Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
712,3 KB
Nội dung
SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN KÌ THI CHỌN HỌC SINH GIỎI TỈNH LỚP NĂM HỌC 2020 - 2021 Mơn thi: TỐN – BẢNG A Thời gian: 150 phút (khơng kể thời gian giao đề) ĐỀ CHÍNH THỨC Câu (3,0 điểm) a) Tìm tất giá trị nguyên a để A = a + 4a + 2021 số phương b) Cho đa thức P( x) Chứng minh đa thức với hệ số nguyên thỏa mãn P ( x ) - 2022 P ( 2019) P ( 2020) = 2021 khơng có nghiệm ngun Câu (6,5 điểm) a) Giải phương trình x - 5x + = x - - x + �y - y ( x - x - 1) = x - x � � � � y ( x +1) - x + x = � � b) Giải hệ phương trình Câu (1,5 điểm) Cho ba số thực không âm a, b,c thỏa mãn ab + bc + ca =1 Tìm giá trị nhỏ biểu thức P= a + b + c2 + a + b + c - abc Câu (6,0 điểm) Cho tam giác nhọn ABC có D, E, F chân đường cao kẻ từ ba đỉnh A, B,C tam giác Gọi H trực tâm tam giác ABC K trung điểm HC a) Chứng minh điểm E, K, D, F thuộc đường tròn b) Đường thẳng qua K song song với BC cắt DF M Trên tia DE lấy điểm P cho SAMF MF = � = BAC � S MP (Trong SAMF ,SAMP diện tích tam MAP AMP Chứng minh giác AMF AMP ) Câu (3,0 điểm) a) Cho hình thoi ABCD có AB = a Gọi R , R bán kính đường trịn ngoại tiếp tam giác ABC ABD Chứng minh R + R �a b) Cho đa giác có 2021 đỉnh, cho đỉnh đa giác tô hai màu xanh đỏ Chứng minh tồn đỉnh đa giác cho đỉnh tam giác cân mà đỉnh tơ màu ……………Hết…………… Họ tên thí sinh………………………………… Số báo danh…………………… Chú ý: Thí sinh khơng phép sử dụng máy tính bỏ túi SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN KỲ THI CHỌN HỌC SINH GIỎI TỈNH LỚP NĂM HỌC 2020 – 2021 HƯỚNG DẪN CHẤM ĐỀ THI CHÍNH THỨC Mơn thi: TOÁN – Bảng A ( Hướng dẫn chấm gồm có 05 trang) Câu ĐÁP ÁN THAM KHẢO 1.a Điểm Tìm tất giá trị nguyên a để A = a + 4a + 2021 số phương (1,5đ) Ta có a + 4a + 2021 = y � ( a + 2) + 2017 = y 0,25 � 2017 = y - ( a + 2) � ( y - a - 2) ( y + a + 2) = 2017 0,25 Do 2017 số nguyên tố nên ta có trường hợp sau xảy y - a - = 2017 � y - a = 2019 � y =1009 � � �� �� � � � � � � y + a =- a =- 1010 � � +) TH1: �y + a + =1 0,25 � y - a - =- 2017 � y - a =- 2015 � y =- 1009 � �� �� � � � � � � a =1006 �y + a =- � +) TH2: �y + a + =- 0,25 +) TH3: � �y - a = �y =1009 y - a - =1 � �� �� � � � � a = 1006 �y + a + = 2017 � �y + a = 2015 � � 0,25 �y - a =1 y - a - =- y =- 1009 � � � �� �� � � � � � � a =- 1010 +) TH4: �y + a + =- 2017 �y + a =- 2019 � 0,25 Vậy có giá trị nguyên a thỏa mãn yêu cầu toán a =- 1010 a = 1006 1.b Cho đa thức (1,5đ) đa thức P( x) với hệ số nguyên thỏa mãn P ( x ) - 2022 P ( 2019) P ( 2020) = 2021 Chứng minh khơng có nghiệm ngun P x - 2022 Giả sử đa thức ( ) có nghiệm nguyên x = a, P ( x ) - 2022 = ( x - a ) Q ( x ) � P ( x ) = 2022 + ( x - a ) Q ( x ) Q x (Với ( ) đa thức hệ số nguyên) 0,25 Khi đó: � P ( 2019) = 2022 +( 2019 - a ) Q ( 2019) 0,25 � P ( 2020) = 2022 +( 2020 - a ) Q ( 2020) 0,25 P 2019) P ( 2020) = 2021 � Mà ( � � 2022 +( 2019 - a ) Q ( 2019) � 2022 +( 2020 - a ) Q ( 2020) � = 2021 � � � � 0,5 � 20222 + 2022 � + ( 2019 - a ) Q ( 2019) +( 2020 - a ) Q ( 2020) � � � ( 2019 - a )( 2020 - a ) Q ( 2019) Q ( 2020) = 2021 ( *) 2019 - a ) ( 2020 - a ) Do ( hai số tự nhiên liên tiếp, suy vế trái (*) số chẵn P x - 2022 Vậy không tồn a để đẳng thức (*) xảy Hay đa thức ( ) khơng có nghiệm ngun 2.a Giải phương trình x - 5x + = x - - (3,0đ) x + 3 Điều kiện: x �1 Phương trình cho tương đương với x - 5x + - x - + x + = � x- � x- ( ) ( x - 1- + ( x - 5) x - +2 ) x + - + x - 6x + = x- + ( x + 3) + x + + � � � 1� =0 � � � � � � x = 5, 0,5 0,5 0,5 x- 1 + + x - > 0, " x �1 x - + ( x + 3) + x + + Vậy tập nghiệm phương trình cho 0,5 0,5 +( x - 1) ( x - 5) = � � x- 1 � � ( x - 5) � + +x� � x - + ( x + 3) + x + + � � 0,25 0,5 T = { 5} �y - y ( x - x - 1) = x - x � � � � �y ( x +1) - x + x = Giải hệ phương trình � 2.b (3,5đ) Ta có y - y ( x - x - 1) = x - x � ( y2 - 1) - ( x - x - 1) ( y +1) = 0,5 � y =- � ( y +1) ( y - x + x ) = � � � y = x2 - x � 0,75 +) Với y =- 1, thay vào phương trình thứ hai hệ ta �x = - � � 3 x =- � x = - Khi hệ có nghiệm � �y =- 0,5 +) Với y = x - x , thay vào phương trình thứ hai hệ ta ( x - x )( x +1) - x3 + x = � x - 2x + 2x - x - = � x - x =1 � ( x - x ) +( x - x ) - = � � �2 x - x =- � 0,5 0,5 +) TH1: x - x + = (vô nghiệm) 0,25 � + � 1- � � x= x= � � � � 2 1� � � x - x - 1= � x = � � �y = �y =1 Khi hệ có nghiệm � +) TH2: ;� � + � 1- �x = � x= � � x= - � � � � 2 ;� � � � � � y =- � �y =1 �y =1 Vậy hệ phương trình cho có nghiệm � ;� (1,5đ) 0,5 Cho ba số thực không âm a,b,c thỏa mãn ab + bc + ca = Tìm giá trị nhỏ biểu thức P= a + b2 + c2 + a + b + c - abc Ta có a + b + c + = a + b + c + 3( ab + bc + ca ) +) = ( a + b)( b + c) +( c + a )( a + b) +( b + c)( c + a ) 0,25 a + b + c - abc = ( a + b + c) ( ab + bc + ca ) - abc +) = ( a + b) ( b + c)( c + a ) 0,25 1 P= + + a + b b +c c +a Khi suy Theo ngun lí Dirichlet ba số thực a, b,c tồn hai số �1 �1 - a ) ( - b) �0 � a + b �ab +1 Giả sử hai số a b Khi đó: ( 0,25 Lại có ab + bc + ca =1 � 1- ab = c ( a + b) �0 � ab �1 Từ suy < a + b �ab +1 �2 