1. Trang chủ
  2. » Luận Văn - Báo Cáo

Điều kiện cần tối ưu cho bài toán cân bằng vector dưới dạng quy tắc nhân tử karush kuhn tucker

45 6 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 45
Dung lượng 0,93 MB

Nội dung

✣❸■ ❍➴❈ ◗❯➮❈ ●■❆ ❚P✳ ❍❈▼ ❚❘×❮◆● ✣❸■ ❍➴❈ ❆◆ ●■❆◆● ❑❍❖❆ ❙× P❍❸▼ ✣➋ ❚⑨■ ◆●❍■➊◆ ❈Ù❯ ❑❍❖❆ ❍➴❈ ❈❻P ❚❘×❮◆● ✣■➋❯ ❑■➏◆ ❈❺◆ ❚➮■ ×❯ ❈❍❖ ❇⑨■ ❚❖⑩◆ ❈❹◆ ❇➀◆● ❱❊❈❚❖❘ ❉×❰■ ❉❸◆● ◗❯❨ ❚➁❈ ◆❍❹◆ ❚Û ❑❆❘❯❙❍✲❑❯❍◆✲❚❯❈❑❊❘ ▲➊ ❑■➊◆ ❚❍⑨◆❍ ❆◆ ●■❆◆●✱ ✵✸ ✲ ✷✵✷✵ ✣❸■ ❍➴❈ ◗❯➮❈ ●■❆ ❚P✳ ❍❈▼ ❚❘×❮◆● ✣❸■ ❍➴❈ ❆◆ ●■❆◆● ❑❍❖❆ ❙× P❍❸▼ ✣➋ ❚⑨■ ◆●❍■➊◆ ❈Ù❯ ❑❍❖❆ ❍➴❈ ❈❻P ❚❘×❮◆● ✣■➋❯ ❑■➏◆ ❈❺◆ ❚➮■ ×❯ ❈❍❖ ❇⑨■ ❚❖⑩◆ ❈❹◆ ❇➀◆● ❱❊❈❚❖❘ ❉×❰■ ❉❸◆● ◗❯❨ ❚➁❈ ◆❍❹◆ ❚Û ❑❆❘❯❙❍✲❑❯❍◆✲❚❯❈❑❊❘ ▲➊ ❑■➊◆ ❚❍⑨◆❍ ❆◆ ●■❆◆●✱ ✵✸ ✲ ✷✵✷✵ ✣➲ t➔✐ ♥❣❤✐➯♥ ❝ù✉ ❦❤♦❛ ❤å❝ ✧✣■➋❯ ❑■➊◆ ❈❺◆ ❚➮■ ×❯ ❈❍❖ ❇⑨■ ❚❖⑩◆ ❈❹◆ ❇➀◆● ❱❊❈❚❖❘ ❉×❰■ ❉❸◆● ◗❯❨ ❚➁❈ ◆❍❹◆ ❚Û ❑❆❘❯❙❍✲❑❯❍◆✲ ❚❯❈❑❊❘✧ ❞♦ t→❝ ❣✐↔ ▲➯ ❑✐➯♥ ❚❤➔♥❤ ✱ ❝æ♥❣ t→❝ t↕✐ ❇ë ♠ỉ♥ ❚♦→♥✱ ❑❤♦❛ ❙÷ ♣❤↕♠ t❤ü❝ ❤✐➺♥✳ ❚→❝ ❣✐↔ ✤➣ ❜→♦ ❝→♦ ❦➳t q✉↔ ♥❣❤✐➯♥ ❝ù✉ ✈➔ ✤÷đ❝ ỗ t tổ q ✳ ✳ ✳ ✴✳ ✳ ✳ ✴✳ ✳ ✳ ✳ ữ ỵ P P t ỗ t ♥❣❤✐➯♥ ❝ù✉ ✤÷đ❝ t❤ü❝ ❤✐➺♥ t↕✐ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❆♥ ●✐❛♥❣✳ ❚→❝ ❣✐↔ ①✐♥ ❣û✐ ❧í✐ ❝→♠ ì♥ ❝❤➙♥ t❤➔♥❤ ✤➳♥ ❇❛♥ ❣✐→♠ ❤✐➺✉ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❆♥ ●✐❛♥❣✱ ❇❛♥ ❝❤õ ♥❤✐➺♠ ❑❤♦❛ ❙÷ ♣❤↕♠✱ ❇ë ♠ỉ♥ ❚♦→♥✱ ❝→❝ P❤á♥❣ ❜❛♥ ❝❤ù❝ ♥➠♥❣ ❝õ❛ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❆♥ ●✐❛♥❣ ✈➔ ❝→❝ ❚❤➛②✱ ❈ỉ ✤➣ ❣✐ó♣ ✤ï✱ t↕♦ ♠å✐ ✤✐➲✉ ❦✐➺♥ t❤✉➟♥ ❧ñ✐ ❝❤♦ t→❝ ❣✐↔ ❤♦➔♥ t❤➔♥❤ ✤➲ t➔✐ ♥❣❤✐➯♥ ❝ù✉ ♥➔②✳ ❚→❝ ❣✐↔ ①✐♥ ❣û✐ ❧í✐ ❝↔♠ ì♥ ✤➳♥ ũ ỳ õ ỵ qỵ tr q tr tỹ t ❝ù✉ ♥➔②✳ ❚→❝ ❣✐↔ ❝ơ♥❣ ①✐♥ ❣û✐ ❧í✐ ❝↔♠ ì♥ ❝❤➙♥ t❤➔♥❤ ✤➳♥ ❝→❝ t❤➔♥❤ ✈✐➯♥ tr♦♥❣ ♥❤â♠ ❙❡♠✐♥❛r ❝õ❛ ❇ë ♠ỉ♥ ❚è✐ ÷✉✱ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❑❤♦❛ ❤å❝ ❚ü ♥❤✐➯♥✱ ✣❍◗●✲❍❈▼ ✈➻ ♥❤ú♥❣ tr❛♦ ✤ê✐ ❤å❝ t❤✉➟t ❝â ❣✐→ trà ❣✐ó♣ t→❝ ❣✐↔ ✈÷đt q✉❛ ♥❤ú♥❣ ❦❤â ❦❤➠♥ tr♦♥❣ q✉→ tr➻♥❤ t❤ü❝ ❤✐➺♥ ✤➲ t➔✐ ♥❣❤✐➯♥ ❝ù✉✳ ❚→❝ ❣✐↔ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝→♠ ì♥ ❝→❝ ❚❤➛②✱ ❈ỉ ♣❤↔♥ ❜✐➺♥✱ ế ỗ t t tớ õ ỵ t ❝ù✉ ♥➔②✳ ❆♥ ●✐❛♥❣✱ ♥❣➔② t❤→♥❣ ✵✸ ♥➠♠ ✷✵✷✵ ◆❣÷í✐ t❤ü❝ ❤✐➺♥ ❚❤❙✳ ▲➯ ❑✐➯♥ ❚❤➔♥❤ ✐ ❚➶▼ ❚➁❚ ❇➔✐ t õ trỏ q trồ tr ỵ t❤✉②➳t tè✐ ÷✉ ✈➔ ❣✐↔✐ t➼❝❤ ♣❤✐ t✉②➳♥✱ ✈➻ ❜➔✐ t♦→♥ ♥➔② ❜❛♦ q✉→t ❦❤→ ♥❤✐➲✉ ❝→❝ ❜➔✐ t♦→♥ ù♥❣ ❞ư♥❣ q✉❛♥ trå♥❣ ❦❤→❝ ♥❤÷ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥✱ ❜➔✐ t♦→♥ tè✐ ÷✉✱ ❜➔✐ t♦→♥ ♠↕♥❣ ❣✐❛♦ t❤ỉ♥❣✳✳✳ P❤➛♥ ❧ỵ♥ ❝→❝ ❦➳t q✉↔ ♥❣❤✐➯♥ ❝ù✉ ✈➲ ❜➔✐ t t tr sỹ tỗ t ♥❣❤✐➺♠✱ ê♥ ✤à♥❤ ♥❣❤✐➺♠✱ t➼♥❤ ✤➦t ❝❤➾♥❤ ✈➔ ♣❤÷ì♥❣ ♣❤→♣ sè✳ ❚✉② ♥❤✐➯♥ ❝❤÷❛ ❝â ♥❤✐➲✉ ❦➳t q✉↔ ♥❣❤✐➯♥ ❝ù✉ ✈➲ ✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣✳ ▼ö❝ ✤➼❝❤ ❝õ❛ ✤➲ t➔✐ ♥➔② ❧➔ t❤✐➳t ❧➟♣ ♠ët sè ✤✐➲✉ ❦✐➺♥ ❝➛♥ tè✐ ÷✉ ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉ ✈➔ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ❝❤➼♥❤ t❤÷í♥❣ ❦✐➸✉ ❍❡♥✐❣ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝t♦r✱ ✈ỵ✐ ❝ỉ♥❣ ❝ư ❧➔ ✤↕♦ ❤➔♠ t✐➳♣ ❧✐➯♥✱ ✤↕♦ ❤➔♠ ❦➲✱ ❝ị♥❣ ✈ỵ✐ ✤✐➲✉ ❦✐➺♥ ❝❤➜t ❧÷đ♥❣ r➔♥❣ ❜✉ë❝ ❦✐➸✉ ❑✉r❝②✉s③✲❘♦❜✐♥s♦♥✲❩♦✇❡✱ ✤✐➲✉ ❦✐➺♥ ❝➛♥ tè✐ ÷✉ ❝â ❞↕♥❣ q✉② t➢❝ ♥❤➙♥ tû ❑❛r✉s❤✲❑✉❤♥✲❚✉❝❦❡r✳ ❇➯♥ ❝↕♥❤ ✤â✱ t➼♥❤ ❜à ❝❤➦♥ ❝õ❛ t➟♣ ♥❤➙♥ tû✱ ♠è✐ ❧✐➯♥ ❤➺ ❣✐ú❛ ✤✐➲✉ ❦✐➺♥ ❑✉r❝②✉s③✲❘♦❜✐♥s♦♥✲❩♦✇❡ ✈➔ ✤✐➲✉ ❦✐➯♥ ▼❛♥❣❛s❛r✐❛♥✲ ❋r♦♠♦✈✐t③ ❝ơ♥❣ ✤÷đ❝ ❦❤↔♦ s→t✳ ✐✐ ❆❇❙❚❘❆❈❚ ❊q✉✐❧✐❜r✐✉♠ ♣r♦❜❧❡♠s ♦❝❝✉♣② ❛♥ ✐♠♣♦rt❛♥t ♣❧❛❝❡ ✐♥ ♦♣t✐♠✐③❛t✐♦♥ t❤❡♦r② ❛♥❞ ♥♦♥❧✐♥❡❛r ❛♥❛❧②s✐s✱ t❤✐s ❣❡♥❡r❛❧ ♠♦❞❡❧ ✐♥❝❧✉❞❡s ❛s s♣❡❝✐❛❧ ❝❛s❡s ♠♦st ♦❢ ♦♣t✐♠✐③❛t✐♦♥✲ r❡❧❛t❡❞ ♣r♦❜❧❡♠s s✉❝❤ ❛s ✈❛r✐❛t✐♦♥❛❧ ✐♥❡q✉❛❧✐t✐❡s✱ ♠✐♥✐♠✐③❛t✐♦♥ ♣r♦❜❧❡♠s✱ ❝♦♠✲ ♣❧❡♠❡♥t❛r✐t② ♣r♦❜❧❡♠s✱ ♠✐♥✐♠❛① ♣r♦❜❧❡♠s✱ ♣r♦❜❧❡♠s ❛❜♦✉t ❢✐①❡❞ ♣♦✐♥ts✱ ❡t❝✳ ❙✐❣✲ ♥✐❢✐❝❛♥t r❡s✉❧ts ❢♦r t❤✐s ♠♦❞❡❧ ❛r❡ ♠❛✐♥❧② ♦♥ t❤❡ s♦❧✉t✐♦♥ ❡①✐st❡♥❝❡✱ st❛❜✐❧✐t②✱ ✇❡❧❧✲♣♦s❡❞♥❡ss✱ ❛♥❞ ♥✉♠❡r✐❝❛❧ ♠❡t❤♦❞s✳ ❆s ❢❛r ❛s ✇❡ ❦♥♦✇✱ t❤❡r❡ ✐s ❢❡✇ ♣❛♣❡r ❝♦♥❝❡r♥✐♥❣ ♦♣t✐♠❛❧✐t② ❝♦♥❞✐t✐♦♥s ❢♦r t❤❡ s♦❧✉t✐♦♥ t♦ t❤❡ ✈❡❝t♦r ❡q✉✐❧✐❜r✐✉♠ ♣r♦❜✲ ❧❡♠s✳ ❚❤❡ ♣✉r♣♦s❡ ♦❢ t❤✐s ♣❛♣❡r ✐s t♦ ❡st❛❜❧✐s❤ s♦♠❡ ♥❡❝❡ss❛r② ♦♣t✐♠❛❧✐t② ❝♦♥❞✐t✐♦♥s ❢♦r t❤❡ ✇❡❛❦ s♦❧✉t✐♦♥ ❛♥❞ t❤❡ ❍❡♥✐❣ ♣r♦♣❡r ❡❢❢✐❝✐❡♥t s♦❧✉t✐♦♥ t♦ t❤❡ ✈❡❝t♦r ❡q✉✐✲ ❧✐❜r✐✉♠ ♣r♦❜❧❡♠s✱ ✐♥t❡r♠s ♦❢ t❤❡ ❝♦♥t✐♥❣❡♥t ❞❡r✐✈❛t✐✈❡✱ ❛❞❥❛❝❡♥t ❞❡r✐✈❛t✐✈❡✱ ✉♥❞❡r t❤❡ ❑✉r❝②✉s③✲❘♦❜✐♥s♦♥✲❩♦✇❡ ❝♦♥str❛✐♥t q✉❛❧✐❢✐❝❛t✐♦♥✱ ♦✉r ❝♦♥❞✐t✐♦♥s ❛r❡ ❢♦r♠ ♦❢ ❑❛r✉s❤✲❑✉❤♥✲❚✉❝❦❡r ♠✉❧t✐♣❧✐❡r r✉❧❡s✳ ❇❡s✐❞❡s✱ t❤❡ ❜♦✉♥❞❡❞♥❡ss ♦❢ t❤❡ ♠✉❧t✐♣❧✐❡r s❡ts✱ t❤❡ r❡❧❛t✐♦♥s❤✐♣ ❜❡t✇❡❡♥ t❤❡ ❑✉r❝②✉s③✲❘♦❜✐♥s♦♥✲❩♦✇❡ ❝♦♥str❛✐♥t q✉❛❧✐❢✐❝❛✲ t✐♦♥ ❛♥❞ ▼❛♥❣❛s❛r✐❛♥✲❋r♦♠♦✈✐t③ ❝♦♥str❛✐♥t q✉❛❧✐❢✐❝❛t✐♦♥ ❛♥❞ ✐s ❝♦♥s✐❞❡r❡❞✳ ✐✐✐ ▲❮■ ❈❆▼ ❑➌❚ ❚æ✐ ①✐♥ ❝❛♠ ✤♦❛♥ ✤➙② ❧➔ ❝æ♥❣ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ r✐➯♥❣ tæ✐✳ ❈→❝ sè ❧✐➺✉ tr♦♥❣ ❝æ♥❣ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ❝â ①✉➜t ①ù rã r➔♥❣✳ ◆❤ú♥❣ ❦➳t ❧✉➟♥ ♠ỵ✐ ✈➲ ❦❤♦❛ ❤å❝ ❝õ❛ ❝ỉ♥❣ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ♥➔② ❝❤÷❛ ✤÷đ❝ ❝ỉ♥❣ ❜è tr♦♥❣ ❜➜t ❦ý ❝ỉ♥❣ tr➻♥❤ ♥➔♦ ❦❤→❝✳ ❆♥ ●✐❛♥❣✱ ♥❣➔② t❤→♥❣ ✵✸ ♥➠♠ ✷✵✷✵ ◆❣÷í✐ t❤ü❝ ❤✐➺♥ ❚❤❙✳ ▲➯ ❑✐➯♥ ❚❤➔♥❤ ✐✈ ▼Ư❈ ▲Ư❈ ❈❤÷ì♥❣ ✶✳ ❚✃◆● ◗❯❆◆ ❱❻◆ ✣➋ ◆●❍■➊◆ ❈Ù❯✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ❈❤÷ì♥❣ ✷✳ ❑■➌◆ ❚❍Ù❈ ❈❍❯❽◆ ❇➚ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻ ✷✳✶✳ ◆â♥ ✤è✐ ♥❣➝✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻ ✷✳✷✳ ⑩♥❤ ①↕ ✤❛ trà ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽ ✷✳✸✳ ◆â♥ t✐➳♣ ①ó❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾ ✷✳✸✳✶✳ ◆â♥ t✐➳♣ ❧✐➯♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵ ✷✳✸✳✷✳ ◆â♥ ❦➲ ✈➔ ♥â♥ tr♦♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✸ ✷✳✹✳ ✣↕♦ ❤➔♠ t✐➳♣ ❧✐➯♥✱ ✤↕♦ ❤➔♠ ❦➲ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ỵ t t ỗ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✼ ❈❤÷ì♥❣ ✸✳ ◗❯❨ ❚➁❈ ◆❍❹◆ ❚Û ❑❆❘❯❙❍✲❑❯❍◆✲❚❯❈❑❊❘ ❈❍❖ ◆●❍■➏▼ ❈Õ❆ ❇⑨■ ❚❖⑩◆ ❈❹◆ ❇➀◆● ❱❊❈❚❖❘✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✽ ✸✳✶✳ ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝t♦r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✽ ✸✳✷✳ ◗✉② t➢❝ ❑❑❚ ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✷ ✸✳✸✳ ◗✉② t➢❝ ❑❑❚ ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ❝❤➼♥❤ t❤÷í♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✹ ❈❤÷ì♥❣ ✹✳ ❚➑◆❍ ❇➚ ❈❍➄◆ ❈Õ❆ ❚❾P ◆❍❹◆ ❚Û ❑❑❚ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✻ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✸ ✈ ❉❆◆❍ ▼Ư❈ ❈⑩❈ ❑Þ ❍■➏❯✱ ❈⑩❈ ❈❍Ú ❱■➌❚ ❚➁❚ ❈→❝ t➟♣ ❤ñ♣ ∅ t➟♣ ré♥❣❀ N t➟♣ ❤ñ♣ sè tü ♥❤✐➯♥❀ R t➟♣ ❤ñ♣ sè t❤ü❝❀ B(x, r) q✉↔ ❝➛✉ ♠ð ❝â t➙♠ T (M, x0 ) ♥â♥ t✐➳♣ ❧✐➯♥ ❝õ❛ t➟♣ T (M, x0 ) ♥â♥ ❦➲ ❝õ❛ t➟♣ IT (M, x0 ) ♥â♥ tr♦♥❣ ❝õ❛ t➟♣ DF (x0 , y0 )(u) ✤↕♦ ❤➔♠ t✐➳♣ ❧✐➯♥ ❝õ❛ ❤➔♠ F ❞♦♠F ỳ F F ỗ t ❝õ❛ →♥❤ ①↕ F✳ Rn ❦❤æ♥❣ ❣✐❛♥ ✈❡❝t♦r n X, Y ✱ Z ❝→❝ ❦❤æ♥❣ ❣✐❛♥ ✤à♥❤ ❝❤✉➞♥ t❤ü❝✳ F :X⇒Y →♥❤ ①↕ ✤❛ trà := ✤à♥❤ ♥❣❤➽❛ ❜ð✐❀ ≡ trị♥❣ ♥❤❛✉❀ +∞ ❞÷ì♥❣ ✈ỉ ❝ị♥❣❀ x → x¯ x tn → 0+ tn → ❈→❝ ❦❤æ♥❣ ❣✐❛♥ ⑩♥❤ ①↕ ❈→❝ ❦➼ ❤✐➺✉ · x, y ❤ë✐ tö ✈➲ ✈➔ F M tø x✱ ❜→♥ ❦➼♥❤ M t↕✐ t↕✐ x0 ❀ M t↕✐ r❀ x0 ❀ x0 ❀ t↕✐ (x0 , y0 ) t ữợ u X Y x tn > t ổ ữợ ợ tỗ t x y t t❤ó❝ ❝❤ù♥❣ ♠✐♥❤✳ ❈→❝ ❝❤ú ✈✐➳t t➢t ❑❑❚ ❑❛r✉s❤✲❑✉❤♥✲❚✉❝❦❡r❀ (CQ)1 ✤✐➲✉ ❦✐➺♥ ❝❤➜t ❧÷đ♥❣ r➔♥❣ ❜✉ë❝ ❦✐➸✉ ❑✉r❝②✉s③✲❘♦❜✐♥s♦♥✲❩♦✇❡❀ (CQ)2 ✤✐➲✉ ❦✐➺♥ ❝❤➜t ❧÷đ♥❣ r➔♥❣ ❜✉ë❝ ❦✐➸✉ ▼❛♥❣❛s❛r✐❛♥✲❋r♦♠♦✈✐t③ ✳ ✈✐ ▼Ð ✣❺❯ ✶✳ ❚➑◆❍ ❈❻P ❚❍■➌❚ ❈Õ❆ ✣➋ ❚⑨■ ❚r♦♥❣ t♦→♥ ự õ tr ỵ tt tố ÷✉ ♥â✐ r✐➯♥❣✱ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❧✉ỉ♥ t❤✉ ❤ót ♥❤✐➲✉ sü q✉❛♥ t➙♠ ❝õ❛ ❝→❝ ♥❤➔ ❦❤♦❛ ❤å❝✱ ✈➻ ❜➔✐ t♦→♥ ♥➔② ❜❛♦ q✉→t ❦❤→ ♥❤✐➲✉ ❝→❝ ❜➔✐ t♦→♥ ù♥❣ ❞ư♥❣ q✉❛♥ trå♥❣ ❦❤→❝ ♥❤÷ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥✱ ❜➔✐ t♦→♥ tè✐ ÷✉✱ t tổ ỵ tt trỏ ỡ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ ❑✳ ❋❛♥✱ ❍✳ ◆✐❦❛✐❞♦ ✈➔ ❑✳ ■s♦❞❛ ✈➲ ❝➙♥ ❜➡♥❣ ✤➣ ✤÷đ❝ ❝ỉ♥❣ ❜è ✈➔ t❤✉➟t ♥❣ú ✑❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣✑ trð ♥➯♥ ♣❤ê ❜✐➳♥ ❜ð✐ ❊✳ ❇❧✉♠ ✈➔ ❲✳ ❖❡tt❧✐ ✭❑✳ ❋❛♥ ✭✶✾✼✷✮❀ ❍✳ ◆✐❦❛✐❞♦ ✫ ❑✳ ■s♦❞❛ ✭✶✾✺✺✮❀ ❇❧✉♠✱ ❊✳ ✫ ❖❡tt❧✐✱ ❲✳ ✭✶✾✾✹✮✮✳ ✣➦❝ ❜✐➺t ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✤÷đ❝ ❝→❝ ♥❤➔ ❦✐♥❤ t➳ ❤å❝ ♥❣❤✐➯♥ ❝ù✉ r➜t ♥❤✐➲✉✱ ♠ët tr♦♥❣ ♥❤ú♥❣ ❧ỵ♣ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ q✉❛♥ trå♥❣ ❧➔ ❜➔✐ t♦→♥ ❝➙♥ ✶ ❜➡♥❣ ◆❛s❤ ✭◆❛s❤ ❏r✳ ❏♦❤♥ ❋♦r❜❡s ✭✶✾✷✽✕✷✵✶✺✮ ✳ ✭✷✵✶✻✮✮✳ ✣➸ ❝ư t❤➸✱ ❝❤ó♥❣ tỉ✐ ①✐♥ ♥➯✉ r❛ ♠ỉ ❤➻♥❤ ❜➔✐ t ổ ữợ ữ s ♠ët t➟♣ ❝♦♥ Ω⊂X ❜➡♥❣ ❧➔ ❜➔✐ t♦→♥ t➻♠ ✤✐➸♠ x¯ ∈ Ω ✈➔ ♠ët s♦♥❣ ❤➔♠ X ❧➔ ♠ët ❦❤ỉ♥❣ ❣✐❛♥ f : Ω × Ω → R ❇➔✐ t♦→♥ ❝➙♥ s❛♦ ❝❤♦ f (¯ x, x) ≥ 0, ∀x ∈ Ω ◆❤✐➲✉ ❝æ♥❣ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ✈➲ ✤✐➲✉ tỗ t t ❝➙♥ ❜➡♥❣ ❝â t❤➸ ❦➸ ✤➳♥ ♥❤÷ s❛✉✿ ◆❤➔ t♦→♥ ❤å❝ ❋✳ ●✐❛♥♥❡ss✐ ✤➣ ❝❤✉②➸♥ ❝→❝ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝t♦r ✈ỵ✐ ❝→❝ r➔♥❣ ❜✉ë❝ t❤➔♥❤ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝t♦r ♠➔ ❦❤æ♥❣ ❝➛♥ ❝→❝ r➔♥❣ ❜✉ë❝✱ ð ✤â t→❝ ❣✐↔ ✤➣ tr➻♥❤ ❜➔② ❝→❝ ✤✐➲✉ ❦✐➺♥ ✤õ ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ✈➔ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉ ❝❤♦ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝t♦r tr♦♥❣ Rn ss ứ ữợ ▼♦r❣❛♥ ✈➔ ❘♦♠❛♥✐❡❧❧♦ ✤➣ ♥❣❤✐➯♥ ❝ù✉ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❑✉❤♥ ✲ ❚✉❝❦❡r ❝❤♦ ❜➜t ✤➥♥❣ t❤ù❝ tü❛ ❜✐➳♥ ♣❤➙♥ ✈❡❝t♦r ②➳✉ tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❍✐❧❜❡rt ✭▼♦r❣❛♥✱ ❏✳ ✫ ❘♦♠❛♥✐❡❧❧♦✱ ▼✳ ✭✷✵✵✻✮✮✳ ◆➠♠ ✷✵✵✽✱ ❝→❝ t→❝ ❣✐↔ ❳✳◗✳ ❨❛♥❣ ✈➔ ❳✳❨✳ ❩❤❡♥❣ ❝❤ù♥❣ ♠✐♥❤ ❝→❝ ✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ❝→❝ − ♥❣❤✐➺♠ ❝õ❛ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥ ✈❡❝t♦r tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ ❇❛♥❛❝❤ ✭❨❛♥❣✱ ❳✳◗✳ ✫ ❩❤❡♥❣✱ ❳✳❨✳ ✭✷✵✵✽✮✮✳ ✶ ◆❤➔ t♦→♥ ❤å❝ ◆❛s❤ ✤➣ ✤÷đ❝ ❣✐↔✐ ◆♦❜❡❧ ✈➲ ❦✐♥❤ t➳ ♥➠♠ ✶✾✾✹✳ ✶ G+ ❉♦ →♥❤ ①↕ ❝â t➼♥❤ ❝❤➜t ❆✉❜✐♥ t↕✐ s❛♦ ❝❤♦✱ ✈ỵ✐ ♠å✐ un → u✱ n t õ ợ (x0 , z0 ) tỗ t ❧➙♥ ❝➟♥ W ❝õ❛ z0 ✈➔ LG > ✤õ ❧ỵ♥✱ G+ (x0 + tn un ) ∩ W ⊆ G+ (x0 + tn un ) + LG tn un − un clBZ ❑❤✐ ✤â✱ ✈ỵ✐ n ✤õ ❧ỵ♥✱ ❝â bn ∈ clBZ s❛♦ ❝❤♦ z0 + tn zn ∈ G(x0 + tn un ) + D + LG tn un − un bn , ♥➯♥ z0 + tn zn − LG un − un bn ∈ G(x0 + tn un ) + D ❑❤✐ ✤â ❑❤✐ D zn − LG un − un bn → z ∈ IT (D, z0 ) õ ỗ õ ợ n ✤õ ❧ỵ♥✱ G(x0 + tn un ) ∩ (−D) = ∅, ✈➻ ✈➟② u ∈ IT (−D, z0 )✱ ♠➝✉ t ứ t õ ỵ ✤÷đ❝ ❝❤ù♥❣ ♠✐♥❤✳ ❈→❝ ✤✐➲✉ ❦✐➺♥ ✭✸✳✶✮✱ ✭✸✳✷✮ ✈➔ ✭✸✳✹✮ ❧➔ ❝→❝ ✤✐➲✉ ❦✐➯♥ ❝➛♥ tè✐ ÷✉ ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉ ✤à❛ ♣❤÷ì♥❣ tr♦♥❣ ❞↕♥❣ ❣è❝✳ ❍ì♥ ♥ú❛✱ t❤➯♠ ❝→❝ ❣✐↔ t❤✐➳t ✈➲ t➼♥❤ ❝❤➜t ❆✉❜✐♥ ❝❤♦ F ✈➔ G✳ ❜➔✐ t♦→♥ F ❤♦➦❝ G✱ ✤✐➲✉ ❦✐➺♥ ✭✸✳✷✮ ❤♦➦❝ ✭✸✳✹✮ ❜❛♦ ❤➔♠ ❝→❝ ✤↕♦ ❤➔♠ t→❝❤ ❝õ❛ ❱➻ ✈➟②✱ ✤➸ t❤✉ ✤÷đ❝ q✉② t➢❝ ♥❤➙♥ tû ❑❑❚ ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉ ❝õ❛ (EP )✱ t❛ ❝❤➾ ❝➛♥ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❤➔♠ r➔♥❣ ❜✉ë❝ G✳ ✸✳✷ ◗❯❨ ❚➁❈ ❑❑❚ ❈❍❖ ◆●❍■➏▼ ❍Ú❯ ❍■➏❯ ❨➌❯ ❈❤ó♥❣ tỉ✐ ♥❣❤✐➯♥ ❝ù✉ ✤✐➲✉ ❦✐➺♥ ❝❤➜t ❧÷đ♥❣ r➔♥❣ ❜✉ë❝ s❛✉✿ (CQ)1 ✤✐➲✉ ❦✐➺♥ ❝❤➜t ❧÷đ♥❣ r➔♥❣ ❜✉ë❝ ❦✐➸✉ ❑✉r❝②✉s③✲❘♦❜✐♥s♦♥✲❩♦✇❡ ✭❑❘❩❈◗✮✿ DG+ (x0 , z0 )(X) + D(z0 ) = Z ✭❳❡♠ ❘♦❜✐♥s♦♥✱ ❙✳▼✳ ✭✶✾✼✻✮❀ ❩♦✇❡✱ ❏✳ ✫ ❑✉r❝②✉s③✱ ❙✳ ✭✶✾✼✾✮❀ ❏❛❤♥✱ ❏✳ ✭✷✵✵✹✮ ✈➔ ❑❤❛♥❤✱ P✳◗✳ ✫ ❚✉♥❣✱ ◆✳▼✳ ✭✷✵✶✽✮✮✳ ❱ỵ✐ ✤✐➲✉ ❦✐➺♥ ❝❤➜t ❧÷đ♥❣ r➔♥❣ ❜✉ë❝ ❑✉r❝②✉s③✲❘♦❜✐♥s♦♥✲❩♦✇❡✱ ❝❤ó♥❣ tỉ✐ t❤✉ ✤÷đ❝ q✉② t➢❝ ♥❤➙♥ tû ❑❑❚ ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉ ❝õ❛ ❜➔✐ t (EP ) ỵ x ∈ W(EP)✱ (x , y , z ) ❧➔ ❜ë ❜❛ ❝❤➜♣ ♥❤➟♥ ✤÷đ❝ ❝õ❛ x✳ ●✐↔ sû 0 ❝â t➼♥❤ ❝❤➜t ❆✉❜✐♥ t↕✐ (x , y ) ✈➔ (D F (x , y ), DG (x , z ))(X) ỗ õ tỗ t tû ❝❤✉♥❣ (c , d ) ∈ C × D \ {(0, 0)}✱ s❛♦ ❝❤♦ d , z = ✈➔ Fx+ + x ∗ ∗ ∗ + 0 ∗ ∗ c∗ , y + d∗ , z ≥ 0, ✈ỵ✐ ♠å✐ (y, z) ∈ (D F c = 0✳ ✭✸✳✺✮ ✳ ❍ì♥ ♥ú❛✱ ♥➳✉ (CQ) t❤ä❛✱ t❤➻ + + x (x0 , y0 ), DG (x0 , z0 ))(X) ∗ ❈❤ù♥❣ ♠✐♥❤ ứ ỵ ợ u X t ❝â (D Fx+ (x0 , y0 ), DG+ (x0 , z0 ))(u) ∩ (−intC) × IT (−D, z0 ) = ỵ t s t ữủ (c∗ , d∗ ) ∈ Y ∗ × Z ∗ \ {(0, 0)}, s❛♦ ❝❤♦✱ ✈ỵ✐ ♠å✐ u ∈ X ✱ y ∈ D Fx+ (x0 , y0 )(u)✱ z ∈ DG+ (x0 , z0 )(u)✱ c ∈ −cl(intC) d ∈ cl(IT (−D, z0 ))✱ ✈➔ c∗ , y + d ∗ , z ≥ c∗ , c + d ∗ , d ❑❤✐ −cl(intC) = −C ✱ cl(IT (−D, z0 )) = T (−D, z) ✭❏✐♠➨♥❡③✱ ❇✳ ✫ ◆♦✈♦✱ ❱✳ ✭✷✵✵✸✮✮✱ ✈➔ c∗ ∈ C ∗ ❉♦ ✭✸✳✻✮ D õ ỗ õ t õ c = d = 0✱ ✈➔ d∗ ∈ D∗ C ✱ T (−D, z0 ) ❧➔ ❝→❝ ♥â♥✱ tø ✭✸✳✻✮✱ t❛ ❝â d∗ ∈ (−(T (−D, z0 )))∗ ✈➔ d∗ , z0 = ✭✸✳✻✮ trð t❤➔♥❤ c∗ , y + d∗ , z ≥ ❇➙② ❣✐í ❝❤ù♥❣ ♠✐♥❤ ●✐↔ sû c∗ = 0✱ c∗ = ✈ỵ✐ ✤✐➲✉ ❦✐➺♥ (CQ)1 ✳ t❛ ❝â d∗ , z ≥ 0, ∀z ∈ DG+ (x0 , z0 )(X) ✷✸ z¯ ∈ Z ✳ ❧➜② ❜➜t ❦ý d∈D ❚ø ✤✐➲✉ ❦✐➺♥ (CQ)1 ✱ t z DG+ (x0 , z0 )(X) tỗ t↕✐ ✈➔ s❛♦ ❝❤♦ z¯ = z + t(d + z0 ) ❑❤✐ ✤â d∗ ∈ D ∗ ✈➔ d∗ , z0 = 0✱ t❛ ❝â d∗ , z¯ = d∗ , z + t d∗ , d + z0 ≥ ❑❤✐ z¯ ∈ Z ❧➔ ❜➜t ❦ý✱ t❛ ❝â d∗ = 0✱ ♠➙✉ t❤✉➝♥ ❞➝♥ ✤➳♥ (c∗ , d∗ ) = (0, 0)✳ ✣✐➲✉ ♣❤↔✐ ❝❤ù♥❣ ♠✐♥❤✳ ✸✳✸ ◗❯❨ ❚➁❈ ❑❑❚ ❈❍❖ ◆●❍■➏▼ ❍Ú❯ ❍■➏❯ ❈❍➑◆❍ ❚❍×❮◆● ✣✐➲✉ ❦✐➯♥ ❝➛♥ ❑❑❚ ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉✱ ❧✉æ♥ ❣✐↔ sû r➡♥❣ intC = ∅✳ ❚ø ✤â✱ ❝❤ó♥❣ tỉ✐ t❤✉ ✤÷đ❝ ✤✐➲✉ ❦✐➺♥ ❝➛♥ ❑❑❚ ❝❤♦ ❧♦↕✐ ♥❣❤✐➺♠ ❝❤➼♥❤ t❤÷í♥❣ ❦✐➸✉ ❍❡♥✐❣✱ ✤➙② ❧➔ ❧♦↕✐ ♥❣❤✐➺♠ q✉❛♥ trå♥❣ ✈➔ ✤÷đ❝ q✉❛♥ t➙♠ ♥❤✐➲✉ ✈➻ ✤è✐ ✈ỵ✐ ❝→❝ ❧♦↕✐ ♥❣❤✐➺♠ ♥➔② ♥â♥ t❤ù tü ❦❤æ♥❣ ♥❤➜t t❤✐➳t ♣❤↔✐ ❝â ♣❤➛♥ tr♦♥❣✳ ỵ sỷ C õ ỡ s B ❈❤♦ x ∈ He(EP)✱ (x , y , z ) ❧➔ ❜ë ❜❛ ❝❤➜♣ 0 ♥❤➟♥ ✤÷đ❝ ❝õ❛ x✳ ●✐↔ sû ❝â t➼♥❤ ❝❤➜t ❆✉❜✐♥ t↕✐ (x , y ) ✈➔ (D F (x , y )✱ DG (x , z ))(X) ỗ õ tỗ t ❝→❝ ♥❤➙♥ tû ❝❤✉♥❣ c ∈ C (B) ∪ {0} ✈➔ d ∈ D ✱ ❦❤→❝ ❦❤æ♥❣✱ s❛♦ ❝❤♦ d , z = ✈➔ Fx+ + ∗ 0 + x 0 ∗ ∗ ∗ c∗ , y + d∗ , z ≥ 0, ✈ỵ✐ ♠å✐ (y, z) ∈ (D F t❤ä❛✱ t❤➻ c = 0✳ ✳ ❍ì♥ ♥ú❛✱ ♥➳✉ ✤✐➲✉ ❦✐➺♥ (CQ) + + x (x0 , y0 ), DG (x0 , z0 ))(X) ∗ ❈❤ù♥❣ ♠✐♥❤ ❱ỵ✐ (x0 , y0 ) ∈ He(EP)✱ Fx (x) ∩ (−intCε (B)) = ∅, ❉♦ ∀x ∈ Ω −C −intCε (B) ⊆ −intCε (B)✱ t❤❛② −intCε (B) intC tỹ t ữủ ợ ❝❤ù♥❣ ♠✐♥❤ t÷ì♥❣ u ∈ X✱ D Fx+ (x0 , y0 )(u) × DG+ (x0 , z0 )(u) ∩ (−intCε (B)) × IT (−D, z0 ) = ∅ ✷✹ ❚ø õ t ỵ t t ữủ (c , d ) ∈ Y ∗ × Z ∗ \ {(0, 0)}, s❛♦ ❝❤♦✱ ✈ỵ✐ ♠å✐ u ∈ X ✱ y ∈ D Fx+ (x0 , y0 )(u)✱ z ∈ DG+ (x0 , z0 )(u)✱ c ∈ −cl(intCε (B)) d ∈ cl(IT (−D, z0 ))✱ ✈➔ c∗ , y + d∗ , z ≥ c∗ , c + d∗ , d ❉♦ Cε (B) c∗ ∈ [Cε (B)]∗ ✳ ❧➔ ♥â♥✱ t❛ ❝â ❇➙② ❣✐í t❛ ❝➛♥ ❝❤ù♥❣ ♠✐♥❤ c∗ = t trữớ ủ ợ ứ t t❤÷í♥❣✱ ♥➯♥ ①➨t c∗ = 0✱ ❦❤✐ ✤â c∗ , c > c ∈ intCε (B)✳ C \ {0} ⊂ Cε (B)✱ ✣➦t c∗ ∈ C (B) ∪ {0}✳ t❛ ❝â c∗ , b > η := inf{ c∗ , b | b ∈ B}✳ c∗ , bn < 1/n, ❈è ✤à♥❤ ✈ỵ✐ ♠å✐ ●✐↔ sû r➡♥❣ η b B õ tỗ t bn B s❛♦ ❝❤♦ ∀n ∈ N✳ u ∈ BY c∗ , u > 0✱ ✈ỵ✐ ✈ỵ✐ n ✤õ ❧ỵ♥✱ c∗ , bn − εu = c∗ , bn − ε c∗ , u < ❉➝♥ ✤➳♥ ♠➙✉ t❤✉➝♥ ✈➻ ❱➻ ✈➟②✱ η > 0✱ bn − εu ∈ Cε (B) ❝â ♥❣❤➽❛ c∗ ∈ C (B)✳ ✈➔ c∗ ∈ [Cε (B)]∗ ✳ P❤➛♥ ❝á♥ ❧↕✐ ❝õ❛ ❝❤ù♥❣ ♠✐♥❤ t÷ì♥❣ tỹ ỵ ì ế P ữỡ ợ t ✤✐➲✉ ❦✐➺♥ ❝❤➜t ❧÷đ♥❣ r➔♥❣ ❜✉ë❝ ❦✐➸✉ ❑✉r❝②✉s③✲❘♦❜✐♥s♦♥✲ ❩♦✇❡ ✈➔ ✤✐➲✉ ❦✐➺♥ ❝❤➜t ❧÷đ♥❣ r➔♥❣ ❜✉ë❝ ❦✐➸✉ ▼❛♥❣❛s❛r✐❛♥✲❋r♦♠♦✈✐t③✳ ❚ø ✤â ❦❤↔♦ s→t ♠è✐ ❧✐➯♥ ❤➺ ❣✐ú❛ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❝❤➜t ❧÷đ♥❣ r➔♥❣ ❜✉ë❝ ✈➔ t➼♥❤ ❜à ❝❤➦♥ ❝õ❛ t➟♣ ♥❤➙♥ tû ❑❑❚✳ (CQ)1 ✤✐➲✉ ❦✐➺♥ ❝❤➜t ❧÷đ♥❣ r➔♥❣ ❜✉ë❝ ❦✐➸✉ ❑✉r❝②✉s③✲❘♦❜✐♥s♦♥✲❩♦✇❡ ✭❑❘❩❈◗✮✿ DG+ (x0 , z0 )(X) + D(z0 ) = Z ✭❳❡♠ ❘♦❜✐♥s♦♥✱ ❙✳▼✳ ✭✶✾✼✻✮❀ ❩♦✇❡✱ ❏✳ ✫ ❑✉r❝②✉s③✱ ❙✳ ✭✶✾✼✾✮❀ ❏❛❤♥✱ ❏✳ ✭✷✵✵✹✮ ✈➔ ❑❤❛♥❤✱ P✳◗✳ ✫ ❚✉♥❣✱ ◆✳▼✳ ✭✷✵✶✽✮✮✳ (CQ)2 ✤✐➲✉ ❦✐➺♥ ❝❤➜t ❧÷đ♥❣ r➔♥❣ ❜✉ë❝ ❦✐➸✉ ▼❛♥❣❛s❛r✐❛♥✲❋r♦♠♦✈✐t③ ✭❘▼❋❈◗✮✿ DG+ (x0 , z0 )(X) ∩ IT (−D, z0 ) = ∅ ✭❳❡♠ ▼❛♥❣❛s❛r✐❛♥✱ ❖✳▲✳ ✫ ❋r♦♠♦✈✐t③✱ ❙✳ ✭✶✾✻✼✮✮ ▼➺♥❤ ✤➲ ✹✳✶ ❳➨t ❜➔✐ t♦→♥ (EP )✳ ❚❛ ❝â ♠è✐ ❧✐➯♥ ❤➺ s❛✉ (CQ)2 ⇒ (CQ)1 ❈❤ù♥❣ ♠✐♥❤ ◆➳✉ n∈N (CQ)2 t❤ä❛✱ ✈ỵ✐ ✤õ ❧ỵ♥✱ t❛ ❝â z¯ ∈ DG+ (x0 , z0 )(¯ x) ∩ IT (−D, z0 )✱ ❧➜② ❜➜t ❦ý z ∈ Z ❱ỵ✐ −z0 − n−1 (¯ z −n−1 z) ∈ D, n¯ z ∈ DG+ (x0 , z0 )(n¯ x) ⊆ DG+ (x0 , z0 )(X) ❱➻ ✈➟②✱ ❱➻ z = n¯ z + n2 (−z0 − n−1 z¯ + n−2 z) + z0 ∈ DG+ (x0 , z0 )(X) + D(z0 ) zZ tũ ỵ õ DG+ (x0 , z0 )(X) + D(z0 ) = Z, ♥❣❤➽❛ ❧➔✱ ◆➳✉ (CQ)1 t❤ä❛✳ (c∗ , d∗ ) t❤ä❛ ♠➣♥ ✭✸✳✺✮✱ t❤➻ ✈ỵ✐ ♠å✐ λ ≥ 0✱ (λc∗ , λd∗ ) ❝ô♥❣ t❤ä❛ ♠➣♥ ✭✸✳✻✮✳ ❱➻ ✈➟②✱ ❜➡♥❣ ✈✐➺❝ ❝è ✤à♥❤ c∗ ∈ C ∗ \ {0} tr♦♥❣ ✭✸✳✺✮✳ ✷✻ ❚❛ ①➨t t➟♣ ❝→❝ ♥❤➙♥ tû s❛✉ Λ(¯ x, x0 , y0 , z0 , c∗ ) := {d∗ ∈ D∗ | c∗ , y + d∗ , z ≥ 0, d∗ , z0 = 0, ∀(y, z) ∈ (D Fx+ (x0 , y0 ), DG+ (x0 , z0 ))(X)} ỵ ❈❤♦ x ∈ W(EP)✱ (x , y , z ) ❧➔ ❜ë ❜❛ ❝❤➜♣ ♥❤➟♥ ✤÷đ❝ ❝õ❛ x✳ ●✐↔ 0 sû F ❝â t➼♥❤ ❝❤➜t ❆✉❜✐♥ t↕✐ (x , y ) ✈➔ (D F (x , y ), DG (x , z ))(X) ỗ ✤â♥❣ ❝õ❛ Z ❧➔ w ✲❞➣② ❝♦♠♣❛❝t✳ ❑❤✐ ✤â✱ ❝→❝ ♣❤→t ❜✐➸✉ s❛✉ ❧➔ t÷ì♥❣ ✤÷ì♥❣✿ + x ∗ ✭✐✮ ✭✐✐✮ ✭✐✐✐✮ + x 0 + 0 ∗ ✣✐➲✉ ❦✐➺♥ ❝❤➜t ❧÷đ♥❣ r➔♥❣ ❜✉ë❝ ❦✐➸✉ ❑✉r❝②✉s③✲❘♦❜✐♥s♦♥✲❩♦✇❡ (CQ) t❤ä❛❀ ✣✐➲✉ ❦✐➺♥ ❝❤➜t ❧÷đ♥❣ r➔♥❣ ❜✉ë❝ ❦✐➸✉ ▼❛♥❣❛s❛r✐❛♥✲❋r♦♠♦✈✐t③ (CQ) tọ ỗ t c C \ {0} s ❝❤♦ Λ(x , y , z , c ) ❦❤æ♥❣ ré♥❣ ✈➔ ❜à ❝❤➦♥❀ ∗ ∗ 0 ∗ ❈❤ù♥❣ ♠✐♥❤ ❚❤❡♦ ♠➺♥❤ ✤➲ ✭✹✳✶✮✱ t❛ ❝â ✭✐✐✮ • ✭✐✮ ⇒ ⇒ ✭✐✮✳ ❇➙② ❣✐í t❛ ❝❤ù♥❣ ỵ t õ c ∈ C ∗ \ {0} s❛♦ ❝❤♦ Λ(x0 , y0 , z0 , c∗ ) ❦❤æ♥❣ ré♥❣✳ ●✐↔ sû r➡♥❣ ✈ỵ✐ Λ(x0 , y0 , z0 , c∗ ) ❦❤ỉ♥❣ õ tỗ t {dn } (x0 , y0 , z0 , c∗ ) d∗n → ∞✳ ❱➻ ✈➟②✱ t❛ ❝â d∗n , z0 = c∗ , y + d∗n , z ≥ 0, ▲➜② tò② þ z ∈ Z✱ tø (CQ)1 ✱ ✈➔ ∀(y, z) ∈ (D Fx+ (x0 , y0 ), DG+ (x0 , z0 ))(X) ❝â t ≥ 0✱ z ∈ DG+ (x0 , z0 )(X)✱ ✈➔ d∈D z = z + t(d + z0 ), ♥➯♥ z = z − t(d + z0 )✳ ❉♦ ✤â✱ t❛ ❝â