1. Trang chủ
  2. » LUYỆN THI QUỐC GIA PEN -C

De thi thu Dai hoc mon Toan va dap an

14 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 737,38 KB

Nội dung

Tính thể tích của khối tứ diện BMB’C’ theo a và chứng minh rằng BM vuông góc với B’C. Câu VIa (1 điểm).[r]

(1)

THI THỬ ĐẠI HỌC NĂM 2011

MƠN TỐN (Thời gian làm bài: 180 phút) A PHẦN DÀNH CHO TẤT CẢ THÍ SINH

Câu I (2 điểm) Cho hàm số y2x3 3(2m1)x26 (m m1)x1 có đồ thị (Cm) Khảo sát biến thiên vẽ đồ thị hàm số m =

Tìm m để hàm số đồng biến khoảng (2;+)

Câu II (2 điểm) a) Giải phương trình: cos 3x(2cos 2x+1)=1 b) Giải phương trình : (3x+1)√2x21=5x2

+3 2x −3

Câu III (1 điểm) Tính tích phânex

+2¿2 ¿ ¿ dx

¿ I=∫

0 ln

¿

Câu IV (1 điểm) Cho hình lăng trụ ABC.ABC’ có đáy tam giác cạnh a, hình chiếu vng góc A’ lên măt phẳng (ABC) trùng với tâm O tam giác ABC Tính thể tích khối lăng trụ ABC.ABC’ biết khoảng cách

AA’ BC a

4 Câu V (1 điểm)

Cho x,y,z thoả mãn số thực: x2xy

+y2=1 Tìm giá trị lớn ,nhỏ biểu thức

P=x

+y4+1

x2

+y2+1 B PHẦN DÀNH CHO TỪNG LOẠI THÍ SINH Dành cho thí sinh thi theo chương trình chuẩn Câu VIa (2 điểm)

a) Cho hình tam giác ABC có diện tích Biết A(1;0), B(0;2) trung điểm I AC nằm đường thẳng y = x Tìm toạ độ đỉnh C

b) Trong không gian Oxyz, cho điểm A(1;0;0); B(0;2;0); C(0;0;-2) tìm tọa độ điểm O’ đối xứng với O qua (ABC)

Câu VIIa(1 điểm) Giải phương trình: (z2− z)(z+3)(z+2)=10 , ¿ z∈

¿ C. Dành cho thí sinh thi theo chương trình nâng cao

Câu VIb (2 điểm)

a.Trong mp(Oxy) cho điểm A(1;0),B(-2;4),C(-1;4),D(3;5) Tìm toạ độ điểm M thuộc đường thẳng ( ) : 3 x y  0 cho hai tam giác MAB, MCD có diện tích nhau

b.Trong khơng gian với hệ tọa độ Oxyz, cho hai đường thẳng: d

1:

x −4

3 =

y −1

1 =

z+5

2 d2:

x −2

1 =

y+3

3 =

z

1

(2)

Câu VIIb (1 điểm) Giải bất phương trình: x(3 log2x −2)>9 log2x −2

ĐÁP ÁN Câu I

a) Đồ Học sinh tự làm

0,25 b) y2x3 3(2m1)x26 (m m1)x1

⇒y '=6x26(2m+1)x+6m(m+1) y’ có 2m+1¿

2

4(m2+m)=1>0

Δ=¿

0,5

y '=0

x=m ¿ x=m+1

¿ ¿ ¿ ¿ ¿

Hàm số đồng biến (2;+) y '>0 ∀x>2 m+12 m≤1

0,25

0,25 Câu II a) Giải phương trình: cos 3x(2cos 2x+1)=1 1 điểm

PT cos 3x(4 cos2x −1)=1 cos 3x(34 sin2x)=1 0,25 Nhận xét x=kπ , k∈Z khơng nghiệm phương trình ta có:

