Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 33 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
33
Dung lượng
3,98 MB
Nội dung
SỞ GD&ĐT BẮC NINH KÌ THI THỬ TỐT NGHIỆP THPT 2021 LẦN TRƯỜNG THPT HÀN THUYÊN NĂM HỌC 2020 - 2021 MƠN Tốn – Khối 12 Thời gian làm bài: 90 phút (không kể thời gian phát đề) (Đề thi có 06 trang) Mã đề 105 Họ tên học sinh: Số báo danh: ……… Câu Cho hàm số y x3 6x2 7x có đồ thị C Phương trình tiếp tuyến C điểm có hồnh độ là: A y 5x 13 B y 5x 13 C y 5x 13 D y 5x 13 C D x3 x x 1 x2 Câu Giá trị giới hạn lim A 2 B Không tồn Câu Cho hàm số y f ( x) liên tục x y 3 y' có bảng biến thiên 0 + + 2 2 Tìm m để phương trình f ( x) m có nghiệm phân biệt A m 1 B m 2 C m D m C 10 D 12 Câu Tìm số mặt hình đa diện hình vẽ bên: A B 11 Câu Có số tự nhiên gồm chữ số đôi khác nhau? A C104 B 9.A93 C A104 D 9.C93 Câu Cho hàm số y ax b có đồ thị hình vẽ Khẳng định sau đúng? cx d A ab B ac C ad bc D cd Câu Số giao điểm đồ thị hàm số y x3 3x2 9x với trục hoành là: A C B D Câu Cho tứ diện OABC có OA , OB , OC đơi vng góc OA OB OC 3a Tính khoảng cách hai đường thẳng AC OB A 3a B 3a C a D 3a Câu Cho hàm số y f ( x) có bảng biến thiên sau x 1 + y' y 0 + 2 Hàm số cho đồng biến khoảng A 2; B ; 1 C ;2 D 1;1 C y x3 3x 1 D y x4 4x2 1 Câu 10 Hàm số sau khơng có cực trị? A y x3 3x 1 B y x2 2x Câu 11 Đồ thị hàm số có dạng đường cong hình vẽ sau A y x4 3x2 B y x3 3x2 Câu 12 Số đường tiệm cận đồ thị hàm số y A B C y x4 3x2 D y x3 3x2 x2 C D Câu 13 Một hình chóp có đáy tam giác cạnh có chiều cao Tính thể tích khối chóp A B C D Câu 14 Cho hàm số y f ( x) có đồ thị hàm f '( x) hình vẽ Số điểm cực trị hàm số cho A B C D Câu 15 Giá trị lớn hàm số f ( x) 2x4 3x2 1 đoạn 0;3 bằng: A B 21 C D 136 Câu 16 Số cách chia 15 học sinh thành nhóm A, B, C gồm 4, 5, học sinh là: A C154 C155 C156 B C154 C115 C66 D C154 C115 C66 C A154 A115 A66 Câu 17 Cho hàm số y f ( x) có bảng biến thiên sau 2 x f ' x f x + 3 Hàm số cho đạt cực đại A x B x C x 2 D x 3 Câu 18 Cho hình chóp S ABCD có đáy hình vng cạnh a , SA ABCD , SB a Tính thể tích V khối chóp S ABCD theo a A V a3 B V a3 C V Câu 19 Cho hàm số y f x có đạo hàm f ' x x a3 D V a3 , x Giá trị nhỏ hàm số 0; x2 A f 1 B f 3 C f D f 2 Câu 20 Cho hình chóp S ABCD có đáy hình vng cạnh a , mặt bên SAB tam giác nằm mặt phẳng vuông góc với đáy Thể tích khối chóp S ABCD A a3 B a C a3 D a3 Câu 21 Cho hàm số f ( x) x3 mx 3m x Tập hợp giá trị tham số m để hàm số nghịch biến a; b Khi 2a b A B 3 C D 1 Câu 22 Tính tổng tất nghiệm phương trình sau 32 x8 4.3x5 27 