1. Trang chủ
  2. » Hóa học

Bài giảng Tối ưu hóa nâng cao - Chương 6: Subgradients

10 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 642,9 KB

Nội dung

Khoa Toán - Cơ - Tin học, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội.[r]

(1)

Subgradients

Hoàng Nam Dũng

(2)

Last time: gradient descent Consider the problem

min

x f(x)

forf convex and differentiable,dom(f) =Rn.

Gradient descent: choose initial x(0) ∈Rn, repeat

x(k) =x(k−1)−tk · ∇f(x(k−1)), k =1,2,3,

Step sizestk chosen to be fixed and small, or by backtracking line search

(3)

Outline

Today:

I Subgradients

I Examples

I Properties

I Optimality characterizations

(4)

Basic inequality

Recall that for convex and differentiablef,

f(y)≥f(x) +∇f(x)T(y−x), ∀x,y ∈dom(f).

Basic inequality

recall the basic inequality for differentiable convex functions:

f(y)≥f(x) +∇f(x)T(y−x) ∀y∈domf

(x, f(x))

∇f(x)

−1

• the first-order approximation off atxis a global lower bound

• ∇f(x)defines a non-vertical supporting hyperplane toepif at(x, f(x)):

(5)

Subgradients

Asubgradientof a convex function f atx is any g ∈Rn such that

f(y)≥f(x) +gT(y−x), ∀y∈dom(f)

I Always exists (on the relative interior of dom(f))

I Iff differentiable at x, then g =∇f(x) uniquely

I Same definition works for nonconvex f (however, subgradients need not exist)

Subgradient

gis asubgradientof a convex functionfatx∈domfif f(y)≥f(x) +gT(y−x) ∀y∈domf

x1 x2

f(y)

f(x1) +g1T(y−x1)

f(x1) +g2T(y−x1)

f(x2) +gT3(y−x2)

g1,g2are subgradients atx1;g3is a subgradient atx2

Subgradients 4-3

g1 and g2 are subgradients at x1,g3 is subgradient atx2

(6)

Subgradients

Asubgradientof a convex function f atx is any g ∈Rn such that

f(y)≥f(x) +gT(y−x), ∀y∈dom(f)

I Always exists (on the relative interior of dom(f))

I Iff differentiable at x, then g =∇f(x) uniquely

I Same definition works for nonconvex f (however, subgradients need not exist)

Subgradient

gis asubgradientof a convex functionfatx∈domfif f(y)≥f(x) +gT(y−x) ∀y∈domf

f(y)

f(x1) +g1T(y−x1)

f(x1) +g2T(y−x1)

(7)

Examples of subgradients Considerf:R→R,f(x) =|x|

Examples of subgradients Consider f :R→R,f(x) =|x|

−2 −1

−0.5 0.0 0.5 1.0 1.5 2.0 x f(x)

• For x6= 0, unique subgradient g= sign(x)

• For x= 0, subgradientg is any element of[−1,1]

5 I For x6=0, unique subgradient g = sign(x)

I For x=0, subgradientg is any element of[−1,1]

(8)

Examples of subgradients Considerf:Rn→R,f(x) =kxk2

Considerf :Rn→R,f(x) =kxk

2

x1

(9)

Examples of subgradients Considerf:Rn→R,f(x) =kxk1

Considerf :Rn→R,f(x) =kxk

1

x1

x2 f(x)

• Forxi6= 0, uniqueith component gi= sign(xi) • Forxi= 0,ith component gi is any element of[−1,1]

7 I For xi 6=0, unique ith component gi = sign(xi)

I For xi =0,ith component gi is any element of[−1,1]

(10)

Examples of subgradients

Considerf(x) = max{f1(x),f2(x)}, for f1,f2:Rn→R convex,

differentiable

Considerf(x) = max{f1(x), f2(x)}, for f1, f2 :Rn→Rconvex,

differentiable

−2 −1

0

5

10

15

x

f(x)

Ngày đăng: 10/03/2021, 13:29

w