1. Trang chủ
  2. » Luận Văn - Báo Cáo

Minh chứng đề tài nghiên cứu tích hợp công nghệ webgis và xử lý ảnh vệ tinh đa độ phân giải đa thời gian trong theo dõi cháy rừng tại việt nam

102 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 102
Dung lượng 9,66 MB

Nội dung

IE E K S IV Page o f IEIE SPC IEIE Transactions on Smart Processing & Computing HOME About IEIE SPC CONTACT u s SITEMAP View Articles Editorial Board Recent Hot Papers View Articles (online) ISSN 2287-5255 E-journal Special Issues Manuscript Submission Author Guide Editor and Reviewer Guide w TRANSACTIONS ON SMART PROCESSING COMPUTING m Volume Number June ,2 Sm art Signal Processing Overview of Bitstream Syntax and Parser Description Languages for Media Codecs s.Ja n g 103 K h an h L e Q u a :, T an N gu yen S y , T ĩìan h N g u y en T ill N hat, a n d H a L e T han h 1j H yu n gyu K im a n d ilu e e Burned Area Detection After Wildfire Using Landsat ETM +SLC-off Im ages Single Im age Enhancement Using Inter-channel Correlation Jin K im , S o o w o o n g Je o n g , Y on g H o K im , a n d S a n g k eu n L e e 130 The Vaguelette-Curvelet Decomposition for Im age Deblurring C h an g h u n C hơ, A g g e ío s K K a ts a g g e to s , a n d Jo o n k i P a ik HO Ju n m in S h i, Yi S u n , X idO Chen Z h an g , a n d Jiz h o n q X iao 148 Sm art W ireless Com m unications Random Access Channel with Retransmission Gain Resource Allocation based on Quantized Feedback for TDMA Wireless Mesh Networks L e i X u, Z h en -m in T an g, Y a-p in g Li, Y u -tvan g Y an g S h a o -h u a ta n , a n d T o n g -n w g i v 160 Sm art Com puting An Escrow -Free Tw o-party Identity-based Key Agreement Protocol without Using Pairings for Distinct PKGs T fio k o z a m F elix V alien t, E u n -Ju n Y oon , a n d H yu n su n g K im 68 R a je e v S in g h a n d T e e k P arv a ! S h a rm a 176 A Secure WLAN Authentication Scheme IE1E T r a n s a c t i o n s on S m a r t Proc es sin g & C o m p u t i n g A publication o f the Institute o f Electronics and Inform ation E ngineers (IE1E) Rm 907, K orea S cience and T ec h n o lo g y Blclg , 22, T eh e n -ro 7-fill, Ciaimnam -m i, S eoul, S E O U L 135-703 R ep o f K O R E A P h o n e + -2 -5 -0 5 -7 , Fax + 82-2-552-6093 http // W W W leiespc org http://ieckspc.ieekweb.org/vievv_acticles/acticles_d.asp?j=10 8/7 /2 117 IEF.K Transactions on Smart Processing 1111(1 Computing, vol 2, no 3, June 2013 w • m m m — “ ikkM M ttm w m m m m I LI mmmmm Burned Area Detection After Wildfire Using Landsat ETM+ SLC-off images Khanh Le Quoc, Tan Nguyen Sy, Thanh Nguyen Thi Nhat, and Ha Le Thanh Human - Machine Interaction Laboratory, University of Engineering and Technology, Vietnam National University / Hamoi, Vietnam {Iqkhanh, tanns_54, thanhntn, ltha}@vnu.edu.vn * Corresponding Author: Khanh Le Quoc Received July 14, 2012; Revised July 28, 2012; Accepted August 14, 2012; Published June 30, 2013 * R egular Paper A b stra c t: T h e increasing d e m a n d for m o nito rin g wildfires and their im pact o n the land su rface h av e p ro m p ted studies o f bu rn ed area extraction and analysis T o differentiate bu rn ed a n d u n b u rn e d area, the earlier m eth o d o f the M o d erate R e solu tio n Im ag in g S p ectro-radiom eter ( M O D I S ) B u rn ed A rea D etection A lg orith m w as pro p o sed to estim ate the ch an g e in land surface b ased o n the reflectance energy T he energy, w h o se w a vele ng ths are sensitive to burn ing , w as selec ted to calculate the chan ge p a m e te r Z SC0IV T his m eth o d w as ap plied using the M O D 1S im ages to p ro d u c e a M O D I S B urn e d A rea product T h e a p proac h w as to sim plify this algorithm to m ake it c o m p a tib le with the L a n d sat E T M + S L C - o f f im ages T o extract the refined version o f burned regions, po st-p ro cessin g w as carried out by ap plyin g a m edian filter, dilation m o rp h o lo g y algorithm , and fin ally a g ap filling m ethod T he exp erim en tal results s h o w e d that the d etailed bu rn e d areas e x tra c te d from the p rop osed m etho d exh ib ited m ore spatial details than th ose o f the M O D IS B u rn e d p ro d u cts in the large u s areas T h e results also revealed the dis tin uo us dis tribution o f b u rn e d regions in V ie tn a m forests K eyw ords- Burned area detection, Landsat ETM+ SLC-off, Wildfire, Land surface change Introduction T h e increasing recog nitio n o f burn ing biom ass as a w id e sp read and significant agent o f clim ate and en viron m ental ch ang e has led to an on go in g nee d for lo ng ­ term fire data at the regional, continental an d global scale In part, this d e m a n d has