1. Trang chủ
  2. » Giáo án - Bài giảng

16 đề thi thử THPT QG 2021 toán THPT hàn thuyên bắc ninh lần 1 có lời giải

33 13 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 3,98 MB

Nội dung

SỞ GD&ĐT BẮC NINH KÌ THI THỬ TỐT NGHIỆP THPT 2021 LẦN TRƯỜNG THPT HÀN THUYÊN NĂM HỌC 2020 - 2021 MƠN Tốn – Khối 12 Thời gian làm bài: 90 phút (không kể thời gian phát đề) (Đề thi có 06 trang) Mã đề 105 Họ tên học sinh: Số báo danh: ……… Câu Cho hàm số y  x3  6x2  7x  có đồ thị  C  Phương trình tiếp tuyến  C  điểm có hồnh độ là: A y  5x  13 B y  5x  13 C y  5x  13 D y  5x  13 C D x3  x  x 1 x2  Câu Giá trị giới hạn lim A 2 B Không tồn Câu Cho hàm số y  f ( x) liên tục x y 3   y' có bảng biến thiên 0 +    +  2 2 Tìm m để phương trình f ( x)  m  có nghiệm phân biệt A m  1 B m  2 C m  D m  C 10 D 12 Câu Tìm số mặt hình đa diện hình vẽ bên: A B 11 Câu Có số tự nhiên gồm chữ số đôi khác nhau? A C104 B 9.A93 C A104 D 9.C93 Câu Cho hàm số y  ax  b có đồ thị hình vẽ Khẳng định sau đúng? cx  d A ab  B ac  C ad  bc D cd  Câu Số giao điểm đồ thị hàm số y  x3  3x2  9x  với trục hoành là: A C B D Câu Cho tứ diện OABC có OA , OB , OC đơi vng góc OA  OB  OC  3a Tính khoảng cách hai đường thẳng AC OB A 3a B 3a C a D 3a Câu Cho hàm số y  f ( x) có bảng biến thiên sau x 1  + y' y   0 +  2  Hàm số cho đồng biến khoảng A  2;   B  ; 1 C  ;2  D  1;1 C y  x3  3x 1 D y  x4  4x2 1 Câu 10 Hàm số sau khơng có cực trị? A y  x3  3x 1 B y  x2  2x Câu 11 Đồ thị hàm số có dạng đường cong hình vẽ sau A y  x4  3x2 B y  x3  3x2 Câu 12 Số đường tiệm cận đồ thị hàm số y  A B C y   x4  3x2 D y   x3  3x2 x2 C D Câu 13 Một hình chóp có đáy tam giác cạnh có chiều cao Tính thể tích khối chóp A B C D Câu 14 Cho hàm số y  f ( x) có đồ thị hàm f '( x) hình vẽ Số điểm cực trị hàm số cho A B C D Câu 15 Giá trị lớn hàm số f ( x)  2x4  3x2 1 đoạn  0;3 bằng: A B 21 C D 136 Câu 16 Số cách chia 15 học sinh thành nhóm A, B, C gồm 4, 5, học sinh là: A C154  C155  C156 B C154 C115 C66 D C154  C115  C66 C A154 A115 A66 Câu 17 Cho hàm số y  f ( x) có bảng biến thiên sau 2  x f ' x f  x   +   3  Hàm số cho đạt cực đại A x  B x  C x  2 D x  3 Câu 18 Cho hình chóp S ABCD có đáy hình vng cạnh a , SA   ABCD  , SB  a Tính thể tích V khối chóp S ABCD theo a A V  a3 B V  a3 C V  Câu 19 Cho hàm số y  f  x  có đạo hàm f '  x   x  a3 D V  a3 , x  Giá trị nhỏ hàm số  0;  x2 A f 1 B f  3 C f   D f  2  Câu 20 Cho hình chóp S ABCD có đáy hình vng cạnh a , mặt bên SAB tam giác nằm mặt phẳng vuông góc với đáy Thể tích khối chóp S ABCD A a3 B a C a3 D a3 Câu 21 Cho hàm số f ( x)   x3  mx   3m   x  Tập hợp giá trị tham số m để hàm số nghịch biến  a; b Khi 2a  b A B 3 C D 1 Câu 22 Tính tổng tất nghiệm phương trình sau 32 x8  4.3x5  27  A  27 B 27 C D 5 Câu 23 Hàm số y   x  1  x  1 có điểm cực trị? A B D C