A 27 B 27 C D 5 Câu 23 Hàm số y x 1 x 1 có điểm cực trị? A B D C Câu 24 Cho hình chóp S ABC có SA vng góc với mặt phẳng ABC , SA a, AB a , AC 2a, BAC 600 Tính diện tích hình cầu ngoại tiếp hình chóp S ABC A 20 a B a C 5 a D 20 a Câu 25 Đặt log2 a , log3 b Tính log15 20 theo a b ta A log15 20 2b ab B log15 20 2b a ab C log15 20 b ab 2b ab D log15 20 ab ab Câu 26 Cho hình chóp S ABC có ABC vng B , BA a , BC a Cạnh bên SA vng góc với đáy SA a Tính bán kính mặt cầu ngoại tiếp hình chóp S ABC a A R B R a C R a D R 2a Câu 27 Cho hình chóp tứ giác S ABCD có cạnh đáy a , cạnh bên mặt phẳng SAB ABCD là: A 300 B 900 C 450 a Số đo góc hai D 600 Câu 28 Tính thể tích V khối lăng trụ tứ giác ABCD.ABCD biết độ dài cạnh đáy lăng trụ đồng thời góc tạo AC đáy ABCD 30 A V B V C V 24 D V Câu 29 Cho hình chóp S ABCD , đáy hình chữ nhật tâm O , AB a , AD a , SA 3a , SO vng góc với mặt đáy ABCD Thể tích khối chóp S ABC A a B 2a a3 C Câu 30 Hình vẽ bên đồ thị hàm số nào? 2a D A y 3x B y 3x C y 3x D y 3x Câu 31 Cho a Mệnh đề sau đúng? A a2 a B a a C a a D a 2016 a 2017 Câu 32 Tỷ lệ tăng dân số hàng năm Việt Nam 1,07% Năm 2016, dân số Việt Nam 93.422.000 người Hỏi với tỷ lệ tăng dân số năm 2026 dân số Việt Nam gần với kết nhất? A 122 triệu người B 115 triệu người C 118 triệu người D 120 triệu người Câu 33 Cho hình lập phương ABCD.ABCD , góc A ' D CD ' bằng: A 300 B 600 C 450 D 900 Câu 34 Cho hình lăng trụ đứng ABC ABC có đáy tam giác vuông cân A , AB AC a , AA 2a Thể tích khối cầu ngoại tiếp hình tứ diện ABAC A a3 B 4 a C a D 4 a3 Câu 35 Cho hình chóp S ABCD có SA ABCD , đáy ABCD hình chữ nhật với AC a BC a Tính khoảng cách SD BC A a B a C a D 2a xm có đồ thị đường cong H đường thẳng có phương trình y x Số x 1 giá trị nguyên tham số m nhỏ 10 để đường thẳng cắt đường cong H hai điểm phân biệt nằm hai nhánh đồ thị Câu 36 Cho hàm số y A 26 B 10 C 24 D 12 Câu 37 Số giá trị nguyên tham số m để hàm số y mx4 m 3 x m2 khơng có điểm cực đại A B C D Câu 38 Cho hình lăng trụ đứng ABC ABC có đáy ABC tam giác vng A Biết AB AA a , AC 2a Gọi M trung điểm AC Diện tích mặt cầu ngoại tiếp tứ diện MABC A 5 a C 4 a2 B 3 a D 2 a2 Câu 39 Tìm m để tiếp tuyến đồ thị hàm số C : y 2m 1 x4 mx2 điểm có hồnh độ x vng góc với đường thẳng d : x y A m B m C m 12 D m Câu 40 Cho hình lăng trụ đứng ABC ABC có đáy ABC tam giác vuông A , gọi M trung điểm cạnh AA ' , biết AB 2a; BC a AA ' 6a Khoảng cách A'B CM là: A a 13 13 B a 13 C a 13 D 3a 13 Câu 41 Cho tứ diện ABCD có AC AD BC BD , mặt phẳng ABC ( ABD) ACD ( BCD) Khoảng cách