been met w ith a substantial b od y o f satellite-based active fire ob servations m ad e using a n u m b e r o f coarse- and m ed iu m -re so lu tio n sensors, such as the A lo n g -T c k S ca nnin g R ad io m eter (A T R S ) [ l ] , the V isible and Infrared S can ner (V1RS) [2] and the M o d e te R esolution Im ag in g S pec tro -ra dio m e ter ( M O D IS ) [3], W hile active fire products capture inform ation regardin g the location and time o f fires burn ing at the time o f the satellite o verpass, they not generally allo w an estim ation o f the reliable b u rned area [4], L arge-scale m aps o f bu rned areas, such as on a continental or global This research was supported by Project "Integration of WebGIS and multi-date and multi resolution satellite image processing technologies for forest fire monitoring in Vietnam" of Vietnam National University, Hanoi (VNƯII) under grant number QGT-D 12.25 'I ’ ■ IEEK Transactions on Smart Processing and Computing scale, are essential for a w ide ran g e o f a p p licatio n s, particularly for aeroso l em issio n estim ations T h i s need has p ro m p te d the d e v e lo p m e n t o f n u m e r o u s sate llite-b a se d m eth o d s to detect b u rn e d areas, the m ajo rity o f w h ich not exploit active fire inform ation T h e G L O B S C A R global burned a re a p ro d u c t [5] w a s p ro d u c e d for thie y ear 00 using tw o d ifferen t alg orith m s, textual a n d fixed threshold, ap plied to A T S R -2 and A A T S R im agery [6, 7] dev elo p e d a p re d ictiv e bi-directional reflectance m odel a p p roa ch to locate b u rn ed areas daily using 0 -m M O D S im agery In add itio n, there are a lg o rith m s that suppilemenl the standard r e m o te ly -se n s e d indicators for burn imapping w ith active fire m ap s [8] u se d tw o different vegietation indices d erived fro m 16-day M O D 1S na dir B R D F a d ju s te d reflectance c o m p o s ite s to id entify burn scars in central R ussia over a 12 -y e a r period [9] p ro p o s e d an a p p r o a c h to m ap various b u rn e d areas on an annual basis usiing the 0 -m M O D IS -d a y reflectance c o m p o s ite s withi 1-km MOD1S active fire m ask s T h ese a lg o rith m s have s e v e r a l characteristics that m a k e th em c o m p lic a te d to u s e First, the m in im u m d etec tab le size o f an active fire is up tio 1000 118 Qiioc et al.: Bunted Area Detection After Wildjire Using Landsal ETM+ SLC-off Images tim es sm aller than the m in im u m d etec tab le size o f a burned area [4], which can lead to c o n tam in atio n in selecting burned training pixels A n o th er c ause o f burned pixel contam ination is active fire false alarm s, i.e c o m m is sio n errors S econd, the selection o f un bu rned training pixels also is tam inated by a rang e o f fire sizes W hen the fire is loo small to detect, the a b sen ce o f fires d etected at a particular location does not gu aran tee that this location is unburncd T h e a p proac h o f [10] largely ov e rc o m e s these issues T his a lg o rith m w a s used to calculate the persistent c h a n g e s d e riv e d from 00 -m M O D IS surface reflectance on a daily basis T his algo rith m w as then used to g en erate regional density functions using active fire m ap s to d ete r m in e i f these chan ges are bu rned or u n b u rn e d in the d a ys nea rest to the bu rn ed dale A ltho ug h the alg orithm e x p lo ite d the inform ation o f the active fire m ap s m o re fully, it could not c o v e r the w ide range o f sizes o f b u rn e d areas Small burned areas w ere d etected but not e x tr a c te d in detail due to the low resolution o f the 0 -m M O D I S reflectance T his p ap er presents an a p p ro a ch to d etec t and extract the bu rn ed areas that use the h ig h -re so lu tio n im ages acquired by the sensor on b o ard L an d sat satellite T he Landsat series o f satellites provide a d ata sou rce for land surface m ap pin g an d m on ito rin g [11], T h e L andsat sensors include the L andsat T hem a tic M a p p e r (T M ) , Landsat E n h an ce d T hem atic M ap per Plus ( E T M + ) and L a n d sat 1-5 Multi spectral S cann ers (M SS) T he L an d sat se n s o r was launched in F ebruary 2013, a n d d a ta b e c a m e available from April 2013 B ccause the available data o f L and sat does not adapt to m etho ds that require lo n g -te rm data, the data o f L an dsat 1-7 w as still in w id e sp r e a d use, particularly the data obtained from the Landsat ETM+ sensor B efo re the launch o f L a n d s a t satellite, the new est L andsat E T M + w as still fu nctio ning , ev en th o u g h it has substantially ex ceed ed its plann ed d esig n