2 cos3x(34 sin2x)=1 2 cos3x(3 sinx −4 sin3x)=sinx

cos 3xsin 3x=sinx sin 6x=sinx

0,25

6x=x+m2π ¿

6x=π − x+m2π ¿

¿ ¿ ¿

x=2 ¿ x=π

7+ 2

7 ¿ ¿ ¿ ¿

; m∈Z

0,25

Xét 25 =¿ 2m=5k m ¿5t , t∈Z Xét π

7+ 2

7 = 1+2m=7k k=2(m-3k)+1 hay k=2l+1& m=7l+3, l∈Z

Vậy phương trình có nghiệm: x=2

5 ( m≠5t ); x=

π

7+ 2

7 (

m≠7l+3 ) m ,t ,l∈Z

0,25

b)

Giải phương trình : (3x+1)√2x21=5x2 +3

2x −3

1 điểm

(3)

2(3x+1)√2x21=4(2x21)+2x2+3x −2 Đặt t=√2x21(t ≥0) Pt trở thành 4t22(3x

+1)t+2x2+3x −2=0 Ta có:

x −3¿2

3x+1¿24(2x2+3x −2)=¿ Δ'=¿

Pt trở thành 4t22(3x+1)t+2x2+3x −2=0 Ta có:

x −3¿2

3x+1¿24(2x2+3x −2)=¿ Δ'=¿

0,25

Từ ta có phương trình có nghiệm : t=2x −1 ;t=

x+2

Thay vào cách đăt giải ta phương trình có nghiệm:

x∈{1+√6

2 ;

2+√60

7 }

0,5

Câu III

Tính tích phân

ex+2¿2 ¿ ¿ dx

¿ I=∫

0 ln

¿

1 điểm

Ta c ó

e

x

3 +2¿2

¿ e

x

3 ¿ e

x

3dx

¿ I=∫

0 ln

¿ =

Đặt u= ex3 3 du

=e x

3dx ; x=0⇒u=1; x=3 ln2⇒u=2

0,25

Ta được:

u+2¿2 ¿ u¿ du

¿ I=∫

1

¿

=3

u+2¿2

4u−

1 4(u+2)

1 2(¿)du ¿

1

¿

0,25

=3 (14ln|u|1

4ln|u+2|+ 2(u+2))¿1

2

0,25

¿3 4ln(

3 2)

1

(4)

Vậy I ¿3 4ln(

3 2)

1 Câu IV

Gọi M trung điểm BC ta thấy:

¿

AMBC

A ' O⊥BC } ¿

BC(A 'AM)

Kẻ MHAA ', (do ∠A nhọn nên H thuộc đoạn AA’.) Do

BC(A 'AM) HM(A 'AM)

}

HMBC

.Vậy HM đọan vơng góc chung

AA’và BC, d(AA',BC)=HM=a√3

4

0,5

Xét tam giác đồng dạng AA’O AMH, ta có: A ' O

AO =

HM AH suy A ' O=AO HM

AH =

a√3

a√3

4 3a=

a

3

Thể tích khối lăng trụ:

V=A ' O.SABC=1

2A ' O AM BC=

a

3

a√3 a=

a3√3 12

0,5

Câu V 1.Cho a, b, c số thực dương thoả mãn a+b+c=3 .Chứng minh

rằng:

3(a2+b2+c2)+4 abc13

1 điểm

Đặt f(a , b , c)=3(a2+b2+c2)+4 abc13;t=b+c

*Trước hết ta chưng minh: f(a , b , c)≥ f(a ,t ,t) :Thật Do vai trò a,b,c nên ta giả thiết a ≤ b ≤ c

3a ≤ a+b+c=3 hay a

f(a , b , c)− f(a , t , t)=¿ 0,5 A

B

C

C’ B’

A’

H

(5)

3(a2

+b2+c2)+4 abc133(a2+t2+t2)4 at2+13 = 3(b2

+c22t2)+4a(bc− t2)

= 3[b2+c22(b+c)

4

]+4a[bc(b+c)

4

] =

b − c¿2 ¿ b − c¿2

3¿ ¿ =

b− c¿2 ¿ (32a)¿

¿

a

*Bây ta cần chứng minh: f(a , t , t)0 với a+2t=3 Ta có f(a , t , t)=3(a2+t2+t2)+4 at213

= (32t¿2+t2+t2)+4(32t)t213 3¿

= t −1¿

(74t)0

2¿ 2t=b+c < Dấu “=” xảy ⇔t=1∧b − c=0⇔a=b=c=1 (ĐPCM)