0,25 Ta lại có: +) a ( a + b) = ( a + b ) a +b a +b = = = ( a + b) c + a ( c + a ) ( a + b ) a +1 a +1 a ( a + b) a ( a + b) �a + b a+ a 0,25 b ( a + b) �a + b +) Hồn tồn tương tự ta có: b + c ( a + b) 1 1 P= + + � + ( a + b) a +b b +c c +a a + b Từ ta có x 2 + 4x - x P � + 2x = x 2x Đặt a + b = x, < x �2 Khi = ( x - 1) ( - x ) + 5x ( x - 1) ( - x ) = + � 2x 2x P = đạt a = 1;b = 1;c = hoán vị Vậy Cho tam giác nhọn ABC có D, E, F chân đường cao kẻ từ ba đỉnh A, B,C tam 4.a giác Gọi H trực tâm tam giác ABC K trung điểm HC (3,0đ) a) Chứng minh điểm E, K, D, F thuộc đường tròn 0,25 +) Do EK trung tuyến tam giác vuông � = ECK � EHC � KE = KC � KEC 0,75 � = KCE � + KEC � = 2ECK � � EKF (1) 0,5 � � +) Do tứ giác HDCE nội tiếp � ECK = EDH � � +) Do tứ giác FECB nội tiếp � ECK = FBH � � +) Do tứ giác FBDH nội tiếp � FBH = FDH 0,75 Từ suy � = FDH � + EDH � = 2HDE � = 2ECK � FDE 0,5 (2) � � Từ (1) (2) suy EKF = FDE � tứ giác FDKE nội tiếp hay điểm F, D, K, E thuộc đường tròn 4.b 0,5 Cho tam giác nhọn ABC có D, E, F chân đường cao kẻ từ ba đỉnh A, B,C tam (3,0đ) giác Gọi H trực tâm tam giác ABC K trung điểm HC b) Đường thẳng qua K song song với BC cắt DF M Trên tia DE lấy điểm P cho S AMF � � MAP = BAC Chứng minh S AMP = MF MP (Trong S AMF ,S AMP diện tích tam giác AMF AMP ) Gọi N giao điểm MK DE � � +) Do MN / /BC � BDN = MNE (4) 0,25 � � +) Do ABDE tứ giác nội tiếp � BDE + BAE = 180 (5) 0,25 � � +) Theo BAC = MAP nên từ (4), (5) � � suy MNP + MAP = 180 � = ANP � � MNPA tứ giác nội tiếp � AMP (6) +) Lại có � = AND � � =1800 - AND � � AMF � = ANP � D AMD = D AND ( c.g.c) � AMD � 1800 - AMD (7) 5.a 0,25 0,5 0,5 � � Từ (6) (7) suy AMP = AMF = j 0,25 Gọi h1 , h độ dài đường cao kẻ từ đỉnh F P tam giác AMF AMP 1 SAMF = h1.MA = ( MF.sin j ) MA SAMP = MA.MP.sin j 2 Ta có : ; tương tự 0,75 SAMF MF = Từ suy SAMP MP 0,25 Cho hình thoi ABCD có AB = a Gọi R1 , R bán kính đường trịn ngoại tiếp tam giác ABC ABD Chứng minh R1 + R �a (1,5đ) Gọi M trung điểm cạnh AB Đường trung trực đoạn AB cắt đường AC BD I J Khi I J tâm đường trịn ngoại tiếp tam giác ABD ABC D MAI �D MJB( g.g ) � Dễ thấy 0,25 MA MJ MA MJ = � = AI JB R2 R1 0,25 � MA MJ MA JB2 - MB2 = � = R 22 R12 R 22 R12 0,25 � MA R12 - MB2 MA MB2 a2 a2 = � + = � + =1 R 22 R12 R 22 R12 4R12 4R 22 0,25 Khi Do a2 a2 =�+= 4R 12 4R 22 a2 a2 4R 12 4R 22 R1 + R �2 R1R �2 a2 2R1R R 1R a2 a2 = a 2 0,25 0,25 Dấu “=” xảy � R1 = R hay tứ giác ABCD hình vng 5.b (1,5đ) Cho đa giác có 2021 đỉnh cho đỉnh đa giác tơ hai màu xanh đỏ Chứng