từ A đến mặt phẳng BCD là: A B C D Câu 42 Cho hàm đa thức y f ( x) Hàm số y f '( x) có đồ thị hình vẽ sau Có giá trị m 0;6;2m A B D C Câu 43 Cho hàm số y f x xác định liên tục y để hàm số g ( x) f x x x m có điểm cực trị? , có bảng biến thiên sau Hỏi đồ thị hàm số có tất đường tiệm cận? f x x f x 1 2 3 B A D C Câu 44 Cho hàm số f ( x ) liên tục 2;4 có bảng biến thiên hình vẽ bên x f x 11 Có giá trị nguyên m để phương trình x x x m f ( x) có nghiệm thuộc đoạn 2;4 ? B A C D Câu 45 Cho hàm số y x 1 x 1 3x 1 m x y 12x4 22x3 x2 10x có đồ thị C1 C2 có giá trị nguyên tham số m đoạn 2020;2020 để C1 cắt C2 điểm phân biệt A 2020 B 4040 C 2021 D 4041 Câu 46 Cho hình chóp S ABC có SA x , BC y , AB AC SB SC Thể tích khối chóp S ABC lớn tổng x y A B C D Câu 47 Một hộp đựng viên bi màu xanh, viên bi màu đỏ, viên bi màu trắng viên bi màu đen Chọn ngẫu nhiên đồng thời từ hộp viên bi, tính xác suất để viên bi chọn khơng nhiều màu ln có bi màu xanh? A 2295 5985 B 2259 5985 C 2085 5985 D 2058 5985 Câu 48 Cho số a, b, c, d thỏa mãn điều kiện a b2 4a 6b 3c 4d Tìm giá trị nhỏ biểu thức P a c b d ? A B 64 25 C D 49 25 Câu 49 Cho x, y số thực thỏa mãn log9 x log12 y log16 x y Giá trị tỉ số A 2 B 2 C 1 D x y 1 Câu 50 Cho hình chóp S ABCD có đáy hình vng, cạnh bên SA vng góc với đáy Gọi M , N trung điểm SA , SB Mặt phẳng MNCD chia hình chóp cho thành hai phần tỉ số thể tích hai phần S.MNCD MNABCD 3 D -HẾT -Thí sinh không sử dụng tài liệu Cán coi thi khơng giải thích thêm A B C ĐÁP ÁN 1-C 2-C 3-B 4-A 5-B 6-B 7-D 8-A 9-B 10-A 11-B 12-D 13-A 14-C 15-D 16-B 17-A 18-C 19-A 20-C 21-B 22-D 23-C 24-C 25-A 26-A 27-D 28-D 29-C 30-C 31-C 32-B 33-B 34-A 35-A 36-B 37-A 38-A 39-C 40-C 41-D 42-D 43-C 44-D 45-C 46-D 47-A 48-D 49-D 50-D Câu 1: Chọn C Ta có y ' 3x2 12x 7, x0 y0 3, y ' 2 5 Phương trình tiếp tuyến đồ thị C M 2;3 có dạng y f ' x0 x x0 y0 thay số vào ta y 5 x 2 y 5x 13 Câu 2: Chọn C x3 x 1 1 x3 x Vì hàm số f x xác định nên lim x x 1 x2 x2 1 Câu 3: Chọn B Xét phương trình f x m f x m Từ bảng biến thiên ta thấy phương trình có nghiệm phân biệt đường thẳng y y f x điểm ohaan biệt m cắt đồ thị m m 2 Câu 4: Chọn A Câu 5: Chọn B Gọi số cần tìm có dạng: x abcd Chọn a có cách Chọn bcd có A93 cách Vậy có 9.A93 cách chọn số cần tìm Câu 6: Chọn B b b Giao đồ thị với trục hoành x Dựa vào đồ thị ta có x ab nên loại A a a a a nên y đường tiệm cận ngang đồ thị Dựa vào đồ thị ta có đường tiệm cận ngang c c Do lim y x y y Do a nên chọn B c ad bc cx d Dựa vào đồ thị ta có hàm số nghịch biến khoảng xác định nên ad