life A ltho ug h the im ages collected by the L an dsat a n d satellites are available at no charge, the large a m o u n t o f data o v er a lo ng-term p erio d ob tained from L a n d sa t is a reliable resource b eca u se this m etho d m o nito rs the b u rn in g areas along the time series This a p p ro a ch exploits the active fire m ap s fro m Fire In fo rm ation for R esource M a n a g e m e n t S y ste m (F IR M S ) [12] to locate the active fire positions T h e app ro ach , w hich is a sim plified version o f the ea rlie r m e th o d o f the M OD1S B urned A rea D etection [13], calc u lated the c h an ges in the b urned areas verifie d by the F I R M S active fire maps T h e ch an g es w ere c alc ulated in both the spatial and tem po ral d o m a in lo gen erate a c h a n g e d e nsity function suitable for d iscrim in atin g the b u rn e d -re la te d and un bu rn ed-re la ted areas T his alg o rith m identifies the date o f burn in g , to the nearest days w ith in the individual Landsat im ages at a 30-111 spatial resolution T h e re m a in d e r o f this p ap er is s tru ctu red as follows Section su m m a riz e s the M O D I S B u rn e d A rea D etection A lg o rith m and Section d escrib es the a p p ro a c h as a sim plified version o f M - B A D A w ith a d d in g p ost p rocessin g Section p resents the e x p e rim e n ts an d results, and S ectio n reports the conclusion Burned Area Detection Method Using MODỈS Images [13] T h e M O D I S B urned Area D etection A lg o rith m (M B A D A ) has been d evelo ped to detect and m ap global b urned areas T h e algo rithm app lied the Bi-directional reflection m o del-based , chan ge-detection ap pro ach to m ap the 0 -m location and the ap p ro x im ate d a y o f fire T he detection w as b ased on the rapid chan ges in the daily M O D I S reflection data along the tim e series T his m ethod n eed s to refer to the data o f the previo us season s or years o f a given location to d eterm ine i f the spatial extent is bu rn ed or not T he detection m ethod, form ed by the bid irectio nal reflectance m o del-based ch an g e detection algorithm , is used in dependently to each geo -lo cated pixel ov er a long time series o f reflectance ob serv atio ns [14, 15] T h e reflectance sen sed w ithin a m o v in g te m poral w in d o w o f a fixed n u m b e r o f days (16 days ill this context) can m ak e the pre dic ted reflectance on a su bseq uen t day T he pred ic ted reflectance is then c o m p a re d with the o b serv ed reflectance by calculating the statistical m easure o f difference T his m e asurem ent helps m odel the directional d e p en d en ce o f the reflectance to prov ide a sem i-physicalb ased m eth o d lo predict the chan ge in reflectance from prev iou s slates The algo rith m w o rks on the M O D I S 500-rn spatial resolution im ages o f b an d (841 nm - 876 nm), b and (1 23 11111 - 12 nm) an d band ( 105 nm - l5 n m ) T h e n ear-in frared and longer w av elen g th reflectance bands arc used b eca u se they are g enerally insensitive to sm o ke aero sols em itted from veg eta tio n fires [16] R oy [6] presen ted that M O D 1S bands and pro vid e the highest bu rn ed 01‘ unbu rn ed area d iscrim ination but MOD1S band prov ides little T his observation helped build a set o f param eters and co nd itio ns for M - B A D A to detect the bu rn ed areas globally M - B A D A used a bi-directional reflectance m od el-b ased, ch ang e-detection m ethod to map the 0 -m location and the ap p ro x im a te day o f fire T he reflectance o f the land surface d etected by any rem ote se n so r v aried as a function o f the su n-surface-senso r ang les an d w as describ ed by the B i-directional R eflectance D istribution Function (B R D F ) [14, 15], T his study sho w ed that B R D F effects reduced the difference b etw e en the b u rned -related an d u n bu rne d-related land surface, both in the individual b and s and in spectral band indices T he de cre ased reflectance due to fire was less than the variation in the pre-fire reflectance cau sed by B R D F effects T he B R D F model c alculated the predicted reflectance and uncertainties for the v iew in g and illum ination angles o f a su b seq u e n t ob servation T he p a m e te r o f the B R D F m odel w as inverted against reflectance ob servations sen sed ill a tem poral w in d o w o f a 16-day duration This param eter, called Z scort, w as used as a norm alized m easure related to the prob ability o f a n e w ob serv ation belo ng in g to the current set T h e z score w as then calculated for M O D IS b a n d s and b ecause these b and s p ro v id e high sensitivity to b u rn in g areas A n e w ob servation w as co n sid e red a bu rn ed zhand cand ida te ^ z t h r e s h o ld 01 if the Z scnn ^h a n d > Z h r M i met w h ere the criteria: Z ,M u M is a IEEK Transactions D ll ! 