minh tồn đỉnh đa giác cho đỉnh tam giác cân mà đỉnh tơ màu Do đa giác cho đa giác nên đa giác nội tiếp đường tròn tâm O Do 2021 số lẻ nên tồn đỉnh kề tô màu Giả sử hai đỉnh A B tô màu đỏ 0,25 Cũng đa giác cho có số đỉnh lẻ nên tồn đỉnh M đa giác nằm trung trực đoạn AB � D MAB cân 0,25 Ta xét hai khả xảy ra: +) Khả 1: Nếu M tô màu đỏ � đpcm 0,25 +) Khả 2: Nếu M tô màu xanh Gọi E, F đỉnh kề A B có: EA = AB = BF � EF / /AB � D MEF cân M Khi đó: - Nếu E, F màu xanh � D MEF cân thỏa mãn toán - Nếu hai đỉnh E, F màu đỏ, giả sử E màu đỏ � D EAB thỏa mãn u cầu tốn Vậy ln tồn đỉnh đa giác cho lập nên tam giác cân có đỉnh màu ……………Hết…………… Ghi chú: Học sinh làm cách khác cho điểm tối đa 0,25 0,25 0,25 SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN KÌ THI CHỌN HỌC SINH GIỎI TỈNH LỚP NĂM HỌC 2020 - 2021 Mơn thi: TỐN – BẢNG B Thời gian: 150 phút (không kể thời gian giao đề) ĐỀ CHÍNH THỨC Câu (3,0 điểm) a) Tìm tất cặp số nguyên ( x; y) 2 thỏa mãn x - y = 6x + * b) Chứng minh với số tự nhiên n �� n + 5n chia hết cho Câu (6,5 điểm) a) Giải phương trình x - = - x - x - � x + 5x = y3 + y � �4 � x + y = � b) Giải hệ phương trình 2 Câu (1,5 điểm) Cho số thực dương x, y, z thỏa mãn điều kiện x + y + z = 3xy Chứng x y x + y3 + + � y + z x + z z minh Câu (6,0 điểm) Cho tam giác nhọn ABC có D,E, F chân đường cao kẻ từ ba đỉnh A, B,C tam giác Gọi H trực tâm tam giác ABC K trung điểm HC a) Chứng minh điểm E, K, D, F thuộc đường tròn b) Đường thẳng qua K song song với BC cắt DF M Trên tia DE lấy điểm P cho � = BAC � � MAP Chứng minh MA phân giác FMP Câu (3,0 điểm) a) Cho hình thoi ABCD có AB = a Gọi R , R bán kính đường trịn ngoại tiếp 1 + = 2 tam giác ABC ABD Chứng minh R R a b) Cho đa giác có 2021 đỉnh, cho đỉnh đa giác tô hai màu xanh đỏ Chứng minh tồn đỉnh đa giác cho đỉnh tam giác cân mà đỉnh tơ màu ……………Hết…………… Họ tên thí sinh………………………………… Số báo danh…………………… Chú ý: Thí sinh khơng phép sử dụng máy tính bỏ túi SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN KỲ THI CHỌN HỌC SINH GIỎI TỈNH LỚP NĂM HỌC 2020 – 2021 HƯỚNG DẪN CHẤM ĐỀ THI CHÍNH THỨC Mơn thi: TỐN – Bảng B ( Hướng dẫn chấm gồm có 04 trang) Câu ĐÁP ÁN THAM KHẢO Điểm 2 x; y) Tìm tất cặp số nguyên ( thỏa mãn x - y = 6x + 1.a (1,5đ) Ta có x - y = 6x + � ( x - 6x + 9) - y = 17 � ( x - 3) - y =17 � ( x - - y)( x - + y ) =17 0,25 0,25 Do 17 số nguyên tố nên ta có trường hợp sau: x - - y =17 � x - y = 20 � x = 12 � � �� �� � � � � � � x - + y =1 x +y=4 y =- � � +) TH1: � 0,25 x - - y =- 17 � x - y =- 