Câu 24 Cho hình chóp S ABC có SA vng góc với mặt phẳng  ABC  , SA  a, AB  a , AC  2a, BAC  600 Tính diện tích hình cầu ngoại tiếp hình chóp S ABC A 20 a B  a C 5 a D 20 a Câu 25 Đặt log2  a , log3  b Tính log15 20 theo a b ta A log15 20  2b   ab B log15 20  2b  a  ab C log15 20  b  ab  2b  ab D log15 20   ab  ab Câu 26 Cho hình chóp S ABC có ABC vng B , BA  a , BC  a Cạnh bên SA vng góc với đáy SA  a Tính bán kính mặt cầu ngoại tiếp hình chóp S ABC a A R  B R  a C R  a D R  2a Câu 27 Cho hình chóp tứ giác S ABCD có cạnh đáy a , cạnh bên mặt phẳng  SAB   ABCD  là: A 300 B 900 C 450 a Số đo góc hai D 600 Câu 28 Tính thể tích V khối lăng trụ tứ giác ABCD.ABCD biết độ dài cạnh đáy lăng trụ đồng thời góc tạo AC đáy  ABCD  30 A V  B V  C V  24 D V  Câu 29 Cho hình chóp S ABCD , đáy hình chữ nhật tâm O , AB  a , AD  a , SA  3a , SO vng góc với mặt đáy  ABCD  Thể tích khối chóp S ABC A a B 2a a3 C Câu 30 Hình vẽ bên đồ thị hàm số nào? 2a D A y   3x B y  3x C y  3x D y  3x Câu 31 Cho a  Mệnh đề sau đúng? A a2  a B a  a C a   a D a 2016  a 2017 Câu 32 Tỷ lệ tăng dân số hàng năm Việt Nam 1,07% Năm 2016, dân số Việt Nam 93.422.000 người Hỏi với tỷ lệ tăng dân số năm 2026 dân số Việt Nam gần với kết nhất? A 122 triệu người B 115 triệu người C 118 triệu người D 120 triệu người Câu 33 Cho hình lập phương ABCD.ABCD , góc A ' D CD ' bằng: A 300 B 600 C 450 D 900 Câu 34 Cho hình lăng trụ đứng ABC ABC có đáy tam giác vuông cân A , AB  AC  a , AA  2a Thể tích khối cầu ngoại tiếp hình tứ diện ABAC A  a3 B 4 a C  a D 4 a3 Câu 35 Cho hình chóp S ABCD có SA   ABCD  , đáy ABCD hình chữ nhật với AC  a BC  a Tính khoảng cách SD BC A a B a C a D 2a xm có đồ thị đường cong  H  đường thẳng  có phương trình y  x  Số x 1 giá trị nguyên tham số m nhỏ 10 để đường thẳng  cắt đường cong  H  hai điểm phân biệt nằm hai nhánh đồ thị Câu 36 Cho hàm số y  A 26 B 10 C 24 D 12 Câu 37 Số giá trị nguyên tham số m để hàm số y  mx4   m  3 x  m2 khơng có điểm cực đại A B C D Câu 38 Cho hình lăng trụ đứng ABC ABC có đáy ABC tam giác vng A Biết AB  AA  a , AC  2a Gọi M trung điểm AC Diện tích mặt cầu ngoại tiếp tứ diện MABC  A 5 a C 4 a2 B 3 a D 2 a2 Câu 39 Tìm m để tiếp tuyến đồ thị hàm số  C  : y   2m 1 x4  mx2  điểm có hồnh độ x  vng góc với đường thẳng  d  : x  y   A m  B m   C m  12 D m  Câu 40 Cho hình lăng trụ đứng ABC ABC có đáy ABC tam giác vuông A , gọi M trung điểm cạnh AA ' , biết AB  2a; BC  a AA '  6a Khoảng cách A'B CM là: A a 13 13 B a 13 C a 13 D 3a 13 Câu 41 Cho tứ diện ABCD có AC  AD  BC  BD  , mặt phẳng  ABC   ( ABD)  ACD   ( BCD) Khoảng cách từ A đến mặt phẳng  BCD  là: A B C D Câu 42 Cho hàm đa thức y  f ( x) Hàm số y  f '( x) có đồ thị hình vẽ sau Có giá trị m 0;6;2m  A  B D C Câu 43 Cho hàm số y  f  x  xác định liên tục y  để hàm số g ( x)  f x  