19 S m all Processing mill Computing, vol 2, no 3, June 2013 fixed in dependent threshold O w in g to the characteristics o f the w av eleng th s in ban ds and 5, the burning area cau sed a decrease in the reflectance o f these ban d s but less ch an g e in the band reflectance, w h ereas the persistent ch an ges in cloud, shad ow , or soil m o isture w ou ld have a sim ilar effect on both bands To redu ce the im pacts o f these tem p ora l factors, the c o m p uta tio n o f the difference b etw ee n b a n d 2, and b and was repeated ind epend ently for each geo-located pixel along the time series This algo rithm allo w e d calculations o f both forw ard s and b ack w ard s in time to v erify the bu rned candidates F u rtherm ore, the algo rithm co uld increase the duratio n o f the B R D F inversion w in d o w , started in 16 days, and c o m p u te Z ivrc, for several subseq uen t days T his ensured the burned can did a te po int had been truly detected Proposed Method For Burned Area After Fire Using Landsat ETM+ SLCoff Images 3.1 Image Collection T he sen sor o f Landsat E T M + g enerates an o bserv ation for each location based on the W o rld w id e R eference System -2 (W R S -2 ) path /ro w system Each o bservation consists o f im ages corresp o n d in g to bands o f L and sat E T M + sensor sh ow n in T ab le I (band includes im ages in low an d high quality) with an inform ation m etad ata file T h e im ages for any location are free o f charge Landsat7 E T M + im ages provide high spatial resolution but low tem poral resolution T he tem poral resolution ol' im ages, w hich is the tim e required to revisit a position, is 16 days T he te m poral resolution o f data is in adeq ua te in the case o f rapid ch an g e detection for a p articular location such as daily changes In addition, cloud, sn o w or oth er w e a th e r co nd itio ns c o u ld im pact the pro c ess o f land surface m onitoring N ev ertheless, this tem p oral resolution m a k e s it possible to ob serv e the changes in lan dsca pe o v e r a lon g-term period, particularly in this co ntex t o f detecting the c ng es in bu rn ed area T he b u rned area after a wildfire re m a in s for w eek s or m o n th s so that it can m o n ito r the landscape D espite the low tem po ral resolution, the high value o f the L an d sa t E T M + data can be attributed in part to the relatively high spatial resolution Table Landsat ETM + w avelen gth co rrespo n ding spatial resolution bands (30 m for E T M + d e p ic t e d in Table I) T h e high spaatial resolution is im portant f o r d etecting the ch ang es in objeects on the land surface a n d separatin g them from unchanpged lands T herefore, the lack o f in form ation o f a tempooral resolution is c o m p e n s a te d fo r by the detailed spaatial resolution in the L andsat E T M + data T h e data obtainned from this sen so r can be used to detect and extract the bu rn ed areas after w ildfires O n I s' M ay 00 3, the Landsat E T M + Scan L J n e C orrecto r (S L C ) fa iled perm anently T he SSLC co m p en s a ted for the fo r w a r d m otion o f the satellite dul l ing scanning T he u ltim ate result o f SIX ' failure, referred ICO as SLC-off, is that so m e p arts o f an E T M + im age are not scanned T he u n -s c a n n e d data affected m o s t o f the im aage w ith the scan gaps v a r y i n g in size from one pixel lo) 14 pixels a lon g the east a n d w est edges o f the scene, as shoown in Fig Fig 1(a) sh o w s the co m p lete d Landsat E7TM + S L C - o ff im age, and Fig 1(b) presents the cropped im aage fro m Fig 1(a) nea r the M id d le East edge Fig 11(b) illustrates the black g a p s inside an im age that represcents the m issing da ta c a u se d by S L C failure T o m o n ito r the b u r n e d areas in the Earth, the IFire Inform ation for R e so u rc e M a n a g e m e n t System (F1RNV1S) (a) and Band W avelength Range (nm) Spatial Resolution (ni) 450 - 520 30 520 - 600 30 630 - 690 30 770 - 900 30 5 - 1750 30 10400 - 12500 30 2090-2350 30 520-900 15 (b) Fig C om pleted im ag e and cropped im age w iti bhack gaps 120 Quoc et ai: Burned Area Detection After Wildfire Using Laudsat F.TM+ SI,C-oJ) Images [I2J w hich integrates the rem o te s en s in g and G eog rap hic Infill mation System (G IS ) T e c h n o lo g y , delivers the MOD1S hotspots an d global fire locations T he data o f fire locations originated from the sta n d a rd M O D I S products: M O D 14 M Y D I Fire and T h e rm a