos 3x + − cos2 3x ≤ ≤ (1 + sin 2x ) daá u = cuû a (*) chæ xaû y khi: cos 3x = ∧ sin 2x = ⎧cos 3x = ⎪ ⇔⎨ kπ ⎪⎩ x = , k ∈ ( có đầ u ngọ n cung ) ⇔ x = 2mπ , m ∈ Baø i 164: π⎞ ⎛ Giaû i phöông trình: tg x + cotg x = sin5 ⎜ x + ⎟ (*) 4⎠ ⎝ Ñieà u kieän : sin 2x ≠ • Do bấ t đẳ n g thức Cauchy: tg x + cotg x ≥ daá u = xaû y tgx = cotgx π⎞ ⎛ • Maë t khaùc : sin ⎜ x + ⎟ ≤ 4⎠ ⎝ π⎞ ⎛ neâ n sin5 ⎜ x + ⎟ ≤ 4⎠ ⎝ π⎞ ⎛ daá u = xaû y sin ⎜ x + ⎟ = 4⎠ ⎝ π⎞ ⎛ Do đó : tg x + cotg x ≥ ≥ sin5 ⎜ x + ⎟ 4⎠ ⎝ ⎧tgx = cotgx ⎪ Daáu = cuûa (*) xaû y ⇔ ⎨ π⎞ ⎛ ⎪sin ⎜ x + ⎟ = ⎝ ⎠ ⎩ Lop12.net (6) ⎧tg x = ⎪ ⇔⎨ π ⎪ x = + k2π , k ∈ ⎩ π ⇔ x = + k2π, k ∈ Trường hợp 3: AÙp duïng: ⎧ A ≤ M vaø B ≤ M ⎧A = M thì ⎨ ⎩A + B = M + N ⎩B = N ⎧sin u = sin u + sin v = ⇔ ⎨ ⎩sin v = ⎧sin u = sin u − sin v = ⇔ ⎨ ⎩sin v = − ⎧sin u = − sin u + sin v = − ⇔ ⎨ ⎩sin v = − Neáu ⎨ Tương tự cho các trường hợp sau sin u ± cos v = ± ; cos u ± cos v = ± Baø i 165: Ta coù : Giaû i phöông trình: cos 2x + cos ( *) ⇔ cos 2x + cos 3x =2 3x − = ( *) 3x ≤1 neâ n daáu = cuûa (*) chæ xaû y ⎧ x = kπ , k ∈ ⎧cos 2x = ⎪ ⎪ ⇔⎨ ⇔⎨ ⇔ x = 8mπ, m ∈ 8hπ 3x ⎪⎩cos = ⎪⎩ x = , h ∈ 8hπ 8h Do : kπ = ⇔k= 3 để k nguyê n ta chọ n h = 3m ( m ∈ Ζ ) ( thì k = 8m ) Do cos 2x ≤ vaø cos Caù c h khaù c ⎧cos 2x = ⎪ ⇔ ⎨ 3x cos = ⎪⎩ Baø i 166: ⎧ x = kπ , k ∈ ⎪ ⎨ 3kπ ⎪⎩cos = ⇔ x = 8mπ, m ∈ Giaû i phöông trình: cos 2x + cos 4x + cos 6x = cos x.cos 2x.cos 3x + ( * ) Lop12.net (7) cos 2x + cos 4x + cos 6x = cos 3x cos x + cos2 3x − = cos 3x ( cos x + cos 3x ) − = cos 3x.cos 2x.cos x − 1 Vaäy : cos 3x.cos 2x.cos x = ( cos 2x + cos 4x + cos 6x + 1) Do đó : ( *) ⇔ cos 2x + cos 4x + cos 6x = ( cos2x + cos 4x + cos6x ) + 4 ⇔ ( cos 2x + cos 4x + cos 6x ) = 4 ⇔ cos 2x + cos 4x + cos 6x = ⎧cos 2x = ⎧2x = k2π, k ∈ (1) ⎪ ⎪ ⇔ ⎨cos 4x = ⇔ ⎨cos 4x = (2) ⎪cos 6x = ⎪cos 6x = (3) ⎩ ⎩ ⇔ 2x = k2π, k ∈ ⇔ x = kπ, k ∈ ( Theá (1) vaøo (2) vaø (3) ta thaáy hieån nhieâ n thoûa ) Baø i 167: Giaû i phöông trình: cos 2x − sin 2x − sin x − cos x + = ( * ) Ta coù : ⎛ ⎞ ⎛ ⎞ cos 2x + sin 2x ⎟⎟ + ⎜⎜ sin x + cos x ⎟⎟ 2 ⎝ ⎠ ⎝ ⎠ ( *) ⇔ = ⎜⎜ − π⎞ π⎞ ⎛ ⎛ ⇔ = sin ⎜ 2x − ⎟ + sin ⎜ x + ⎟ 6⎠ 6⎠ ⎝ ⎝ ⎧ π⎞ ⎛ π π ⎧ 2x − = + k2π, k ∈ ⎪sin ⎜ 2x − ⎟ = ⎪ ⎪ ⎝ ⎠ ⎪ ⇔⎨ ⇔⎨ π ⎪sin ⎛ x + π ⎞ = ⎪ x + = π + h2π, h ∈ ⎜ ⎟ ⎪⎩ ⎪⎩ 6⎠ ⎝ π ⎧ ⎪⎪ x = + kπ, k ∈ π ⇔⎨ ⇔ x = + hπ, h ∈ ⎪ x = π + h2π, h ∈ ⎪⎩ Caù c h khaù c ⎧ π⎞ ⎛ ⎧ π⎞ ⎛ sin ⎜ 2x − ⎟ = ⎪sin ⎜ 2x − ⎟ = ⎪ ⎪ ⎝ ⎠ ⎪ 6⎠ ⎝ ( *) ⇔ ⎨ ⇔⎨ ⎪sin ⎛ x + π ⎞ = ⎪ x + π = π + h2π, h ∈ ⎜ ⎟ ⎪⎩ ⎪⎩ 6⎠ ⎝ Lop12.net (8) ⎧ π⎞ ⎛ ⎪⎪sin ⎜ 2x − ⎟ = ⎝ ⎠ ⇔⎨ ⎪ x = π + h2π, h ∈ ⎪⎩ Baø i 168: ⇔x= π + hπ, h ∈ Giaû i phöông trình: cos x − cos 2x − cos 4x = ( * ) Ta coù : ( * ) ⇔ cos x − ( cos2 x − ) − (1 − sin 2x ) = ⇔ 4cosx − cos2 x + sin x cos2 x = ⇔ cos x = hay − cos x + sin x cos x = ⇔ cos x = hay + cos x ( sin2 x − 1) = ⇔ cos x = hay − cos x cos 2x = ( * *) ⇔ cos x = hay − ( cos 3x + cos x ) = ⇔ cos x = ∨ cos 3x + cos x = ⎧cos 3x = ⇔ cos x = ∨ ⎨ ⎩cos x = ⎧cos x = ⇔ cos x = ⇔ ⎨ ⎩4 cos x − cos x = ⇔ cos x = ∨ cos x = π ⇔ x = + kπ ∨ x = k2π, k ∈ Caùc h khaù c ( * *) ⇔ cos x = hay cos x cos 2x = ⎧cos x = ⎧cos x = − ⇔ cos x = ∨ ⎨ ∨⎨ ⎩cos 2x = ⎩cos 2x = − ⎧ x = k2π, k ∈ ⎧ x = π + k2π, k ∈ π ⇔ x = + kπ, k ∈ ∨ ⎨ ∨⎨ ⎩cos 2x = ⎩cos 2x = − π ⇔ x = + kπ ∨ x = k2π, k ∈ Baø i 169: Giaû i phöông trình: tg2x + tg3x + = ( *) sin x cos 2x cos 3x Ñieà u kieän : sin 2x cos 2x cos 3x ≠ Lú c đó : sin 2x sin 3x + + =0 ( *) ⇔ cos 2x cos 3x sin x.cos 2x.cos 3x ⇔ sin 2x sin x cos 3x + sin 3x sin x.cos 2x + = ⇔ sin x ( sin 2x cos 3x + sin 3x cos 2x ) + = Lop12.net ( loạ i ) (9) ⇔ sin x.sin 5x = −1 ( cos 6x − cos 4x ) = −1 ⇔ cos 6x − cos 4x = ⇔− ⎧cos 6x = ⇔⎨ ⇔ ⎩cos 4x = −1 ⎧t = cos 2x ⎪ ⎨4t − 3t = ⇔ ⎪ ⎩2t − = −1 ⎧t = cos 2x ⎪ ⎨4t − 3t = ⎪ ⎩t = Do đó : (*) vô nghiệm Caùc h khaù c ⎧sin x = ⎧sin x = − ⇔ sin x sin 5x = −1 ⇔ ⎨ hay ⎨ ⎩sin 5x = − ⎩sin 5x = π π ⎧ ⎧ ⎪ x = + k2π, k ∈ ⎪ x = − + k2π, k ∈ hay ⎨ ⇔⎨ 2 ⎪⎩sin 5x = − ⎪⎩sin 5x = ⇔ x ∈∅ Baø i 170: Giaû i phöông trình: cos2 3x.cos 2x − cos2 x = ( * ) 1 (1 + cos 6x ) cos 2x − (1 + cos 2x ) = 2 ⇔ cos 6x cos 2x = 1 ⇔ ( cos 8x + cos 4x ) = ⇔ cos 8x + cos 4x = Ta coù : ( *) ⇔ ⎧cos 8x = ⇔⎨ ⎩cos 4x = ⎧2 