x   x  m có điểm cực trị? , có bảng biến thiên sau Hỏi đồ thị hàm số có tất đường tiệm cận? f  x  x  f  x 1   2 3 B A D C Câu 44 Cho hàm số f ( x ) liên tục  2;4 có bảng biến thiên hình vẽ bên x f  x 11 Có giá trị nguyên m để phương trình x  x  x  m f ( x) có nghiệm thuộc đoạn  2;4 ? B A C D Câu 45 Cho hàm số y   x  1 x  1 3x  1  m  x  y  12x4  22x3  x2 10x  có đồ thị  C1   C2  có giá trị nguyên tham số m đoạn  2020;2020 để  C1  cắt  C2  điểm phân biệt A 2020 B 4040 C 2021 D 4041 Câu 46 Cho hình chóp S ABC có SA  x , BC  y , AB  AC  SB  SC  Thể tích khối chóp S ABC lớn tổng  x  y  A B C D Câu 47 Một hộp đựng viên bi màu xanh, viên bi màu đỏ, viên bi màu trắng viên bi màu đen Chọn ngẫu nhiên đồng thời từ hộp viên bi, tính xác suất để viên bi chọn khơng nhiều màu ln có bi màu xanh? A 2295 5985 B 2259 5985 C 2085 5985 D 2058 5985 Câu 48 Cho số a, b, c, d thỏa mãn điều kiện a  b2  4a  6b  3c  4d  Tìm giá trị nhỏ biểu thức P   a  c    b  d  ? A B 64 25 C D 49 25 Câu 49 Cho x, y số thực thỏa mãn log9 x  log12 y  log16  x  y  Giá trị tỉ số A 2 B 2 C 1 D x y 1 Câu 50 Cho hình chóp S ABCD có đáy hình vng, cạnh bên SA vng góc với đáy Gọi M , N trung điểm SA , SB Mặt phẳng MNCD chia hình chóp cho thành hai phần tỉ số thể tích hai phần S.MNCD MNABCD 3 D -HẾT -Thí sinh không sử dụng tài liệu Cán coi thi khơng giải thích thêm A B C ĐÁP ÁN 1-C 2-C 3-B 4-A 5-B 6-B 7-D 8-A 9-B 10-A 11-B 12-D 13-A 14-C 15-D 16-B 17-A 18-C 19-A 20-C 21-B 22-D 23-C 24-C 25-A 26-A 27-D 28-D 29-C 30-C 31-C 32-B 33-B 34-A 35-A 36-B 37-A 38-A 39-C 40-C 41-D 42-D 43-C 44-D 45-C 46-D 47-A 48-D 49-D 50-D Câu 1: Chọn C Ta có y '  3x2 12x  7, x0   y0  3, y '  2  5 Phương trình tiếp tuyến đồ thị  C  M  2;3 có dạng y  f '  x0  x  x0   y0 thay số vào ta y  5  x  2   y  5x  13 Câu 2: Chọn C x3  x   1   1  x3  x  Vì hàm số f  x   xác định nên lim   x   x 1 x2  x2   1  Câu 3: Chọn B Xét phương trình f  x   m   f  x    m Từ bảng biến thiên ta thấy phương trình có nghiệm phân biệt  đường thẳng y   y  f  x  điểm ohaan biệt   m cắt đồ thị m   m  2 Câu 4: Chọn A Câu 5: Chọn B Gọi số cần tìm có dạng: x  abcd Chọn a  có cách Chọn bcd có A93 cách Vậy có 9.A93 cách chọn số cần tìm Câu 6: Chọn B b b Giao đồ thị với trục hoành x   Dựa vào đồ thị ta có x     ab  nên loại A a a a a nên y  đường tiệm cận ngang đồ thị Dựa vào đồ thị ta có đường tiệm cận ngang c c Do lim y  x  y y Do a  nên chọn B c ad  bc  cx  d  Dựa vào đồ thị ta có hàm số nghịch biến khoảng xác định nên ad  bc loại C lim  y   nên x    d x     c x d đường tiệm cận đứng đồ thị Dựa vào đồ thị ta có đường tiệm cận đứng c d   cd  nên loại D c Câu 7: Chọn D Phương trình hồnh độ giao điểm y  x3  3x2  9x  trục hoành 10 Xét đáp án C có a   a mà  a  a , a  3 5 a  a Nên chọn C Xét đáp án D có a 2016  a 2017 , a   a 2016  a 2017 