14 � x =- � � �� �� � � � � � � x - + y =- x +y =2 � �y = +) TH2: � 0,25 � � � x - - y =1 x - y =4 x =12 � �� �� � � � � � � x - + y =17 � x + y = 20 �y = +) TH3: � 0,25 x - - y =- x- y=2 x =- � � � � �� �� � � � � x - + y =- 17 � x + y =- 14 � � �y =- +) TH3: � 0,25 { ( 12;- 8) ,( - 6;8) ,( 12;8) ,( - 6;- 8) } x; y) Vậy cặp số nguyên ( thỏa mãn yêu cầu toán 1.b * Chứng minh với số tự nhiên n �� n + 5n chia hết cho (1,5đ) Ta có n + 5n = ( n - n ) + 6n 0,25 = n ( n - 1)( n +1) + 6n 0,5 n n - 1)( n +1) � n ( n - 1) ( n +1) M6 Do ( tích ba số tự nhiên liên tiếp 0,5 n n - 1) ( n +1) + 6n M6 � n + 5n M6 Lại 6n M6 , từ suy ( 0,25 Giải phương trình x - = - x - 2.a x - (3,0đ) Điều kiện �x �6 0,5 Phương trình cho tương đương với x - + x - - � ( x - 5) + � ( x - 5) + ( ) ( x - - + 1- 6- x =0 ) 6- x =0 0,5 0,5 x- x- + =0 x - + 1+ - x 0,5 � � 1 � � ( x - 5) � 1+ + = � x = 5, � � � � � x - +2 1+ - x � 0,5 1 + > 0, " x �[1;6] x - + 1+ - x Do Vậy phương trình cho có nghiệm x = 1+ 0,5 � x + 5x = y3 + y � �4 � x + y = Giải hệ phương trình � 2.b (3,5đ) Ta có x + 5x = y3 + 5y � ( x - y3 ) + 5( x - y) = 0,5 � ( x - y) ( x + xy + y ) + 5( x - y ) = � ( x - y) ( x + xy + y + 5) = 0,5 � x = y, x + xy + y + > 0, " x, y �� 1,0 � ( x - 1)( x + 2) = Với x = y, thay vào phương trình thứ hai hệ ta x + x - = 0,5 � x = 1, x + > 0, " x �� 0,5 � x =1 � x =- � ;� � � y =1 � y =- � x = �1 Vậy hệ phương trình cho có nghiệm � � � (1,5đ) 0,5 2 Cho số thực dương x, y, z thỏa mãn điều kiện x + y + z = 3xy Chứng minh x y x + y3 + + � y +z x +z 16 z 2 Ta có 3xy = x + y + z �2xy + z � xy �z Suy : +) 2 x + y3 ( x + y) ( x + y - xy) ( x + y) xy x + y = � � 16z 16z 16z 16 0,25 (1) 0,25 +) ( x + y) (x + y) x y x2 y2 � � � + = + 2xy + z x + y xy(2 + x + y) + x +y ( ) y + z x + z xy + xz xy + yz 0,5 (2) x +y x + y +2 + �P� + 16 ( x + y) + x +y +2 16 P� Từ (1) (2) cho ta x = y =3 x + y +2 1 7 � �2 - =1 - = minP = � � � z =9 x +y +2 16 8 Vậy � � 4.a (3,0đ) Cho tam giác nhọn ABC có D, E, F chân đường cao kẻ từ ba đỉnh A, B,C tam giác Gọi H trực tâm tam giác ABC K trung điểm HC c) Chứng minh điểm E, K, D, F thuộc đường tròn +) Do EK trung tuyến tam giác vuông � = ECK � EHC � KE = KC � KEC 4.b 0,5 0,5 � = KCE � + KEC � = 2ECK � � EKF (1) 0,5 � � +) Do tứ giác HDCE nội tiếp � ECK = EDH � � +) Do tứ giác FECB nội tiếp � ECK = FBH � � +) Do tứ giác FBDH nội tiếp � FBH = FDH 1,0 Từ suy � = FDH � + EDH � = 2HDE � = 2ECK � FDE (2) � � Từ (1) (2) suy EKF = FDE � tứ giác FDKE nội tiếp hay điểm F, D, K, E