0,5

2 Cho x,y,z thoả mãn số thực: x2xy

+y2=1 .Tìm giá trị lớn

nhất , nhỏ biểu thức P=x

4

+y4+1

x2+y2+1

Tõ gi¶ thiÕt suy ra:

1=x2xy+y22 xyxy=xy ¿

x+y¿23 xy≥−3 xy 1=¿

Từ ta có 1

3xy1

0,25

Măt khác x2xy+y2=1x2+y2=1+xy nên x4

+y4= x2y2+2 xy+1 đăt t=xy

Vởy toán trở thành tìm GTLN,GTNN P=f(t)= t

2

+2t+2

t+2 ;−

3≤ t ≤1 0.25

TÝnh

t+2¿2 ¿ ¿0

¿ t=√62

¿ t=√62(l)

¿ ¿ ¿ ¿

f '(t)=0⇔−1+6 ¿

(6)

Do hµm sè liên tục [1

3;1] nên so sánh giá trÞ cđa f(

1 ) ,

f(√62) , f(1) cho kÕt qu¶:

MaxP=f(√62)=62√6 , minP=f(1 3)=

11

15 0.25

Câu VIa 1 điểm

a) (Học sinh tự vẽ hình)

Ta có: AB  1;2  AB



Phương trình AB là: 2x y  0

 :  ; 

Id y x  I t t

I trung điểm AC: C(2t −1;2t) 0,5

Theo ra: ABC=1

2AB d(C ,AB)=2 |6t −4|=4

t=0 ¿ t=4

3 ¿ ¿ ¿ ¿

Từ ta có điểm C(-1;0) C( 3;

8

3 ) thoả mãn

0,5

b) 1 điểm

*Từ phương trình đoạn chắn suy pt tổng quát mp(ABC) là:2x+y-z-2=0 0.25 *Gọi H hình chiếu vng góc O l ên (ABC), OH vng góc với

(ABC) nên ⃗OH //⃗n(2;1;−1) ;HABC

Ta suy H(2t;t;-t) thay vào phương trình( ABC) có t=

3 suy ra H( 3;

1 3;−

1 3) 0,25

*O’ đối xứng với O qua (ABC) H trung điểm OO’

O'(4 3;

2 3;−

2 3)

0,5

CâuVIIa

Giải phương trình: (z2− z)(z+3)(z+2)=10 , ¿ z∈

¿

C. 1 điểm

PT z(z+2)(z −1)(z+3)=10 (z2+2z)(z2+2z −3)=0 Đặt t=z2+2z Khi phương trình (8) trở thành:

0,25

Đặt t=z2+2z Khi phương trình (8) trở thành

t23t −10=0

(7)

t=2 ¿ t=5

¿ z=1±i

¿ z=1±√6

¿ ¿ ¿

¿ ¿ ¿ ¿

Vậy phương trình có nghiệm: z=1±√6 ; z=1± i

0,5

Câu VIb a)

1 điểm Viết phương trình đường AB: 4x3y 0 AB5

Viết phương trình đường CD: x 4y17 0 CD 17

0,25

Điểm M thuộc có toạ độ dạng: M ( ;3t t 5) Ta tính được:

13 19 11 37

( , ) ; ( , )

5 17

t t

d M AB   d M CD  

0,25

Từ đó: SMABSMCDd M AB AB d M CD CD( , )  ( , )

7

3

t t

   

 Có điểm cần tìm là:

7 ( 9; 32), ( ; 2)

3 M   M

0,5

b) 1 điểm

Giả sử mặt cầu S(I, R) tiếp xúc với hai đường thẳng d1, d2 hai điểm A B ta ln có IA + IB ≥ AB AB ≥d d d 1, 2 dấu xảy I là

trung điểm AB AB đoạn vng góc chung hai đường thẳng d1, d2 0, 25

Ta tìm A, B : '

AB u AB u

 

 

  

                           

⃗ ⃗

Ad1, Bd2 nên: A(3 + 4t; 1- t; -5-2t), B(2 + t’; -3 + 3t’; t’)

0,25

 ⃗AB(….)…  A(1; 2; -3) B(3; 0; 1) I(2; 1; -1) 0,25 Mặt cầu (S) có tâm I(2; 1; -1) bán kính R=