bc loại C lim y nên x d x c x d đường tiệm cận đứng đồ thị Dựa vào đồ thị ta có đường tiệm cận đứng c d cd nên loại D c Câu 7: Chọn D Phương trình hồnh độ giao điểm y x3 3x2 9x trục hoành 10 Xét đáp án C có a a mà a a , a 3 5 a a Nên chọn C Xét đáp án D có a 2016 a 2017 , a a 2016 a 2017 nên loại Câu 32: Chọn B Đến năm 2026 tức sau 10 năm Theo công thức S A.e Nr 93422000.e10.1,07% 103972544 người nên chọn đáp án B Câu 33: Chọn B Hình lập phương ABCD.A ' B ' C ' D ' BC / / A ' D ' BC A ' D ' Tứ giác BCD ' A ' hình bình hành A ' B / /CD ' A ' D; CD ' A ' D; A ' B DA ' B Mặt khác: A' D A ' B DB (3 đường chéo hình vng có cạnh nhau) A ' DB tam giác DA ' B 600 A ' D; CD ' 600 Vậy góc A ' D CD ' 600 Câu 34: Chọn A 19 Khối cầu ngoại tiếp tứ diện AB ' A ' C khối cầu ngoại tiếp lăng trụ BAC.A ' B ' C ' Gọi D, E trung điểm BC , B ' C '; O trung điểm DE O tâm khối cầu ngoại tiếp lăng trụ BAC.A ' B ' C ' (do đáy ABC vng cân A) Ta có: OD BC a AA ' a BC AB2 AC 2a a AD 2 2 Bán kính khối cầu ngoại tiếp lăng trụ ABC.A ' B ' C ' R OA AD2 OD2 a2 a 4 a3 Vậy thể tích khối cầu cần tính V R3 3 Câu 35: Chọn A 20 Vì ABCD hình chữ nhật nên BC / / AD BC / / SAD d BC, SD d BC, SAD d B, SAD AB SA SA ABCD Ta có: AB SAD d B, SAD AB AB AD Xét hình chữ nhật ABCD ta có: AB AC BC 3a a 2a AB a Vậy: d BC, SD a Câu 36: Chọn B Xét phương trình hồnh độ giao điểm: xm x g x x x m 1 x 1 x 1 Ycbt phương trình 1 có hai nghiệm phân biệt thỏa mãn: x1 x2 g 1 m 1 m 1 Do m nguyên nhỏ 10 nên số giá trị nguyên m 10 Câu 37: Chọn A Trường hợp m 0, hàm số có dạng y 3x2 Hàm số khơng có điểm cực đại nên m thỏa mãn m Trường hơp m Để hàm số khơng có cực đại m m 1;2;3 m Vậy có giá trị m thỏa mãn Câu 38: Chọn A 21 Gọi I trung điểm cạnh B ' C ' Khi I tâm đường tròn ngoại tiếp A ' B ' C ' Gọi M ' trung điểm cạnh A ' C ' Khi MM ' A ' B ' C ' Do MA ' MC ' a nên MA ' C ' vuông M , M ' tâm đường tròn ngoại tiếp MA ' C ' nên IM ' trục đường tròn ngoại tiếp MA ' C ' Suy I tâm mặt cầu ngoại tiếp tứ diện M A ' B ' C ' Bán kính mặt cầu r IB ' BC a 2 Diện tích mặt cầu S 4 r 5 a Câu 39: Chọn C Có y ' 2m 1 x3 2mx nên hệ số góc tiếp tuyến điểm có hồnh độ x k1 y ' 1 2m 1 2m 6m Hệ số góc đường thẳng d : x y k2 Để thỏa mãn u cầu tốn ta phải có k1k2 1 6m 1 m Câu 40: Chọn C 22 12 Có AC2 BC2 AB2 AC2 7a2 4a2 AC a Gọi N trung điểm AB suy A ' B / / MNC nên d A ' B, CM d A ' B, CMN d B CMN d A, CMN d Xét tứ diện AMNC có AM , AN , AC đơi vng góc nên 1 1 1 1 13 3a d 2 2 d AM AN AC d 9a a 3a d 9a 13 Câu 41: Chọn D Gọi H , K trung điểm CD AB ACD cân A nên