thuộc đường tròn Cho tam giác nhọn ABC có D, E, F chân đường cao kẻ từ ba đỉnh A, B,C tam 0,5 0,5 (3,0đ) giác Gọi H trực tâm tam giác ABC K trung điểm HC d) Đường thẳng qua K song song với BC cắt DF M Trên tia DE lấy điểm P cho � = BAC � � MAP Chứng minh MA phân giác FMP Gọi N giao điểm MK DE 0,5 � � +) Do MN / /BC � BDN = MNE (4) +) Do ABDE tứ giác nội tiếp � + BAE � =1800 � BDE (5) 0,5 � � +) Theo BAC = MAP nên từ (4), (5) � � suy MNP + MAP =180 � = ANP � � MNPA tứ giác nội tiếp � AMP (6) 0,5 � = AND � D AMD = D AND ( c.g.c) � AMD 0,5 � =1800 - AND � � AMF � = ANP � � 1800 - AMD (7) 0,5 +) Lại có � � � Từ (6) (7) suy AMP = AMF � MA phân giác FMP Cho hình thoi ABCD có AB = a Gọi R1 , R bán kính đường trịn ngoại tiếp 5.a 1 + = 2 tam giác ABC ABD Chứng minh R1 R a (1,5đ) Gọi M trung điểm cạnh AB Đường trung trực đoạn AB cắt đường AC BD I J Khi I J tâm đường trịn ngoại tiếp tam giác ABD ABC Dễ thấy 5.b (1,5đ) 0,5 D MAI �D MJB ( g.g ) � MA MJ = AI JB 0,25 0,25 � MA MJ MA MJ = � = R2 R1 R2 R1 0,25 � MA JB2 - MB2 = R 22 R12 0,25 � MA R12 - MB2 MA MB2 = � + =1 R 22 R12 R 22 R1 0,25 � a2 a2 1 + =1 � + = 2 4R1 4R R1 R a 0,25 Cho đa giác có 2021 đỉnh cho đỉnh đa giác tô hai màu xanh đỏ Chứng minh tồn đỉnh đa giác cho đỉnh tam giác cân mà đỉnh tơ màu Do đa giác cho đa giác nên đa giác nội tiếp đường trịn tâm O Do 2021 số lẻ nên tồn đỉnh kề tô màu Giả sử hai đỉnh A B tô màu đỏ 0,25 Cũng đa giác cho có số đỉnh lẻ nên tồn đỉnh M đa giác nằm trung trực đoạn AB � D MAB cân 0,25 Ta xét hai khả xảy ra: +) Khả 1: Nếu M tô màu đỏ � đpcm 0,25 +) Khả 2: Nếu M tô màu xanh Gọi E, F đỉnh kề A B có: EA = AB = BF � EF / /AB � D MEF cân M Khi đó: - Nếu E, F màu xanh � D MEF cân thỏa mãn toán - Nếu hai đỉnh E, F màu đỏ, giả sử E màu đỏ � D EAB thỏa mãn u cầu tốn Vậy ln tồn đỉnh đa giác cho lập nên tam giác cân có đỉnh màu ……………Hết…………… 0,25 0,25 0,25 Ghi chú: Học sinh làm cách khác cho điểm tối đa ... x - = - x - 2.a x - (3,0đ) Điều kiện �x �6 0,5 Phương trình cho tương đương với x - + x - - � ( x - 5) + � ( x - 5) + ( ) ( x - - + 1- 6- x =0 ) 6- x =0 0,5 0,5 x- x- + =0 x - + 1+ - x 0,5 �... phương trình x - 5x + = x - - (3,0đ) x + 3 Điều kiện: x �1 Phương trình cho tương đương với x - 5x + - x - + x + = � x- � x- ( ) ( x - 1- + ( x - 5) x - +2 ) x + - + x - 6x + = x- + ( x + 3) +... - a - = 2017 � y - a = 20 19 � y =10 09 � � �� �� � � � � � � y + a =- a =- 1010 � � +) TH1: �y + a + =1 0,25 � y - a - =- 2017 � y - a =- 2015 � y =- 10 09 � �� �� � � � � � � a =1006 �y + a =-