nên loại Câu 32: Chọn B Đến năm 2026 tức sau 10 năm Theo công thức S  A.e Nr  93422000.e10.1,07%  103972544 người nên chọn đáp án B Câu 33: Chọn B Hình lập phương ABCD.A ' B ' C ' D '  BC / / A ' D ' BC  A ' D '  Tứ giác BCD ' A ' hình bình hành  A ' B / /CD '   A ' D; CD '   A ' D; A ' B   DA ' B Mặt khác: A' D  A ' B  DB (3 đường chéo hình vng có cạnh nhau)  A ' DB tam giác  DA ' B  600   A ' D; CD '   600 Vậy góc A ' D CD ' 600 Câu 34: Chọn A 19 Khối cầu ngoại tiếp tứ diện AB ' A ' C khối cầu ngoại tiếp lăng trụ BAC.A ' B ' C ' Gọi D, E trung điểm BC , B ' C '; O trung điểm DE  O tâm khối cầu ngoại tiếp lăng trụ BAC.A ' B ' C ' (do đáy ABC vng cân A) Ta có: OD  BC a AA ' a BC  AB2  AC  2a  a  AD    2 2  Bán kính khối cầu ngoại tiếp lăng trụ ABC.A ' B ' C ' R  OA  AD2  OD2  a2  a 4 a3 Vậy thể tích khối cầu cần tính V   R3  3 Câu 35: Chọn A 20 Vì ABCD hình chữ nhật nên BC / / AD  BC / /  SAD   d  BC, SD   d  BC,  SAD    d  B,  SAD     AB  SA  SA   ABCD   Ta có:   AB   SAD   d  B,  SAD    AB   AB  AD Xét hình chữ nhật ABCD ta có: AB  AC  BC  3a  a  2a  AB  a Vậy: d  BC, SD   a Câu 36: Chọn B Xét phương trình hồnh độ giao điểm: xm  x   g  x   x  x  m   1 x  1 x 1 Ycbt  phương trình 1 có hai nghiệm phân biệt thỏa mãn: x1   x2 g 1   m 1   m  1 Do m nguyên nhỏ 10 nên số giá trị nguyên m 10 Câu 37: Chọn A Trường hợp m  0, hàm số có dạng y  3x2 Hàm số khơng có điểm cực đại nên m  thỏa mãn  m  Trường hơp m  Để hàm số khơng có cực đại    m   m 1;2;3  m       Vậy có giá trị m thỏa mãn Câu 38: Chọn A 21 Gọi I trung điểm cạnh B ' C ' Khi I tâm đường tròn ngoại tiếp A ' B ' C ' Gọi M ' trung điểm cạnh A ' C ' Khi MM '   A ' B ' C ' Do MA '  MC '  a nên MA ' C ' vuông M , M ' tâm đường tròn ngoại tiếp MA ' C ' nên IM ' trục đường tròn ngoại tiếp MA ' C ' Suy I tâm mặt cầu ngoại tiếp tứ diện M A ' B ' C ' Bán kính mặt cầu r  IB '  BC a  2 Diện tích mặt cầu S  4 r  5 a Câu 39: Chọn C Có y '   2m 1 x3  2mx nên hệ số góc tiếp tuyến điểm có hồnh độ x  k1  y ' 1   2m 1  2m  6m  Hệ số góc đường thẳng  d  : x  y   k2  Để thỏa mãn u cầu tốn ta phải có k1k2  1   6m    1  m  Câu 40: Chọn C 22 12 Có AC2  BC2  AB2  AC2  7a2  4a2  AC  a Gọi N trung điểm AB suy A ' B / /  MNC  nên d  A ' B, CM   d  A ' B,  CMN    d  B CMN    d  A, CMN    d Xét tứ diện AMNC có AM , AN , AC đơi vng góc nên 1 1 1 1 13 3a          d  2 2 d AM AN AC d 9a a 3a d 9a 13 Câu 41: Chọn D Gọi H , K trung điểm CD AB ACD cân A nên AH  CD  AH   BCD   d  A;  BCD    AH Đặt AH  x HD  AD2  AH   x2 BCD  ACD  HB  HA  x (hai đường cao tương ứng nhau) 23  1 x     HK  2 HK HA HB x Mặt khác, ta lại có: ABD cân D nên DK  AB  AH   ABC   DK  CK  KCD tam giác vuông K x Suy HK  CD  HK  HD    x2  x  2 Vậy khoảng cách từ A đến mặt phẳng  BCD  Câu 42: Chọn D Cách 1: Ta có: g(x)  f (| x  1|2 2 | x  