c∗ , y + d∗n , z − t(d + z0 ) = c∗ , y + d∗n , z ≥ 0, c∗ , y + d∗n , z ≥ d∗n , t(d + z0 ) ✷✼ s❛♦ ❝❤♦✿ d∈D ❑❤✐ d∗n ♥➔② ❜ð✐ d∗n , z0 = 0✱ ✈➔ ❝â c∗ , y + d∗n , z ≥ 0✳ ✱ t❛ ✤÷đ❝ d∗n −1 ∗ w∗ ✲❤ë✐ tö ✤➳♥ d∗ Z∗ ❧➔ intD = ∅✱ D −1 ∗ dn , z w∗ ✲❞➣② ≥0 ❝♦♠♣❛❝t✱ { d∗n ∗ −1 ∗ w dn −→ ❧➔ ❝♦♠♣❛❝t ✤è✐ ♥❣➝✉ ✭❩❤❡♥❣✱ ❳✳❨✳ ✫ ◆❣✱ ❑✳❋✳ ✭✷✵✵✺✮✮✳ d∗n ✤✐➲✉ ♥➔② ♠➙✉ t❤✉➝♥ ✈ỵ✐ ❱➻ ✈➟②✱ −1 ∗ dn } ❜❛♦ ❤➔♠ ♠ët d∗ d∗ = 0✱ t➼♥❤ ❝♦♠♣❛❝t ✤è✐ ♥❣➝✉ ❝õ❛ D ❦➨♦ t❤❡♦ d∗n ◆➳✉ ✭✹✳✶✮ ♥➔♦ ✤â✳ ❑❤æ♥❣ ♠➜t t➼♥❤ tê♥❣ q✉→t✱ t❛ ❣✐↔ sû d∗n ❚ø d∗n c ,y + ❱➻ ❤➻♥❤ ❝➛✉ ✤ì♥ ✈à ✤â♥❣ ❝õ❛ ❞➣② ❝♦♥ ❈❤✐❛ ❤❛✐ ✈➳ ❜➜t ♣❤÷ì♥❣ tr➻♥❤ d∗ = 0✳ ❈è ✤à♥❤ y −1 ∗ dn ✈➔ ❝❤♦ −1 ∗ dn → tr♦♥❣ ❝❤✉➞♥✱ = 1✳ n→∞ tr♦♥❣ ✭✹✳✶✮✱ t❛ ✤÷đ❝ d∗ , z ≥ ❉♦ z ∈✱ d∗ = 0✱ • ✭✐✐✐✮ ⇒ ✤✐➲✉ ♥➔② ♠➙✉ t❤✉➝♥ ✈ỵ✐ ✭✐✐✮✳ ●✐↔ sû (CQ)2 d∗ = 1✳ ❦❤æ♥❣ t❤ä❛✱ ♥❣❤➽❛ ❧➔✱ DG+ (x0 , z0 )(X) ∩ IT (−D, z0 ) = ∅ ỵ t t tỷ d Z ∗ \ {0} s❛♦ ❝❤♦ d∗ , z ≥ d∗ , d , ✈ỵ✐ ♠å✐ z ∈ DG+ (x0 , z0 )(X) ✈➔ d ∈ clIT (−D, z0 )✳ ❚÷ì♥❣ tỹ ự ỵ t õ d ∈ D∗ , d∗ , z0 = ❑❤✐ Λ(x0 , y0 , z0 , c∗ ) ✈➔ d∗ , z 0, ổ rộ tỗ t z Dp G+ (x0 , z0 )(X) d¯∗ ∈ Λ(x0 , y0 , z0 , c∗ )✱ ✈ỵ✐ ♠å✐ t❛ ❝â d¯∗ + nd∗ , z0 = d¯∗ , z0 + n d∗ , z0 = 0, ✈➔ ✈ỵ✐ ♠å✐ (y, z) ∈ (D Fx+ (x0 , y0 ), DG+ (x0 , z0 ))(X)✱ t❛ ✤÷đ❝ c∗ , y + d¯∗ + nd∗ , z = c∗ , y + d¯∗ , z + n d∗ , z ≥ ✷✽ n ∈ N✱ ❉♦ ✤â✱ ✈ỵ✐ ♠å✐ n✱ d¯∗ + nd∗ ∈ Λ(x0 , y0 , z0 , c∗ ), ♥➯♥ Λ(x0 , y0 , z0 , c∗ ) ❦❤æ♥❣ t ỵ ữủ ự t ỵ t t r➡♥❣ r➔♥❣ ❜✉ë❝ ✤à♥❤ t➼♥❤ ❑✉r❝②✉s③✲ (CQ)1 ❧➔ t÷ì♥❣ ✤÷ì♥❣ ✈ỵ✐ r➔♥❣ ❜✉ë❝ ✤à♥❤ t➼♥❤ ❣✐↔♠ ♥❤➭ ▼❛♥❣❛s❛r✐❛♥✲ ❘♦❜✐♥s♦♥✲❩♦✇❡ (CQ)2 ❋r♦♠♦✈✐t③ ❦❤✐ t➟♣ ♥❤➙♥ tû ❑❑❚ ❧➔ ❜à ❝❤➦♥✳ ❈→❝ s ỵ ❱➼ ❞ö ✹✳✶ ❈❤♦ X = Y = Z = R✱ C = D = R+ ✱ F : X ×X ⇒ Y✱ G : X ⇒ Z ✈➔ ✤÷đ❝ ①→❝ ✤à♥❤ ♥❤÷ s❛✉✿ F (x1 , x2 ) = {y ∈ R | y ≥ x22 − x1 }, ❳➨t x=0 ❉➵ t❤➜② x ✈➔ (x0 , y0 , z0 ) = (0, 0, 0) ❚❛ t❤➜② ❧➔ ❜ë ❜❛ ❝❤➜♣ ♥❤➟♥ ✤÷đ❝ ❝õ❛ ❧➔ ❝ü❝ t✐➸✉ ②➳✉ ❝õ❛ ❜➔✐ t♦→♥ D Fx+ (x0 , y0 )(x) = R+ , Fx+ G(x) = {z ∈ R | z ≥ x} (EP )✳❚➼♥❤ x✳ t♦→♥ trü❝ t✐➳♣✱ t❛ ❝â DG+ (x0 , z0 )(x) = {z ∈ R | z ≥ x} ❝â t➼♥❤ ❝❤➜t ❆✉❜✐♥ t↕✐ (x0 , y0 ) ✈➔ (D Fx+ (x0 , y0 ), DG+ (x0 , z0 ))(X) = R+ ì R t ỗ tt tr ỵ tọ DG+ (x0 , z0 )(X) + D(z0 ) = R✱ ❇➙② ❣✐í✱ t❛ ❝❤å♥ c∗ = c > ✈➔ d∗ = 0✱ ✈➻ ✈➟② ✭❈◗1 ✮ ❝ô♥❣ t❤ä❛✳ t❛ ❝â (c∗ , d∗ ) ∈ C ∗ \ {0} × D∗ , d∗ , z0 = 0, ✈➔ ✈ỵ✐ ♠å✐ (y, z) ∈ (D Fx+ (x0 , y0 ), DG+ (x0 , z0 ))(X)✱ t❛ ❝â c∗ , y + d∗ , z ≥ ❇➙② ❣✐í✱ ❝è ✤à♥❤ c∗ ∈ C ∗ \ {0}✱ ❝â t➟♣ Λ(x0 , y0 , z0 , c∗ ) = {0}✳ ❱➟② t➟♣ t ỵ ❧➔ ✤➛② ✤õ✳ ❱➼ ❞ö ✹✳✷ ❈❤♦ X = Y = Z = R✱ C = D = R+ ✈➔ F :X ìX Y G:X Z ữủ F (x1 , x2 ) = {y ∈ R | y ≥ |x2 | − x31 }, ✷✾ G(x) = {−x2 } ❚❛ t❤➜② x=0 ❧➔ ❝ü❝ t✐➸✉ ②➳✉ ❝õ❛ ❜➔✐ t♦→♥ ❝❤➜♣ ♥❤➟♥ ✤÷đ❝ ❝õ❛ (EP )✱ (x0 , y0 , z0 ) = (0, 0, 0) ❜ë x tt tt tr ỵ ✹✳✶ t❤ä❛✳ ❚➼♥❤ t♦→♥ trü❝ t✐➳♣✱ t❛ ❝â D Fx+ (x0 , y0 )(x) = DG+ (x0 , z0 )(x) = R+ ◆➳✉ ❝❤å♥ c∗ = c ∈ C ∗ ✈➔ d∗ ∈ D ∗ d∗ , z0 = ✈ỵ✐ ♠å✐ ✈ỵ✐ ✈➔ c > 0✱ t❤➻ c∗ , y + d∗ , z ≥ 0, (y, z) ∈ (D Fx+ (x0 , y0 ), DG+ (x0 , z0 ))(X)✳ ◆❤÷♥❣ ❧↕✐ ❝â Λ(x0 , y0 , z0 , c∗ ) = R+ ✱ r➔♥❣ ❜✉ë❝ ✤à♥❤ t➼♥❤ ✭❈◗✮1 ❦❤æ♥❣ t❤ä❛ t➟♣ ♥➔② ❦❤æ♥❣ ❜à ❝❤➦♥✳ ◆❣✉②➯♥ ♥❤➙♥ ❞♦ DG+ (x0 , z0 )(X) + D(z0 ) = R+ ✸✵ ❑➌❚ ▲❯❾◆ ◆❣♦➔✐ ♣❤➛♥ ♠ð ✤➛✉ ✈➔ ♣❤➛♥ tê♥❣ q✉❛♥ tr➻♥❤ ❜➔② ð ❝❤÷ì♥❣ ✶✱ ✤➲ t➔✐ ✤➣ t❤✉ ✤÷đ❝ ♠ët sè ❦➳t q✉↔ s❛✉✿ ✲ ❇➡♥❣ ❝ỉ♥❣ ❝ư ✤↕♦ ❤➔♠ t✐➳♣ ❧✐➯♥ ✈➔ ✤↕♦ ❤➔♠ ❦➲✱ ❚→❝ ❣✐↔ ✤➣ t❤✐➳t ❧➟♣ ✤÷đ❝ ❝→❝ ✤✐➲✉ ❦✐➺♥ tè✐ ÷✉ ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✈❡❝t♦r✱ ❤ì♥ ♥ú❛ ♥➳✉ ✤✐➲✉ ❦✐➺♥ ❝❤➜t ❧÷đ♥❣ r➔♥❣ ❜✉ë❝ ❦✐➸✉ ❑✉r❝②✉s③✲❘♦❜✐♥s♦♥✲❩♦✇❡ t❤ä❛ t❤➻ q✉② t➢❝ ♥❤➙♥ tû ❝â ❞↕♥❣ ❑❛r✉s❤✲❑✉❤♥✲ ❚✉❝❦❡r✳ ✲ ◆❣❤✐➯♥ ❝ù✉ ✤÷đ❝ t➼♥❤ ❜à ❝❤➦♥ ❝õ❛ t tỷ rsr ỗ tớ r ữủ ✤✐➲✉ ❦✐➺♥ ❝❤➜t ❧÷đ♥❣ r➔♥❣ ❜✉ë❝ ❑✉r❝②✉s③✲❘♦❜✐♥s♦♥✲❩♦✇❡ ❧➔ t÷ì♥❣ ✤÷ì♥❣ ợ t ữủ r srrt tr trữớ ❤ñ♣ t➟♣ ♥❤➙♥ tû ❑❛r✉s❤✲❑✉❤♥✲❚✉❝❦❡r ❜à ❝❤➦♥✳ ❇➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ❜❛♦ q✉→t ♥❤✐➲✉ ❧ỵ♣ ❜➔✐ t♦→♥ q✉❛♥ trå♥❣ ❦❤→❝ tr tố ữ ự ữợ tr tữỡ ❧❛✐ s➩ →♣ ❞ư♥❣ ✤÷đ❝ ❝→❝ ❦➳t q✉↔ ♥➔② ❝❤♦ ợ t t ữ t tố ÷✉ ✈➔ ❜➔✐ t♦→♥ ❜➜t ✤➥♥❣ t❤ù❝ ❜✐➳♥ ♣❤➙♥✳ ✸✶ ❈➷◆● ❚❘➐◆❍ ❈➷◆● ❇➮ ▲■➊◆ ◗❯❆◆ ✣➌◆ ✣➋ ❚⑨■ ◆●❍■➊◆ ❈Ù❯ ❇➔✐ ❜→♦ ✤➠♥❣ ❚↕♣ ❝❤➼ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❆♥ ●✐❛♥❣✿ ◗✉② t➢❝ ♥❤➙♥ tû ❑❛r✉s❤✲❑✉❤♥✲❚✉❝❦❡r ❝❤♦ ♥❣❤✐➺♠ ❤ú✉ ❤✐➺✉ ②➳✉ ❝õ❛ ❜➔✐ t♦→♥ ❝➙♥ ❜➡♥❣ ✤❛ trà ▲➯ ❑✐➯♥ ❚❤➔♥❤✳ ✳ ❚↕♣ ❝❤➼ ❦❤♦❛ ❤å❝ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❆♥ ●✐❛♥❣✳ ✸✷ ❚⑨■ ▲■➏❯ ❚❍❆▼ ❑❍❷❖ ❆✉❜✐♥✱ ❏✳P✳ ✭✶✾✽✶✮✳ ❈♦♥t✐♥❣❡♥t ❞❡r✐✈❛t✐✈❡s ♦❢ s❡t✲✈❛❧✉❡❞ ♠❛♣s ❛♥❞ ❡①✐st❡♥❝❡ ♦❢ s♦✲ ❧✉t✐♦♥s t♦ ♥♦♥❧✐♥❡❛r ✐♥❝❧✉s✐♦♥s ❛♥❞ ❞✐❢❢❡r❡♥t✐❛❧ ✐♥❝❧✉s✐♦♥s✳ ■♥✿ ◆❛❝❤❜✐♥✱ ▲✳✭❡❞✳✮✱ ▼❛t❤❡♠❛t✐❝❛❧ ❆♥❛❧②s✐s ❛♥❞ ❆♣♣❧✐❝❛t✐♦♥s✱ P❛rt ❆✱ ❆❞✈✳ ✐♥ ▼❛t❤✳ ❙✉♣♣❧✳ ❙t✉❞✳✱ ✈♦❧✳ ✼ ❙❡t✲❱❛❧✉❡❞ ❆♥❛❧②s✐s ✭♣♣✳ ✶✺✾✲✷✷✾✮✳ ◆❡✇ ❨♦r❦✱ ◆❨✿ ❆❝❛❞❡♠✐❝ Pr❡ss✳ ❆✉❜✐♥✱ ❏✳P✳ ✫ ❋r❛♥❦♦✇s❦❛✱ ❍✳ ✭✶✾✾✵✮✳ ✳ ❇♦st♦♥✿ ❇✐r❦❤❛✉s❡r✳ ❇❧✉♠✱ ❊✳ ✫ ❖❡tt❧✐✱ ❲✳ ✭✶✾✾✹✮✳ ❋r♦♠ ♦♣t✐♠✐③❛t✐♦♥ ❛♥❞ ✈❛r✐❛t✐♦♥❛❧ ✐♥❡q✉❛❧✐t✐❡s t♦ ❡q✉✐❧✐❜r✐✉♠ ♣r♦❜❧❡♠s✳ ▼❛t❤✳ ❙t✉❞ ✱ ✻✸✱ ✶✷✸✲✶✹✺✳ ❈❤❡♥✱ ●✳❨✳ ✫ ❏❛❤♥✱ ❏✳ ✭✶✾✾✽✮✳ ❖♣t✐♠❛❧✐t② ❝♦♥❞✐t✐♦♥s ♦❢ s❡t✲✈❛❧✉❡❞ ♦♣t✐♠✐③❛t✐♦♥ ♣r♦❜❧❡♠s✳ ▼❛t❤✳ ▼❡t❤♦❞s ❖♣❡r✳ ❘❡s ✱ ✹✽✱ ♣♣✳ ✶✽✼✲✷✵✵✳ ❈♦r❧❡②✱ ❍✳❲✳ ✭✶✾✽✽✮✳ ❖♣t✐♠❛❧✐t② ❝♦♥❞✐t✐♦♥s ❢♦r ♠❛①✐♠✐③❛t✐♦♥ ♦❢ s❡t✲✈❛❧✉❡❞ ❢✉♥❝✲ t✐♦♥s✱ ❏✳ ❖♣t✐♠✳ ❚❤❡♦r② ❆♣♣❧ ✱ ✺✽✱ ♣♣✳ ✶✲✶✵✳ ❉✉r❡❛✱ ▼✳✱ ❉✉tt❛✱ ❏✳ ✫ ❚❛♠♠❡r✱ ❈❤r✳ ✭✷✵✵✽✮✳ ❇♦✉♥❞❡❞ s❡ts ♦❢ ▲❛❣r❛♥❣❡ ♠✉❧t✐✲ ♣❧✐❡rs ❢♦r ✈❡❝t♦r ♦♣t✐♠✐③❛t✐♦♥ ♣r♦❜❧❡♠s ✐♥ ✐♥❢✐♥✐t❡ ❞✐♠❡♥s✐♦♥✳ ❆♣♣❧ ❏✳ ▼❛t❤✳ ❆♥❛❧✳ ✱ ✸✹✽✱ ✺✽✾✲✻✵✻✳ ❋❛♥✱ ❑✳ ✭✶✾✼✷✮✳ ❆ ♠✐♥✐♠❛① ✐♥❡q✉❛❧✐t② ❛♥❞ ❛♣♣❧✐❝❛t✐♦♥s✳ ■♥✿ ❙❤✐s❤❛✱ ❖✳✭❡❞✳✮ ❡q✉❛❧✐t② ■■■ ■♥✲ ✭♣♣✳ ✶✵✸✲✶✶✸✮✳ ◆❡✇ ❨♦r❦✿ ❆❝❛❞❡♠✐❝ Pr❡ss✳ ●♦♥❣✱ ❳✳❍✳ ✭✷✵✵✾✮ ✳❖♣t✐♠❛❧✐t② ❝♦♥❞✐t✐♦♥s ❢♦r ✈❡❝t♦r ❡q✉✐❧✐❜r✐✉♠ ♣r♦❜❧❡♠s✱ ▼❛t❤✳ ❆♥❛❧✳ ❆♣♣❧✱ ●✐❛♥♥❡ss✐✱ ❋✳ ✭✷✵✵✵✮✳ ❡♠❛t✐❝❛❧ ❚❤❡♦r✐❡s ❏✳ ✸✹✷✱ ✶✹✺✺✲✶✹✻✻✳ ❱❡❝t♦r ❱❛r✐❛t✐♦♥❛❧ ■♥❡q✉❛❧✐t✐❡s ❛♥❞ ❱❡❝t♦r ❊q✉✐❧✐❜r✐❛✿ ▼❛t❤✲ ✳ ❉♦r❞r❡❝❤t✱ ❚❤❡ ◆❡t❤❡r❧❛♥❞s✿ ❑❧✉✇❡r ❆❝❛❞❡♠✐❝ P✉❜❧✐s❤❡rs✳ ●♦♥❣✱ ❳✳❍✳ ✭✷✵✶✵✮✳ ❙❝❛❧❛r✐③❛t✐♦♥ ❛♥❞ ♦♣t✐♠❛❧✐t② ❝♦♥❞✐t✐♦♥s ❢♦r ✈❡❝t♦r ❡q✉✐❧✐❜r✐✉♠ ♣r♦❜❧❡♠s✳ ◆♦♥❧✐♥❡❛r ❆♥❛❧ ✳ ✼✸✱ ✸✺✾✽✕✸✻✶✷✳ ❍❡♥✐❣✱ ▼✳■✳✭✶✾✽✷✮✳Pr♦♣❡r ❡❢❢✐❝✐❡♥❝② ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ❝♦♥❡s✳ ❆♣♣❧ ❏✳ ❖♣t✐♠✳ ❚❤❡♦r② ✱ ✸✻✱ ♣♣✳ ✶✵✹✹✲✶✵✹✾✳ ❏❛❤♥✱ ❏✳ ✫ ❘❛✉❤✱ ❘✳ ✭✶✾✾✼✮✳ ❈♦♥t✐❣❡♥t ❡♣✐❞❡r✐✈❛t✐✈❡s ❛♥❞ s❡t✲✈❛❧✉❡❞ ♦♣t✐♠✐③❛t✐♦♥✳ ▼❛t❤✳ ▼❡t❤♦❞s ❖♣❡r✳ ❘❡s ✱ ✹✻✱ ♣♣✳ ✶✾✸✲✷✶✶✳ ✸✸ ❏❛❤♥✱ ❏✳ ✭✷✵✵✹✮✳ ❱❡❝t♦r ❖♣t✐♠✐③❛t✐♦♥✿ ❚❤❡♦r②✱ ❆♣♣❧✐❝❛t✐♦♥s ❛♥❞ ❊①t❡♥s✐♦♥s ✱ ❙♣r✐♥❣❡r✲❱❡r❧❛❣✱ ❇❡r❧✐♥✳ ❏✐♠➨♥❡③✱ ❇✳ ✫ ◆♦✈♦✱ ❱✳ ✭✷✵✵✸✮✳ ❙❡❝♦♥❞ ♦r❞❡r ♥❡❝❡ss❛r② ❝♦♥❞✐t✐♦♥s ✐♥ s❡t ❝♦♥✲ str❛✐♥❡❞ ❞✐❢❢❡r❡♥t✐❛❜❧❡ ✈❡❝t♦r ♦♣t✐♠✐③❛t✐♦♥✳ ▼❛t❤ ▼❡t❤ ❖♣❡r ❘❡s ✱ ✺✽✱ ✷✾✾✲✸✶✼✳ ❑❤❛♥❤✱ P✳◗✳ ✫ ❚✉♥❣✱ ▲✳❚✳ ✭✷✵✶✸✮✳ ❋✐rst ❛♥❞ s❡❝♦♥❞✲♦r❞❡r ♦♣t✐♠❛❧✐t② ❝♦♥❞✐✲ t✐♦♥s ✉s✐♥❣ ❛♣♣r♦①✐♠❛t✐♦♥s ❢♦r ✈❡❝t♦r ❡q✉✐❧✐❜r✐✉♠ ♣r♦❜❧❡♠s ✇✐t❤ ❝♦♥str❛✐♥ts✳ ❏✳ ●❧♦❜❛❧ ❖♣t✐♠ ✱ ✺✺✱ ✾✵✶✲✾✷✵✳ ❑❤❛♥❤✱ P✳◗✳ ✫ ❚✉♥❣✱ ◆✳▼✳ ✭✷✵✶✺✮✳ ❖♣t✐♠❛❧✐t② ❝♦♥❞✐t✐♦♥s ❛♥❞ ❞✉❛❧✐t② ❢♦r ♥♦♥s✲ ♠♦♦t❤ ✈❡❝t♦r ❡q✉✐❧✐❜r✐✉♠ ♣r♦❜❧❡♠s ✇✐t❤ ❝♦♥str❛✐♥ts✳ ❖♣t✐♠✐③❛t✐♦♥ ✱ ✻✹✱ ✶✺✹✼✲ ✶✺✼✺✳ ❑❤❛♥❤✱ P✳◗✳ ✫ ❚✉♥❣✱ ◆✳▼✳ ✭✷✵✶✽✮✳ ❊①✐st❡♥❝❡ ❛♥❞ ❇♦✉♥❞❡❞♥❡ss ♦❢ ❙❡❝♦♥❞✲♦r❞❡r ❑❛r✉s❤✲❑✉❤♥✲❚✉❝❦❡r ▼✉❧t✐♣❧✐❡rs ❢♦r ❙❡t✲✈❛❧✉❡❞ ❖♣t✐♠✐③❛t✐♦♥ ✇✐t❤ ❱❛r✐❛❜❧❡ ❖r❞❡r✐♥❣ ❙tr✉❝t✉r❡s✱ ❚❛✐✇❛♥❡s❡ ❏✳▼ ✱ ✷✷✱ ✹✺✲✻✾✳ ▲✐✉✱ ❲✳ ✫ ●♦♥❣✱ ❳✳❍✳ ✭✷✵✵✵✮✳ Pr♦♣❡r ❡❢❢✐❝✐❡♥❝② ❢♦r ✈❡❝t♦r s❡t✲✈❛❧✉❡❞ ♦♣t✐♠✐③❛t✐♦♥ ♣r♦❜❧❡♠s ❛♥❞ ✈❛r✐❛t✐♦♥❛❧ ✐♥❡q✉❛❧✐t✐❡s✳ ▼❛t❤✳ ▼❡t❤♦❞s ❖♣❡r✳ ❘❡s ✱ ✺✶✱ ♣♣✳ ✹✹✸✲ ✹✺✽✳ ▲✉✉✱ ❉✳❱✳ ✭✷✵✶✻✮✳ ❖♣t✐♠❛❧✐t② ❝♦♥❞✐t✐♦♥ ❢♦r ❧♦❝❛❧ ❡❢❢✐❝✐❡♥t s♦❧✉t✐♦♥s ♦❢ ✈❡❝t♦r ❡q✉✐✲ ❧✐❜r✐✉♠ ♣r♦❜❧❡♠s ✈✐❛ ❝♦♥✈❡①✐❢✐❝❛t♦rs ❛♥❞ ❛♣♣❧✐❝❛t✐♦♥s✱ ❏✳ ❖♣t✐♠✳ ❚❤❡♦r② ❆♣♣❧✳ ✱ ✶✼✶✿✻✹✸✕✻✻✺✳ ▲✉✉✱ ❉✳❱✳ ✫ ❙✉✱ ❚✳❱✳ ✭✷✵✶✽✮✳ ❈♦♥t✐♥❣❡♥t ❞❡r✐✈❛t✐✈❡s ❛♥❞ ♥❡❝❡ss❛r② ❡❢❢✐❝✐❡♥❝② ❝♦♥❞✐t✐♦♥s ❢♦r ✈❡❝t♦r ❡q✉✐❧✐❜r✐✉♠ ♣r♦❜❧❡♠s ✇✐t❤ ❝♦♥str❛✐♥ts✳ ❘❡s ❘❆■❘❖ ❖♣❡r✳ ✱ ✺✷✱ ✺✹✸✲✺✺✾✳ ▲✉✉✱ ❉✳❱✳ ✭✷✵✶✽✮✳ ❙❡❝♦♥❞✲♦r❞❡r ♥❡❝❡ss❛r② ❡❢❢✐❝✐❡♥❝② ❝♦♥❞✐t✐♦♥s ❢♦r ♥♦♥s♠♦♦t❤ ❏✳ ●❧♦❜❛❧ ❖♣t✐♠ ✈❡❝t♦r ❡q✉✐❧✐❜r✐✉♠ ♣r♦❜❧❡♠s✳ ✱ ✼✵✱ ✹✸✼✲✹✺✸✳ ▼❛♥❣❛s❛r✐❛♥✱ ❖✳▲✳ ✫ ❋r♦♠♦✈✐t③✱ ❙✳ ✭✶✾✻✼✮✳ ❚❤❡ ❋r✐t③ ❏♦❤♥ ♥❡❝❡ss❛r② ♦♣t✐♠❛❧✐t② ❝♦♥❞✐t✐♦♥s ✐♥ t❤❡ ♣r❡s❡♥❝❡ ♦❢ ❡q✉❛❧✐t② ❛♥❞ ✐♥❡q✉❛❧✐t② ❝♦♥str❛✐♥ts✳ ❆♣♣❧ ✱ ✶✼✱ ✸✼✲✹✼✳ ✸✹ ❏✳ ▼❛t❤✳ ❆♥❛❧✳ ▼❛✱ ❇✳❈✳ ✫ ●♦♥❣✱ ❳✳❍✳ ✭✷✵✶✶✮✳ ❖♣t✐♠❛❧✐t② ❝♦♥❞✐t✐♦♥s ❢♦r ✈❡❝t♦r ❡q✉✐❧✐❜r✐✉♠ ❖♣t✐♠✐③❛t✐♦♥ ❱❛r✐❛t✐♦♥❛❧ ❆♥❛❧②s✐s ❛♥❞ ●❡♥❡r❛❧✐③❡❞ ❉✐❢❢❡r❡♥t✐❛t✐♦♥✳ ♣r♦❜❧❡♠s ✐♥ ♥♦r♠❡❞ s♣❛❝❡s✳ ▼♦r❞✉❦❤♦✈✐❝❤✱ ❇✳❙✳ ✭✷✵✵✻✮✳ ❱♦❧✳ ■✖❇❛s✐❝ ❚❤❡♦r② ✱ ✻✵✱ ✶✹✹✶✲✶✹✺✺✳ ✳❙♣r✐♥❣❡r✱ ❇❡r❧✐♥✳ ▼♦r❞✉❦❤♦✈✐❝❤✱ ❇✳❙✳ ✭✷✵✵✻✮✳ ❱♦❧✳ ■■✖❆♣♣❧✐❝❛t✐♦♥ ❱❛r✐❛t✐♦♥❛❧ ❆♥❛❧②s✐s ❛♥❞ ●❡♥❡r❛❧✐③❡❞ ❉✐❢❢❡r❡♥t✐❛t✐♦♥✳ ✳❙♣r✐♥❣❡r✱ ❇❡r❧✐♥✳ ▼♦r❣❛♥✱ ❏✳ ✫ ❘♦♠❛♥✐❡❧❧♦✱ ▼✳ ✭✷✵✵✻✮✳❙❝❛❧❛r✐③❛t✐♦♥ ❛♥❞ ❑✉❤♥✲❚✉❝❦❡r✲❧✐❦❡ ❝♦♥❞✐✲ t✐♦♥s ❢♦r ✇❡❛❦ ✈❡❝t♦r ❣❡♥❡r❛❧✐③❡❞ q✉❛s✐✈❛r✐❛t✐♦♥❛❧ ✐♥❡q✉❛❧✐t✐❡s✳ ♦r② ❆♣♣❧ ❏✳ ❖♣t✐♠✳ ❚❤❡✲ ✱ ✶✸✵✱ ♣♣✳ ✸✵✾✲✸✶✻✳ ◆❛s❤ ❏r✳ ❏♦❤♥ ❋♦r❜❡s ✭✶✾✷✽✕✷✵✶✺✮✱ ✭✷✵✶✻✮✳ ◆♦t✐❝❡s ❆♠❡r✳ ▼❛t❤✳ ❙♦❝✳ ✻✸✭✺✮✿✹✾✷✕✺✵✹✳ ◆✐❦❛✐❞♦✱ ❍✳ ✫ ■s♦❞❛✱ ❑✳ ✭✶✾✺✺✮✳ ◆♦t❡ ♦♥ ♥♦♥✲❝♦♦♣❡r❛t✐✈❡ ❝♦♥✈❡① ❣❛♠❡s✳ ❏✳ ▼❛t❤ P❛❝✐❢✐❝ ✱ ✺✱ ✽✵✼✲✽✶✺✳ ❘♦❜✐♥s♦♥✱ ❙✳▼✳ ✭✶✾✼✻✮✳ ❘❡❣✉❧❛r✐t② ❛♥❞ st❛❜✐❧✐t② ❢♦r ❝♦♥✈❡① ♠✉❧t✐✈❛❧✉❡❞ ❢✉♥❝t✐♦♥s✱ ▼❛t❤✳ ❖♣❡r✳ ❘❡s✳ ✱ ✶✱ ✶✸✵✲✶✹✸✳ ❙♦♥❣✱ ❏✳✱ ❉♦♥❣✱ ❍✳❇✳✫ ●♦♥❣✱ ❳✳❍✳ ✭✷✵✵✶✮✳ Pr♦♣❡r ❡❢❢✐❝✐❡♥❝② ✐♥ ✈❡❝t♦r s❡t✲✈❛❧✉❡❞ ♦♣t✐♠✐③❛t✐♦♥ ♣r♦❜❧❡♠s✳ ❏✳ ◆❛♥❝❤❛♥❣ ❯♥✐✈ ✱ ✷✺✱ ♣♣✳ ✶✷✷✲✶✸✵ ✭✐♥ ❈❤✐♥❡s❡✮✳ ❙✉✱ ❚✳❱✳ ✭✷✵✶✻✮✳❖♣t✐♠❛❧✐t② ❝♦♥❞✐t✐♦♥s ❢♦r ✈❡❝t♦r ❡q✉✐❧✐❜r✐✉♠ ♣r♦❜❧❡♠s ✐♥ t❡r♠s ♦❢ ❝♦♥t✐♥❣❡♥t ❡♣✐❞❡r✐✈❛t✐✈❡s✳ ◆✉♠❡r✳ ❋✉♥❝t✳ ❆♥❛❧✳❖♣t✐♠✐③ ✱ ✸✼✱ ✻✹✵✲✻✻✺✳ ❚❛❛✱ ❚✳ ✭✶✾✾✽✮✳ ❙❡t✲✈❛❧✉❡❞ ❞❡r✐✈❛t✐✈❡s ♦❢ ♠✉❧t✐ ❢✉♥❝t✐♦♥s ❛♥❞ ♦♣t✐♠❛❧✐t② ❝♦♥❞✐✲ t✐♦♥s✳ ◆✉♠❡r✳ ❋✉♥❝t✳ ❆♥❛❧✳ ❖♣t✐♠ ✱ ✶✾✱ ♣♣✳ ✶✷✶✲✶✹✵✳ ❨❛♥❣✱ ❳✳◗✳ ✫ ❩❤❡♥❣✱ ❳✳❨✳ ✭✷✵✵✽✮✳ ❆♣♣r♦①✐♠❛t❡ s♦❧✉t✐♦♥s ❛♥❞ ♦♣t✐♠❛❧✐t② ❝♦♥❞✐✲ t✐♦♥s ♦❢ ✈❡❝t♦r ✈❛r✐❛t✐♦♥❛❧ ✐♥❡q✉❛❧✐t✐❡s ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s✳ ❏✳ ●❧♦❜❛❧ ❖♣t✐♠ ✱ ✹✵✱ ♣♣✳ ✹✺✺✲✹✻✷✳ ❩♦✇❡✱ ❏✳ ✫ ❑✉r❝②✉s③✱ ❙✳ ✭✶✾✼✾✮✳ ❘❡❣✉❧❛r✐t② ❛♥❞ st❛❜✐❧✐t② ❢♦r t❤❡ ♠❛t❤❡♠❛t✐❝❛❧ ♣r♦❣r❛♠♠✐♥❣ ♣r♦❜❧❡♠ ✐♥ ❇❛♥❛❝❤ s♣❛❝❡s✳ ✸✺ ❆♣♣❧✳ ▼❛t❤✳ ❖♣t✐♠ ✱ ✺✱ ✹✾✲✻✷✳ ❩❛❧✐♥❡s❝✉✱ ❈✳ ✭✷✵✵✷✮✳ ❈♦♥✈❡① ❆♥❛❧②s✐s ✐♥ ●❡♥❡r❛❧ ❱❡❝t♦r ❙♣❛❝❡s ✳ ❙✐♥❣❛♣♦r❡✿ ❲♦r❧❞ ❙❝✐❡♥t✐❢✐❝ P✉❜❧✐s❤✐♥❣ ❈♦✳ Pt❡✳ ▲t❞✳ ❩❤❡♥❣✱ ❳✳❨✳ ✫ ◆❣✱ ❑✳❋✳ ✭✷✵✵✺✮✳ ❚❤❡ ❋❡r♠❛t r✉❧❡ ❢♦r ♠✉❧t✐❢✉♥❝t✐♦♥s ♦♥ ❇❛♥❛❝❤ s♣❛❝❡s✳ ▼❛t❤✳ Pr♦❣r❛♠✳ ❙❡r ✳ ❆✱✶✵✹✱ ✻✾✲✾✵✳ ✸✻

Ngày đăng: 08/03/2021, 16:43

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w