cos2 4x − = ⇔⎨ ⎩cos 4x = ⎧cos2 4x = ⇔⎨ ⎩cos 4x = ⇔ cos 4x = ⇔ 4x = k2π, k ∈ kπ ,k ∈ ⇔x= Caùc h khaù c ⇔ cos 6x cos 2x = ⎧cos 2x = ⎧cos 2x = −1 ⇔⎨ hay ⎨ ⎩cos 6x = ⎩cos 6x = −1 Lop12.net (10) ⎧2x = k2π, k ∈ ⎧2x = π + k2π, k ∈ ⇔⎨ hay ⎨ ⎩cos 6x = ⎩cos 6x = −1 kπ x= ,k ∈ Caùc h khaù c ⎧cos 8x = ⎧cos 8x = ⇔⎨ ⎨ ⎩cos 4x = ⎩4x = k2π, k ∈ kπ ⇔x= ,k ∈ Trường hợp 4: DUØNG KHAÛO SAÙT HAØM SOÁ x y = a laø haøm giaûm 0< a <1 Do đó ta có sin x m cos x m < sin x n < co s x sin x m ≤ sin x cos x m ≤ co s x n ⇔ n > m, ∀x ≠ n π ⇔ n > m, ∀x ≠ + kπ , k ∈ π + kπ , k ∈ ⇔ n ≥ m, ∀x n ⇔ n ≥ m, ∀x x2 = cos x ( *) Baø i 171: Giaû i phöông trình: − x2 + cos x Ta coù : ( *) ⇔ = x2 y= + cos x treâ n R Xeù t Ta coù : y ' = x − sin x y '' = − cos x ≥ ∀x ∈ R vaø Do đó y’(x) là hà m đồ n g biế n trê n R Vaäy ∀x ∈ ( 0, ∞ ) : x > neâ n y ' ( x ) > y ' ( ) = ∀x ∈ ( −∞, ) : x < neâ n y ' ( x ) < y ' ( ) = Do đó : x2 + cos x ≥ ∀x ∈ R Vaäy : y = Daáu = cuûa (*) chæ xaû y taï i x = Do đó ( * ) ⇔ x = • Lop12.net (11) Baø i 172: Giaû i phöông trình sin x + sin x = sin x + sin10 x (*) Ta coù ⎪⎧sin x ≥ sin x vaø daá u =xaû y vaø chæ sin x = 1hay sinx = ⎨ 10 ⎪⎩ sin x ≥ sin x vaø daá u =xaû y vaø chæ sin x = hay sinx = ⇔ sin x = ∨ sinx = ⇔x= ± π + k 2π ∨ x = k 2π , k ∈ Caù c h khaù c (*) ⇔ sin x = hay 1+ sin x = sin x + sin x ⇔ sin x = hay sin x =1 BAØI TAÄP Giaû i caù c phöông trình sau lg ( sin x ) − + sin x = π⎞ ⎛ sin 4x − cos 4x = + sin ⎜ x − ⎟ 4⎠ ⎝ sin2 x + sin 3x = sin x sin 3x sin x π = cos x cos x + sin 10x = + cos 28x sin x ( cos 4x − cos 2x ) sin x + cos x = ( − sin 3x ) sin 3x ( cos 2x − sin 3x ) + cos 3x (1 + sin 2x − cos 3x ) = tgx + tg2x = − sin 3x cos 2x 10 log a ( cot gx ) = log ( cos x ) = + sin 3x 12 ⎡ π⎤ 2sin x = cos x vớ i x ∈ ⎢0, ⎥ ⎣ 2⎦ 13 14 cos x + sin x = 13 cos 2x − cos 6x + ( sin 2x + 1) = 14 sin x + cos x = ( − cos 3x ) 15 sin x + cos3 x = − sin x 16 17 cos2 x − cos x − 2x sin x + x + = sin x + sin x = sin2 x + cos x 18 cot g x + cos2 x − cot gx − cos x + = 11 Lop12.net (12)

Ngày đăng: 31/03/2021, 22:58

w