1|  m  1) Đặt t  x   g(t)  f (| t |2 2 | t |  m  1) Xét g1 (t)  f (t  2t  m 1)  g1' (t)  f '(t  2t  m  1) t   g1' (t)    f '(t  2t  m  1)  g(x) có cực trị g(t) có cực trị  g1 (t) có cực trị dương t    t  2t  m   ' g1 (t)    t  2t  m     t  2t  m    t  2t  m     m    3  m  0  m     g1 (t) có cực trị dương khi:    m   m    m   Mà m  [0, 6], 2m   m  {0, ,1, , 2, } 2 24 Vậy có 6giá trị m thỏa mãn đề Cách 2: Dùng ghép trục Đặt t(x)  x  2x  | x  1| m  x  m  x t(x)    x  4x   m x  2x x1 x  t '(x)    x  Ta có bảng biến thiên sau: Ta xét trường hợp sau, sử dụng phương pháp ghép trục: TH1: m 1   m  Ta có bảng biến thiên sau: => Hàm số có cực trị => thỏa mãn TH2: m  Ta có bảng biến thiên sau: => Hàm số có cực trị => thỏa mãn 25 TH3:  m    m    m 1  Ta có bảng biến thiên sau: => Hàm số có 11 cực trị => khơng thỏa mãn TH4: m  Ta có bảng biến thiên sau: => Hàm số có cực trị => không thỏa mãn TH5:  m    m    m 1  Ta có bảng biến thiên sau: => Hàm số có 11 cực trị => khơng thỏa mãn TH6: m  Ta có bảng biến thiên sau: => Hàm số có cực trị => khơng thỏa mãn TH7: m  4, m    m    m  Ta có bảng biến thiên sau: 26 => Hàm số có cực trị => thỏa mãn TH8: m  Tương tự => Không thỏa mãn TH9: m    m   m 1 Tương tự => Không thỏa mãn Kết hợp trường hợp ta được: m  m     m  4  m  4  m   Mà 2m   m   m  0, ,1, , 2, )  2 Vậy có giá trị m thỏa mãn Câu 43: Chọn C Xét phương trình f  x     f  x   2 số nghiệm phương trình f  x    số giao điểm hàm số y  f  x  với đường thẳng y  2 Nhìn vào bảng biến thiên ta thấy phương trình f  x    có ba nghiệm phân biệt là: x1  1, x2   0;2 , x3   2;         1 Ta có lim   , lim   , lim       x 1 x  x1 x x2  f  x    f  x    f  x   Suy hàm số y  có ba đường tiệm cận đứng f  x        1 Xét lim   ; lim   ; lim    0 x  f  x   x f  x     xx1  f  x      Suy hàm số y  có hai đường tiệm cận ngang f  x  Vậy hàm số có đường tiệm cận, ta chọn đáp án A Câu 44: Chọn D 27 x  x2  2x Ta có: x  x  x  mf  x   m  f  x x  x2  2x x  x2  2x Số nghiệm phương trình m  số giao điểm hàm số y  với đường f  x f  x thẳng y  m Đặt g  x   x  x  x Ta có g  x   x  2, max g  x    x   2;4 2;4 f  x   x  4, max f  x   x   2;4  2;4 Do g  x   max f  x   đồng thời xảy x   2;4  2;4 g  x  x  x  x  2;4 Suy ra:       2;4  f  x f  x   max 2;4 Do f  x   max g  x    đồng thời xảy x   2;4 2;4 g  x  x  x  x  max 44  2;4 Suy ra: max    22  2;4     f  x f  x   2;4 Mà hàm số y  Vậy x  x2  2x liên tục đoạn  2;4 f  x  m   2, mà m nguyên nên m nhận giá trị 1;2;3;4 nên chọn đáp án D Câu 45: Chọn C 1 Nhận thấy 1;  ;  khơng nghiệm phương trình: 12 x  22 x3  x2  10 x    x  1 x  1 3x  1  m  x  1 Nên 1  m  x   m  2 x  x  12 x  22 x3  x  10 x  11x  12 x   2 x   x  1 x  1 3x  1  x  1 x  1 3x  1 1   x  x  3x  28 Xét hàm số f  x   2 x  x  Ta có: f '  x   1   x  x  3x  1 1  \ 1;  ;   3  2 x 