Nên có phương trình là:  

2 2

2 ( 1) ( 1)

x  y  z  0,25

CâuVIIb Giải bất phương trình x(3 log2x −2)>9 log2x −2 1 điểm Điều kiện: x>0

Bất phương trình 3(x −3)log2x>2(x −1) Nhận thấy x=3 khơng nghiệm bất phương trình

(8)

TH1 Nếu x>3 BPT

2log2x>

x −1

x −3 Xét hàm số: f(x)=3

2log2x đồng biến khoảng (0;+) g(x)=x −1

x −3 nghịch biến khoảng (3;+)

*Với x>4 :Ta có

¿

f(x)>f(4)=3

g(x)<g(4)=3 }

¿

 Bpt có nghiệm x>4

* Với x<4 :Ta có

¿

f(x)<f(4)=3

g(x)>g(4)=3 }

¿

 Bpt vô nghiệm

0,25

TH :Nếu 0<x<3 BPT

2log2x<

x −1

x −3 f(x)=3

2log2x đồng biến khoảng (0;+) g(x)=x −1

x −3 nghịch biến khoảng (0;3)

*Với x>1 :Ta có

¿

f(x)>f(1)=0

g(x)<g(1)=0 }

¿

 Bpt vô nghiệm

* Với x<1 :Ta có

¿

f(x)<f(1)=0

g(x)>g(1)=0 }

¿

 Bpt có nghiệm 0<x<1

0,25

Vậy Bpt có nghiệm

x>4 ¿ 0<x<1

¿ ¿ ¿ ¿

0,25

(9)

THI THỬ ĐẠI HỌC 2011 MƠN TỐN

Thời gian làm bài: 180 phút A PHẦN DÀNH CHO TẤT CẢ THÍ SINH

Câu I (2 điểm) Cho hàm số

1 x y

x  

a) Khảo sát biến thiên vẽ đồ thị  C hàm số b) Biện luận theo m số nghiệm phương trình

1 x

m x

   Câu II (2 điểm)

a) Tìm m để phương trình  

4

2 sin xcos x cos 4x2sin 2x m 0

có nghiệm

0; 

 

 

 

b) Giải phương trình      

8

4

2

1

log log log

2 x 4 x  x

Câu III (2 điểm)

a) Tìm giới hạn

3 2

0

3

lim

1 cos x

x x

L

x

  

b) Chứng minh C1000  C1002 C1004  C1006   C10098 C1001002 50

Câu IV (1 điểm)

Cho a, b, c số thực thoả mãn a b c  3. Tìm giá trị nhỏ biểu thức 4a 9b 16c 9a 16b 4c 16a 4b c

M         

B PHẦN DÀNH CHO TỪNG LOẠI THÍ SINH Dành cho thí sinh thi theo chương trình chuẩn Câu Va (2 điểm)

a) Trong hệ tọa độ Oxy, cho hai đường trịn có phương trình C1:x2y2 4y 0

C2:x2y2 6x8y16 0. Lập phương trình tiếp tuyến chung C1 C2

b) Cho lăng trụ đứng ABC.A’B’C’ có tất cạnh a Gọi M trung điểm AA’ Tính thể tích khối tứ diện BMB’C’ theo a chứng minh BM vng góc với B’C

(10)

Cho điểm A2;5;3 đường thẳng

1

:

2

x y z

d    

Viết phương trình mặt phẳng   chứa d cho khoảng cách từ A đến   lớn

Dành cho thí sinh thi theo chương trình nâng cao Câu Vb (2 điểm)

a) Trong hệ tọa độ Oxy, viết phương trình hyperbol (H) dạng tắc biết (H) tiếp xúc với đường thẳng d x y:   0 điểm A có hồnh độ

b) Cho tứ diện OABC có OA4,OB5,OC6 AOB BOC COA  60 Tính thể tích tứ diện OABC.