l A n om alies, w h ich are then processed by Land A tm o s p h e r e near Real-tim e Capability (LANC1Z) for an E a rth O b se rva tion Sy stem (HOS) T h e s e standard M O D I S p ro du cts, w ho se spatial resolution is I km, only rep resen t the cen te r o f the active fire location T he ex am p les o f the active fire locations are depleted ill Fig for the regions o f V ie tn am and the ne igh b oring countries Land,sat E T M + im ages and fire in form ation achieved from F IR M S w e re co llected to c a lc u la te the chan ge in land surface ca u se d by wildfire T h e c h a n g e was then used as the input for the burned area d ete c tio n and extraction algorithm T he Landsat im ag es and active fire inform ation, w hich co ntains the occu rren ce time and location, w ere g ro u p e d as a triple L a n d sa t observation T he triple ob servation that w e re se le c te d along the time series c o n siste d tw o o b se rv a tio n s o b ta in ed before the o ccu rren ce time and one o b serv a tio n obtained after this time T h e se three ob serv atio ns are n a m e d “P re-J ”, "P re2 " and " P o st" , respectively T his triple ob servation is then calibrated by c ro p p rocess to focus on the fire position and reduce the c o m p u ta tio n time T h e c ro p process divides each im ag e in o bserva tions into n X 11 equal tiles For the w hereas the M O D I S b a n d p ro vided little discrim ination T ab ic lists the w av elen gths o f these bands T o apply the M O D I S burned area d iscrim ination m eth o d to the Landsat E T M + data, the c o rre sp on din g L an dsat bands, w hose w a v e len g th s that w ere the m o st similar to those o f M O D I S data, i.e M O D I S band relatively equivalent to Landsal b and 4, w ere sclccled T herefore, each ob servation o f Landsat included three im ages o f ban ds 4, and T he cro p p e d im ages from the three observations, called Landsat triple ob servation, w ere then the input for (lie pro cess describe d in Fig T he first step w a s to calculate the ch an g e alon g the tim e series o f the triple observation T h e next w as to detect the bu rn ed point Finally, the bu rn ed area extraction w as established test area, this stu dy e m p irically d e te r m in e d w h e th e r the value o f three w as app rop riate fo r n O nly the tiles that sisted o f active fire location s o b tain e d from F IR M S w ere used Fig presents all the steps to the pre-process data c alculated using the selected Landsat b and s to d iscrim inate the b urne d-re lated and u n bu rn ed related area as follows: 3.2 Change Measurement The pro p o s ed m eth o d defines a p aram eter that represents the ch ang e in each pixel o v er time b ased on the spatial intensity T his param eter, called z m., is a n o rm alize d m e a s u re m e n t o f the ch a n g e ill en ergy in a p articular pixel the d ifferent land co ver type, the Zj Z s 111, is a variable p a ram ete r can be = AP = (Ppog - P p „ - 2) MODIS bands (hat were sensitive and insensitive to biom ass b u rning , w ere used to d etec t the bu rn ed-related and n o n -b u rn e d -re lated change w ith in the scene, respectively An analysis o f the ability o f the M O D IS land surface re flecta n ce bands lo d is c rim in ate b etw een b u rn e d and u n b u rn e d area s s h o w e d that M O D I S bands 2, an d provide the highest b u rn e d - u n b u rn e d discrim ination, T herefore, re presen ting the characteristics o f the land surface even u nd er the sa m e env iro n m en tal condition O w in g to (lie different radiation, the reflection and scattering en erg y o f x V (1) V w here: Z) : Z scorc value o f w avelen gth X Ppn,_i : E n e rg y o f observatio n that recorded before the fire occurrence Fig Active fire location on FIRM S 121 IEF.K Transactions on Smart Processing (tiul Computing, vol 2, no 3, June 20/3 Find the triple observation that covers this location along time series: Pre- and ] Post-observation The active fire location recorded by FIRMS The triple observation found No -> Slop I Crop images in each observations Fig W o rkflo w of the prep ro cessin g step Landsat triple observation Burned area extraction Fig W o rk flo w o f the burned area extraction T ab le M apping w avelen gth M O DIS and Landsat sensors bands betw een MODIS (nm) Landsat (nm) Band 4: 770 - 900 Band 5: - 1250 Band 6: - 1652 Band 5: 5 - 1750 p The c o v er type before the fire occurrence Z n K w as co m p u ted for each and eve ry valid pixel, w h ereas that for the invalid pixels w ere not calculated V alid pixels w ere scann ed with the valid value, and the invalid pixels in the black gaps w ere not s c a n n e d by