2    0, x  2 x  x  1  x  1  3x  1 1  \ 1;  ;   3  Bảng biến thiên x  y' y  1        Từ bảng biến thiên ta thấy, phương trình m  f  x  có nghiệm phân biệt  1  \ 1;  ;   3  m   m  Mặt khác:   m 0;1; ;2020 Vậy có 2021 giá trị m cần tìm  m   2020;2020 29    Câu 46: Chọn D     BC  AI Gọi I , J trung điểm BC , SA nên   BC   SAI   BC  SI Hai tam giác cân ABC , SBC nên IA  IS suy ISA cân I Trong SBI vng I ta có SI  SB  BI  12  y2 y x2 Trong SAI cân I ta có IJ  SI  SJ    4 2 1 y  x2 Khi thể tích khối chóp S ABC V  BC.SSAI  BC AI IJ  xy  3 Ta có x  y  xy, x, y  V  xy xy  1  xy  xy   xy  2  xy xy  xy     12 12  27  Dấu “=” xảy x  y  suy x  y  3 Câu 47: Chọn A 30 Gọi A biến cố để viên bi chọn khơng nhiều màu ln có bi màu xanh Gọi A biến cố để viên bi chọn có đủ màu khơng có bi màu xanh Số phần tử không gian mẫu: n    C21  5985 Trường hợp 1: bi chọn có đủ màu: có 3.5.6.7  630 cách chọn   Số phần tử biến cố A : n A  630  3060  3690   Số phần tử biến cố A : n  A   n     n A  5985  3690  2295 Xác suất biến cố A : P  A   n  A 2295  n    5985 Câu 48: Chọn D Ta có: a  b2  4a  6b    a     b  3  22 2 Trong hệ trục tọa độ Oxy gọi A  a; b  , B  c; d  Khi A  a; b  nằm đường trịn tâm I  2;3 bán kính R  có phương trình:  x     y  3  22 2 B  c; d  nằm đường thẳng: 3x  y  Vì BA   a  c; b  d  nên P   a  c   b  d   BA Khi P đạt giá trị nhỏ BA nhỏ Khoảng cách từ I đến    : d I ,    2 3.2  4.3  17  Vì d I ,    R nên  I     không giao 32  42 Suy BA nhỏ I , A, B thẳng hàng A nằm I , B IB     hình sau 31   17 BA  dI,    R    5    P   BA 2 49 7    25 5 Câu 49: Chọn D  x  9t t  x 9t   t Đặt log9 x  log12 y  log16  x  y   t   y  12 Khi  t    y 12    x  y  16t  Mặt khác ta có phương trình:   t      nhan  t t 16 3     9t  2.12t  16t            t 9 3      loai    t x 3   Do     y   1 Câu 50: Chọn D Ta có VS MNCD  VS MCD  VS MNC + VS MCD SM SC SD 1    VS MCD  VS ACD  VS ABCD VS ACD SA SC SD 2 + VS MNC SM SN SC 1    VS MNC  VS ABC  VS ABCD VS ABC SA SB SC 4 32 1  VS MNCD  VS MCD  VS MNC  VS ABCD  VS ABCD  VS ABCD 8  VMNABCD  VS ABCD  VS MNCD  VS ABCD  VS ABCD  VS ABCD 8 V VS MNCD S ABCD   Do VMNABCD V S ABCD 33 ... 3x2 ? ?1 đoạn  0;3 bằng: A B 21 C D 13 6 Câu 16 Số cách chia 15 học sinh thành nhóm A, B, C gồm 4, 5, học sinh là: A C154  C155  C156 B C154 C 115 C66 D C154  C 115  C66 C A154 A 115 A66... 6-B 7-D 8-A 9-B 10 -A 11 -B 12 -D 13 -A 14 -C 15 -D 16 - B 17 -A 18 -C 19 -A 20-C 21- B 22-D 23-C 24-C 25-A 26-A 27-D 28-D 29-C 30-C 31- C 32-B 33-B 34-A 35-A 36-B 37-A 38-A 39-C 40-C 41- D 42-D 43-C 44-D 45-C... x  x  ? ?12 x  22 x3  x  10 x  11 x  12 x   2 x   x  1? ?? x  1? ?? 3x  1? ??  x  1? ?? x  1? ?? 3x  1? ?? 1   x  x  3x  28 Xét hàm số f  x   2 x  x  Ta có: f ''  x   1   x

Ngày đăng: 28/03/2021, 21:55

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w