AH CD AH BCD d A; BCD AH Đặt AH x HD AD2 AH x2 BCD ACD HB HA x (hai đường cao tương ứng nhau) 23 1 x HK 2 HK HA HB x Mặt khác, ta lại có: ABD cân D nên DK AB AH ABC DK CK KCD tam giác vuông K x Suy HK CD HK HD x2 x 2 Vậy khoảng cách từ A đến mặt phẳng BCD Câu 42: Chọn D Cách 1: Ta có: g(x) f (| x 1|2 2 | x 1| m 1) Đặt t x g(t) f (| t |2 2 | t | m 1) Xét g1 (t) f (t 2t m 1) g1' (t) f '(t 2t m 1) t g1' (t) f '(t 2t m 1) g(x) có cực trị g(t) có cực trị g1 (t) có cực trị dương t t 2t m ' g1 (t) t 2t m t 2t m t 2t m m 3 m 0 m g1 (t) có cực trị dương khi: m m m Mà m [0, 6], 2m m {0, ,1, , 2, } 2 24 Vậy có 6giá trị m thỏa mãn đề Cách 2: Dùng ghép trục Đặt t(x) x 2x | x 1| m x m x t(x) x 4x m x 2x x1 x t '(x) x Ta có bảng biến thiên sau: Ta xét trường hợp sau, sử dụng phương pháp ghép trục: TH1: m 1 m Ta có bảng biến thiên sau: => Hàm số có cực trị => thỏa mãn TH2: m Ta có bảng biến thiên sau: => Hàm số có cực trị => thỏa mãn 25 TH3: m m m 1 Ta có bảng biến thiên sau: => Hàm số có 11 cực trị => khơng thỏa mãn TH4: m Ta có bảng biến thiên sau: => Hàm số có cực trị => không thỏa mãn TH5: m m m 1 Ta có bảng biến thiên sau: => Hàm số có 11 cực trị => khơng thỏa mãn TH6: m Ta có bảng biến thiên sau: => Hàm số có cực trị => khơng thỏa mãn TH7: m 4, m m m Ta có bảng biến thiên sau: 26 => Hàm số có cực trị => thỏa mãn TH8: m Tương tự => Không thỏa mãn TH9: m m m 1 Tương tự => Không thỏa mãn Kết hợp trường hợp ta được: m m m 4 m 4 m Mà 2m m m 0, ,1, , 2, ) 2 Vậy có giá trị m thỏa mãn Câu 43: Chọn C Xét phương trình f x f x 2 số nghiệm phương trình f x số giao điểm hàm số y f x với đường thẳng y 2 Nhìn vào bảng biến thiên ta thấy phương trình f x có ba nghiệm phân biệt là: x1 1, x2 0;2 , x3 2; 1 Ta có lim , lim , lim x 1 x x1 x x2 f x f x f x Suy hàm số y có ba đường tiệm cận đứng f x 1 Xét lim ; lim ; lim 0 x f x x f x xx1 f x Suy hàm số y có hai đường tiệm cận ngang f x Vậy hàm số có đường tiệm cận, ta chọn đáp án A Câu 44: Chọn D 27 x x2 2x Ta có: x x x mf x m f x x x2 2x x x2 2x Số nghiệm phương trình m số giao điểm hàm số y với đường f x f x thẳng y m Đặt g x x x x Ta có g x x 2, max g x x 2;4 2;4 f x x 4, max f x x 2;4 2;4 Do g x max f x đồng thời xảy x 2;4 2;4 g x x x x 2;4 Suy ra: 2;4 f x f x max 2;4 Do f x max g x đồng thời xảy x 2;4 2;4 g x x x x max 44 2;4 Suy ra: max 22 2;4 f x f x 2;4 Mà hàm số y Vậy x x2 2x liên tục đoạn 2;4 f x m 2, mà m nguyên nên m nhận giá trị 1;2;3;4 nên chọn đáp án D Câu 45: Chọn C 1 Nhận thấy 1; ; khơng nghiệm phương trình: 12 x 22 x3 x2 10 x x 1 x 