the / ) at the spatial co ordinates (/, j ) w as then calculated by: z* ° '') = a y > re p re sen ts th e energy p ix e ls b a se d on the relationship b e tw e e n the spatial resolution o f M O D I S and L an d sa t im ages C o m p a re d to the I- k m resolution o f the M O D I S im ag es, the - m resolation o f the Landsat E T M + im ages w a s m uc h sm aller, —33 fold T h e ratio s h o w s that o n e pixel po int o f the M O D IS i m a g e s c o rresp on ds to the 3 x 3 w in d o w in the L a n d s a t " E T M + im ages T h erefo re, the p re -d efin ed n u m b e r o f the A'indow size m is 3 x 3 pixels w ith a n u m b e r n cf valid n eig h b o u r pixels T h e s e n e ig h b o u r p ix e ls w e re u se d lo calculate the p a m e te r p (i, j ) as follows: p ( i j ) = J/ 1-71 (3) t-1 w h ere p t is the intensity o f the l'h pixel B ec iu se the ự p o stÍ Ì , D - P p r e - Í Ì j ) ) p u S that the valid p ix els located in a w in d o w o f m x n : E n erg y o f observation that reco rd e d after the A P (tJ) p ( i, j) , , respectively cente red at pixel (/,_/) T h e w in d o w size m is prtdefiined Band 7: 2090 - 2350 S L C failure T he in d ependent Z ( p aram ete r and p characteristics o f the land c o v e r type is the intensity average and n n eig h b o r pixels T he n n e ig h b o r pixels, are fire o ccu rrence p : P a m e te r representin g the en erg y o f the land „ w h e re p , sl(i, / ) , P ,rc- Ả i , j ) is the in ten sity o f the v a lid pixel (/', /■) in o bse rv atio n p Band 2: 841 - Band 7: - 5 the — l2) param eter, p (i, j ) , rep resents the land c o v e r type before (June el ill.: liiimcd Area Detection After Wildfire Using Landsat ETM+ SLC-o/J'images 122 (a) (b) Fig Fire in synth etic co lor im age and correspo n ding / Ii)n -dom ain im age (a) synth etic im age of the fire A shland in M o ntana, us, (b) im age in z ,, dom ain the o c c u rre n c e o f fire, this p a m e te r w as calculated for tile P r e -la n d P re -2 observations T h e s e two o bservations sh o w dial the y are highlv sensitive to b u rned-related im p acts, w h ic h a ss u m e s tlint there is a minority o f u n b u rn c d -re la te d changes T h erefore, the energy d istribution o f tw o observ ation s b efore the fire was eq u iv alen t so that />(/, /) was c o m p u te d as the average value of p n, /) and (/, j ) co rresponding o b s e rv a tio n P r e - l and P re -2 , respectively Fig 5(b) gives (in example of a fire in the domain of the original c o lor im a ge in Fig 5(a) T he bu rned area by the fire is b rig hte r than the n eig h b o rin g reg io n that can be observ ed c le a rly by h u m a n eye e x am ine d the value of z , a|1(J re c o m m e n d Z lhnMd = 0.4 As sh o w n fro m the im ages in the z , ^threshoU or Z > zthres holt P ỉ ĩ ? * ĩ \ i j ) - pfẴ"-đ2 3.3 Burned Point Detection (5) > PB pSSd - * ( i.j) - PB P %d - 7(i.D (6) T h e selec tion o f the three bands, and in the L a n d sat E T M f im ages presents the im portant points T h e b u rn e d an d u n b u rn e d areas are clear lo d iscrim inate in the b a n d 4, im ages, w hereas there is little discrim ination in tile b a n d im ag es alon g the time series o f before and after the fire T h is o bservation p ro vid es the criteria (5)-(7) for a g iven p oin t /.)(/, /') to be a b u rn e d point, w h ere / / ( / / ) is the in tensity o f the point (/, j) in the im a ge o f band V o f o b se rv a tio n V, an d z , is the z noise c aused by the s h a d o w or cloud T he experim ents c o m p u ted in b an d I o f an o bservation A p a rtic u la r point that satisfies both criteria w ou ld be labeled as a b u rn e d point in a b u rn ed area The criterion 4.1, w h ich is k n o w n as In ter-C h an g e C om putation, e x a m in e s the cliaim e in the land surface b ased on the z ( value Each pixel w ith a value is greater than a p redefined was c o n s id e re d a bu rned point candidate The bu rn e d point ca n d id a te s that satisfy the tw o last equations w ere v erifie d as the burned points T h ese two equations, called In tra -C h a n g e C o m p u tatio n , co m p a r e the ch an ge b e tw een the in n e r band s o f an o b s e rv a tio n to exclu de the P » S( U ) - pB P?e%-7 ( i D > r ? T ~ s( i j ) - r B r T ~ 7( i j ) (7) 3.4 Burned Area Extraction Tile L andsat im ages had an issue that is the ap p earan ce o f black gaps c a u se d by SLC-failurc P revious studies [17, 18] p ro po sed filling the black gaps T h e y w ere ap plied to spectral im ages o f L an dsat T hese algorithm s require the reference L an d sa t im ages that are unaffected by SLC-off T h e S L C - o ff im ag es has been p ro d u ced since 2003 