1 3x 1 m x 1 Nên 1 m x m 2 x x 12 x 22 x3 x 10 x 11x 12 x 2 x x 1 x 1 3x 1 x 1 x 1 3x 1 1 x x 3x 28 Xét hàm số f x 2 x x Ta có: f ' x 1 x x 3x 1 1 \ 1; ; 3 2 x 2 0, x 2 x x 1 x 1 3x 1 1 \ 1; ; 3 Bảng biến thiên x y' y 1 Từ bảng biến thiên ta thấy, phương trình m f x có nghiệm phân biệt 1 \ 1; ; 3 m m Mặt khác: m 0;1; ;2020 Vậy có 2021 giá trị m cần tìm m 2020;2020 29 Câu 46: Chọn D BC AI Gọi I , J trung điểm BC , SA nên BC SAI BC SI Hai tam giác cân ABC , SBC nên IA IS suy ISA cân I Trong SBI vng I ta có SI SB BI 12 y2 y x2 Trong SAI cân I ta có IJ SI SJ 4 2 1 y x2 Khi thể tích khối chóp S ABC V BC.SSAI BC AI IJ xy 3 Ta có x y xy, x, y V xy xy 1 xy xy xy 2 xy xy xy 12 12 27 Dấu “=” xảy x y suy x y 3 Câu 47: Chọn A 30 Gọi A biến cố để viên bi chọn khơng nhiều màu ln có bi màu xanh Gọi A biến cố để viên bi chọn có đủ màu khơng có bi màu xanh Số phần tử không gian mẫu: n C21 5985 Trường hợp 1: bi chọn có đủ màu: có 3.5.6.7 630 cách chọn Số phần tử biến cố A : n A 630 3060 3690 Số phần tử biến cố A : n A n n A 5985 3690 2295 Xác suất biến cố A : P A n A 2295 n 5985 Câu 48: Chọn D Ta có: a b2 4a 6b a b 3 22 2 Trong hệ trục tọa độ Oxy gọi A a; b , B c; d Khi A a; b nằm đường trịn tâm I 2;3 bán kính R có phương trình: x y 3 22 2 B c; d nằm đường thẳng: 3x y Vì BA a c; b d nên P a c b d BA Khi P đạt giá trị nhỏ BA nhỏ Khoảng cách từ I đến : d I , 2 3.2 4.3 17 Vì d I , R nên I không giao 32 42 Suy BA nhỏ I , A, B thẳng hàng A nằm I , B IB hình sau 31 17 BA dI, R 5 P BA 2 49 7 25 5 Câu 49: Chọn D x 9t t x 9t t Đặt log9 x log12 y log16 x y t y 12 Khi t y 12 x y 16t Mặt khác ta có phương trình: t nhan t t 16 3 9t 2.12t 16t t 9 3 loai t x 3 Do y 1 Câu 50: Chọn D Ta có VS MNCD VS MCD VS MNC + VS MCD SM SC SD 1 VS MCD VS ACD VS ABCD VS ACD SA SC SD 2 + VS MNC SM SN SC 1 VS MNC VS ABC VS ABCD VS ABC SA SB SC 4 32 1 VS MNCD VS MCD VS MNC VS ABCD VS ABCD VS ABCD 8 VMNABCD VS ABCD VS MNCD VS ABCD VS ABCD VS ABCD 8 V VS MNCD S ABCD Do VMNABCD V S ABCD 33 ... 3x2 ? ?1 đoạn 0;3 bằng: A B 21 C D 13 6 Câu 16 Số cách chia 15 học sinh thành nhóm A, B, C gồm 4, 5, học sinh là: A C154 C155 C156 B C154 C 115 C66 D C154 C 115 C66 C A154 A 115 A66... 6-B 7-D 8-A 9-B 10 -A 11 -B 12 -D 13 -A 14 -C 15 -D 16 - B 17 -A 18 -C 19 -A 20-C 21- B 22-D 23-C 24-C 25-A 26-A 27-D 28-D 29-C 30-C 31- C 32-B 33-B 34-A 35-A 36-B 37-A 38-A 39-C 40-C 41- D 42-D 43-C 44-D 45-C... x x ? ?12 x 22 x3 x 10 x 11 x 12 x 2 x x 1? ?? x 1? ?? 3x 1? ?? x 1? ?? x 1? ?? 3x 1? ?? 1 x x 3x 28 Xét hàm số f x 2 x x Ta có: f '' x 1 x