T herefore, only the im ages w ithout S L C - o ff w ere ob tained before 2003 O ne study [17] also p ro po sed using the reference L an dsat S L C - o f f im ages to nil the gaps To acc o m p lish this, a w ide range o f S L C - o f f im ages needs to be obtained T h e large data, w h ich is free o f cloud and in the sam e w eath er conditions, w as difficult to achieve, p articularly for regions in V ietn am , w hich w ere used in the present experim ents M oreov er, the gap-filling process in I IX| w as in high c o m p lex ity and had a high co m putation time T h erefo re, in this study, gap filling w as perform ed using probability dis tribution in the b urn ed area binary IEEK Transactions on Smart Processing and Computing, vol 2, no 3, June 201 i (a) 123 (b) (c) Fig Exam ple o f burned area detection and extraction (a) im age in Z score dom ain, (b) Z m r -dom ain im ag e a fte r applying th resho ld cutting, (c) binary im age co rrespo n ding im age (b) (c) (d) Fig Exam ple of noise rem oval and burned area extraction (a) b in ary im age o f the burned area d etectio n , (b) binary im age after gap filling, (c) binary im age after noise rem oval by m edian filter, (d) binary im age o f b urned area extracted after dilation m o rp h olo gy alg orith m im ages instead o f the original spectral im ages H ere, the valid pixels are the pixels with the valid v alues in spectral im ages w h ereas the invalid pixels w ere in the gaps F o r each invalid pixel, a w in d o w c entered at this pixel w as formed to estim ate the value o f the pixel B ecau se the m a x im u m gap w idth is 14 pixels [18], a w in d o w size o f x pixels w a s used T h e value o f the invalid pixel w as estim ated as follows v _ fl >•0 rand < h / w (8) othemm w h e re n d Q is a function returning a un ifo rm d istributed n u m b e r in [0,1], b is the n u m b e r o f b urned p ix els in the w in d o w , a n d vv is the total n u m b e r o f valid p ix els in the w in w T h is estim ation function w a s d e riv ed u n der the ass u m p tio n that the invalid pixel shares the sa m e statistical properties o f b eing burned or u n bu rn ed with its neighbors ICEIC 2013, Jan 30 - Feb 2, 2013, Bali Indonesia fỉ —T z ỵ' s l / : Ỉ i -£—*— i — ẳ— ir Inpul LiQhlrtess Fig M a p p in g fu nction of e r e sp o n s e (dotted line), H E (da shed line), an d L ightness e n h a n c e m e n t fu nction (solid line) + a II XH Fig E n h a n c e d im a ges u n d er 12000 lux : (a ) input lin a g e , (b) IA C R M , (c) prop osed m e t h o d X = , and (d) Ả = 2} w w h ere is the d iag o n al m atrix in d ic a tin g a ratio b etw een the n u m b ers o f p o ssib le c o lo rs in the input lightness an d the tran sfo rm ed lig h tn ess, and a is a p aram eter to c o n tro l the deg ree o f lightness e n h an cem en t as sh o w n in Fig Ill the seco n d step , w e estim ate the am o u n t o f red u ced ch ro m a due to th e flare [3], T h e c o m p en sa te d chro m a c is o b tain ed by ad d in g the re d u c e d ch ro m a in C IE L A B : c = 2C K/ c,kf r a Propoted G\ Vi Ò to Ui to o\ z: o IJ L/Ì to Oi 'J I to 00 z D < Ọ c? o (O p to L/1 o OJ o ƠQ g •p( a>>? _) z f/Q •o o o o (— o p( fra rin •?s> to I -J to 'JI to 'J I 10 f/Q - — co^ H !—>* p —J z sc > 50' z CƠ o be PI X Q b' s> to o p IJ i'O Ồ N LtJ o \o vO Ọ o o 00 00 Vo !° ỈÕ Ồ (O U\ o ƠN VO GO ■o 'O o to to o N z CTQ o 00 o 4^ o 00 U\ TU 5P p> -1 ~' X v0 00 10 Ỉ—> H Q D n (IQ T3 Lr prr Uủ < —> Ì3 ƠQ ~ơ Cl —> * 1— OQ D i•U3< 1^- — > ƠQ & < rCl h —> —> (iQ ƠQ ? r !Z5 ƯQ r -f z ^r* n>> o r-\ ti' ^ S' * £>O' " ^ o “ p ' O- i-L CL g.r,Q •Q Hj r;c o> ĨỊ7* Q*i s ; Ơ0 o £> a o* *T3 r_ -t —1 ƠQ f(3 e- ro I Èr c -J •P ( o “a , ƠQ CO ^ 0' 9*- rr: r~ fro Q' o _D c rfq ỢQ p> fbi rjQ sQ i_££ ' (/> ^ CL ^T rj" r“ Q t-> ƠQ S’ XI Q c/5 H Q c/3 Q 00 H c/5 (/) c/5 2^ DC z H 00 00 Q c r o> H c/5 c po r;c < c> o? o ƠQ c O'* rD>i rt»c n»> a c/} "P Q 00 •p !-j CO c £> c Q H o>> s Ợ* QTQ Cft5)i •P3> i z g < z C3 H J- c S' o | Í •“ 2' OfJQ X z z < -rS>" Ộ _ o o a: z z H ^ < I -rS> C/Q h z 3a= -t 5“ 9' z K S' I z n Ị o ffi >«c 2: < •p r w> z •o fi9 G ọ ặ •>' z o L*J z p o> o _4_ < ƠQ ^ r ƠQ ar z ffi 00 H * H to n o c/5 *c >> H >< X ffi * v •o> a ƠQ 1—] c Q0 ƠQ : CD X n iz: S o5 n i- T O •n» 50; CD- a c ưi *H 'õ — ƠQ < •aj> •Q > H c/5 = q QJ p*r ■J o>i 1-t■Q •[»> " S' r-/ TJ •a>> r r c ƠQ X 05» o p> >< jv,> - n> •o > n>>- 0> > o ow ' co> ^ a 'V p c *-r-i ^ O h ạ> Cd n •— ^ >J-< ■o z 2’ ƠQ Q0 ƠQ § G3 z o c> □ cro s; o o2 z Ui w- HOA XÃ HỘI CHU NGHĨA VIẸT NAM Độc lập - Tụ - Hạnh phúc 0)>, J— o> “Ỉ y^N n ^ > ' w> z CỘNG > rrq ■—1• —> a> n>> r-à “Í PT—» (p o >1 •5> q n» > z DẠI HỌC QUỒC GIA HA NỘI TRUONG ĐẠI HỌC CÔNG NGHỆ to IJ to o '35 u OX) e CJ "«L> Q CXJ Ọ u (—> G o Q '5 ■3 u jo- c3 -C CQ a , H z c «« ',0c13z , ( ãu ôu- y * > y! J to io I'O to to IO L/l to Ui U\ 10 f—■> [O 'J KJ KJ 10 f—“> to ' -J i to n — f z ƠQ C U\ z o>? Ỉ3 rjrq z r/Q •Ộ o z ƠQ ƠQ I ffQ "a JuP' rE> c.' c Q' r-f p ƠQ 0»- ; 03 •c X“J5 Ơ Í0> G cx o> Ou n»’ zr rD> a’~~*1 •c n»"a nr “ u n I-O ♦■ C o> •o> lJ ƠQ 0 ƠQ •JX)> «” ^ •ro> c p•ÍD> X Cl)? CL P ' t_ c •o> •Q p< u - T5 a LÍ n DJ GO t—3 GO •q ẵT1 0iAJ'T3 P' I Ơ Q 4* ci Q CD> H j ƠQ z n CƠ ƠQ ) X >— Xr— )' JAJ r,0 o u> p 00 H C/Ĩ < —1 • —• c n c? •PC > to r 1o0>CTQ"Tl 0D)>ƠQ*-> o r-O nr- c >? —> rDC >< £)> c/1 •cQ- 2CA , "O Ĩ3 pffQ u- — • )i.( ƠQS’ s •JDV i3> crD/o nj>C P( O n> fu>C r — ►C ' o o> (— +• rti> o n 5* H c/) oo Ồ o oo sỏ 00 \D ; ' 5t ? C l f/Q - g ; f g - _ 9r Ọ n> X.: ~ O ' c ' ƠQ s* CO •i^> f—0 D• r— ^r* ƠQ I_> U5> (;q r- £p ► _» to- o> CO? X —* (fQ i“+• '-V — * rtrrq < ƠQ i ’ a CO o s o ^ ỌC s o 2' O r! X m n z 2! CTQ K) _ c .rn> Q' c f ƠQ c X v: p 3- c3> n t D“ ^r z ƠQ f -• H ƠQ 2> p CL tá ƠQ rS> ữ 3> Í3 ƠQ — > cr p> D o> r~f 0 n ƠQ 00 (—, Qu •p< n ƠQ C/ P o cr o Q' Uủ' rD>X5 P' —> g H-» fTQ n» (IQ t-/ p H «T> rs>' tù ' ƠQ ? •p ĨU- CỊ- z •n» o> *b > (JQ •< o> ƠQ T3 *— > < t-i p> J3- CL E3 •rD> —» ƠQ QJ •n» X f— I3D- z r— ^3> b ~r f— p £»■ t=) T3 i-j n r p UJ> ƠQ o> n»- p p -J r/Q S.Í >< o r-, £ o z ẩ SO 00 c r f—^ rD> r— (IQ 13 (D> D* ZD o> p> D —{ cr tì' fD> r-f Li GO ft)>* 00 so On Ui •p CD>? ÍIỈ , _* oo —• to to r- vO oo sO On z to GO to ƠQ UJ \] 10 10 s> ’3 10 4^ _o Ồ QO ■^o * ỢzQ o OJ Ọ so to £ •?s> TI3 i'O Lti 10 ƠN oo c to to K) o U i r/rQ o to ri)>? H H IO - Q al ổ Ơ ^ E c Q Qffc i fl s n z CD ■Ĩ - 0 i z < p II Ổ 2' (10 a n z z g n z •?D> £ n z < a H Oh d o I' C fp hH o z aỌ ^ d S' O fl !— Li k-4z GJ n z o n o> CTQ ft5> 01 § z E ' ZC u c ^ -5 z p: u a ~ Ọ 9' ^ |- y ff- f;o - • z; o z C0>- cr —< p> C' •o> Q' 7Q &5>i a H o 2' Ổ I' o TO LLc c | —1 i i § n z 9* o>> z z H rD> n c n p o cr ?B>rDu o>- “a •p> »-> ƠQ a» c/3 > X c Ọ~ S ^' ;q z Ơ £»9*o>_ _ g >! c r fro ■T3 CO s.rio 'S , •£>< o p* p o so oo — > p> i-s' < O’ p" T3 V o> o 5’ —> ƠQ ƠQ Ồ •ạ — ) to o Ọ so oo sO X o o K) CO P' Q> D n CƠ d Lh Ồ UJ Ợ c X * l-< ƯQ eo> ƠQ 1—* r Ị a •r— CO-'•"' '5 o ẸT- o C ' o cx z c ặ i = cl c u - -a> o> Ou -n» I Q' ~ b fR o U\ o to Ọ \o z ẻ o z JQ o ụ D£ Ẽ ’5 -T5 "O Q C ỹ J > Q Cũ o CQ o > H < o ị c/j ừì o -cạ p U Qz 11o J (0— -5 HẠ o z D ÍJ p •5 C - r : ‘ C3 H o 'Q r~ D 'I O' Q ề Dí) o s I ặQ co ồtì -D c ‘ C3 H g*o '5 o KS5 n n o n ’ n ‘O Tj ro Ọ C «L) (—■ p (-' )CỢ > ỉ' *■X1 o>? < £>< r~ to o IO to o to Ui to vO G X z z o 00 _l \o sO 00 Ị D a ta p - •> - -a V ie t n a m •f?> '£I-J '< • o P ' - • cro - p jy p> D —1 £ , CO p ƠQ Er ^ p § ” c> c s i ?■ E a 'E c- fJQ •pj p: X) g 03 & -S5 o L*J On Ồ \) o ■ — UJ o o L /1 00 o o VO _ i _ _ t a VO oo to 'O GO Qi T5 o Ễ: 3- tạ3 f—f _ Sc >t - D t >—■ J '-c *&3> ri>> r“f 4^ z i = ; a» ƠQ ■ •a» o a o+ o r, p - ^ X o £> C- *-< ’ I > ~ -c o o !_) f—+■ H o a>> o X q- •&3> o ^ c d r •p p Ob T 0>‘ : X c> o> ^ (5 go> ffQ -ỹ Q 00 — 00 z H c/5 ? ffQ o>? z crq < rD>i PD( Hj ƠQ c;? JD r-f- sa; x: z c c/5 < n» > s fjc 03 p= ' l- J r-^ i 5' ° cH 3( P ƠQ n c ƠQ £ủ' fò> ■p ■o> H r~ n» z rp p S ' CO- o* ^>' o H CL =*■ c- •p> í—K "CJ* Sp H o> o Í3o^ D" r“ Q h3 Cị o>' S 09 _ z IQ _ Vo oo \0 n -g< Si fa, ĨTỈ ^ "D — •P( o S'- ƠQ s: fD>- o> "X) H Q H c/5 t/5 •p I—1 H c/j z o» —> z Cũ< r/Q H •-Í d Q' H ƠQ ƠQ ■Ộ n £U' to —* 1—* w & fĩ)>í a" rS>* c/5 ffQ • ỉ Ỉ3 < ^ S ' fJQ ?"• o», ^ C/D CO ^3- T S3 < ’ < -o> o c/5 o r- f/Q ZJ* o -p < p< C3 *—f- cr n)> “2 - 2^ -o ƠQ ' 00 rD>? q - ffQ ƠQ » CL •c o ƠQ a Ọ* po< Õ o X B ^ T3 X r i' ^_> o so o OJ , * 'VO 00 "5 tT ƠQ CO' -rG - -• —' -a» r> c>— Q_ H p o GO VO - ẽ2 o •p s 00 rio S / O < c ổ > ^ "O too>"Zj -5 ^T- Q cn (— — UJ \) C O 4^ Ồ v ~ H c/i Q c/3 I I1 f i &D» LTt p> Ọ Cf c *2 — ƠQ H c/5 c ^ CO c -a» £)>; Cl £> õ to o ' ’“ ■ n» o p p c ƠQ B' &>' b ~ a a»: ^ '2 IO IO 'J l to H H o> OJ a to o o »—3 o oo ^ ưi 00 •cp> or— o> (O ’ “S B> ỹ r^ ‘ 2- o » ■B3 I I o> c Q- ■?B> 3 Ọ §’■ Ki ■o>“ • o>-Ọ _ Q- o i z0 Ơ f—D >? > cQa < z to o *—■* Ọ I I—f to o to L*-> Õ CJQ oo -J o \ - U\ •Ọ o o ‘— * _ < 'J\ p D _ OJ OJ L /i u~\ to p>> o 00 o 00 —* VO 00 to to o to to t'O o pp _ IO o to to ƠQ I— o* Q>? p ' _ * IO U\ oc o LỊUI.I Ị ol t J IO ƠQ r— n O' •o> o z P3 ^T* CTQ Q ƠQ H ƠQ —5 •> r~ c - z •o > I o c — n H _i c S' (5 r;c X CO' Ơ h7H >-U Ọ > ƠC ặ o z a- o H c 2' O rẩ I-U c Ọ Dh M-t ễ g 9' O rg i s Q> !->1 ' — c Q2 ƠC Ơ X o o z z ' rfo ị o Ơ < E -0 > o n ặ Ọ 9' O rg Sc z : z H n z ể sc D < z < ^ rS> I— pp nn o z _ < z < -n> X g' — o c o> z o u z u X Q z ỒỊ) u s

Ngày đăng: 18/03/2021, 17:03

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w