Câu VIb (1 điểm)

Cho mặt phẳng  P x:  2y2z1 0 đường thẳng

1

: ,

2

x y z

d    

5

:

6

x y z

d    

 Tìm điểm M thuộc d1, N thuộc d2 cho MN song song với (P) đường thẳng MN cách (P) khoảng

ĐÁP ÁN Câu I 2 điểm

a)

Tập xác định: Hàm số

1 x y

x  

 có tập xác định D R \  

Giới hạn: 1

1 1

lim 1; lim ; lim

1 1

x x x

x x x

xxx

   

  

   

  

0,25

Đạo hàm:  2

' 0,

1

y x

x

    

 Hàm số nghịch biến khoảng

 ;1

1; Hàm số khơng có cực trị Bảng biến thiên:

0,25

Đồ thị hàm số có tiệm cận đứng x1; tiệm cận ngang y1 Giao hai tiệm cận I1;1 tâm đối xứng

0,25

Đồ thị: Học sinh tự vẽ hình 0,25

b)

Học sinh lập luận để suy từ đồ thị (C) sang đồ thị

 

1 ' x

y C

x  

Học sinh tự vẽ hình

(11)

Số nghiệm 1 x

m x

  

số giao điểm đồ thị

1 x y

x  

y m

0,25 Suy đáp số

1; 1:

m  m phương trình có nghiệm 1:

m phương trình có nghiệm m 1:

   phương trình vơ nghiệm

0,25

Câu II 2 điểm a)

Ta có

4

sin os sin

2

x cx  x

cos4x 1 2sin 2 x

0,25

Do  1  3sin 22 x2sin 2x 3 m

Đặt tsin 2x Ta có x 0;2 2x 0;  t 0;1 

 

     

 

Suy f t  3t22t 3 m t, 0;1

0,25

Ta có bảng biến thiên 0,25

Từ phương trình cho có nghiệm

10

0;

2 m

 

  

 

 

0,25 b)

Giải phương trình        

8

4

2

1

log log log

2 x 4 x  x

Điều kiện: 0x1 0,25

 2 x3 x1 4 x 0,25

Trường hợp 1: x1

 2  x2 2x 0 x2

0,25

Trường hợp 1: 0x1

 2  x26x 0  x2 3

Vậy tập nghiệm (2) T 2; 3 

0,25

Câu III a)

Tìm

3 2

0

3

lim

1 cos x

x x

L

x

  

Ta có

3 2

0

3 1 1

lim

1 cos cos

x

x x

L

x x

 

   

 

 

 

 

 

(12)

Xét

2

1

2

0

2 1

lim lim

1 cos 2sin 2 1 1

2 x x x x L x x x                 0,25

Xét  

3 2

2

2

0 2 3 2 3 2

3 1

lim lim

1 cos

2sin 3 1

2 x x x x L x x x x                     0,25

Vậy L L 1L2   2 0,25

b)

Chứng minh C1000  C1002 C1004  C1001002 50

Ta có

 

   

100 2 100 100

100 100 100 100

0 100 99

100 100 100 100 100 100 100

1

i C C i C i C i

C C C C C C C i

     

        

0,5

Mặt khác

1i2  1 2i i 2i 1i100  2i 50250

Vậy C1000  C1002 C1004  C1001002 50

0,5

Câu IV Cho a, b, c thoả a b c  3. Tìm GTNN của

4a 9b 16c 9a 16b 4c 16a 4b c

M         

Đặt 2 ;3 ; , 2 ;3 ; , w 2 ;3 ;  w a b c c a b b c a

u⃗  ⃗v      Muv

   

   

      

  2  2 2

w 2a 2b 2c 3a 3b 3c 4a 4b 4c M   u v⃗ ⃗          

0,25

Theo cô – si có 222b2c3 23 a b c  6 Tương tự … 0,5 Vậy M 3 29 Dấu xảy a b c  1 0,25

Câu Va Học sinh tự vẽ hình

a)C1:I10; , R13;C2:I23; ,  R2 3 0,25

Gọi tiếp tuyến chung C1 , C2  

2

:Ax By C A B

     

 tiếp tuyến chung C1 , C2

        2 1 2 2

2

;

; 3 4 3 2

B C A B

d I R

d I R A B C A B

                     

Từ (1) (2) suy A2B

3

2 A B C 

0,25

Trường hợp 1: A2B.

Chọn B 1 A 2 C  2 5 : 2x y  0 

Trường hợp 2:

3

2 A B C 

Thay vào (1)

(13)

2

2 0; : 0; :

3

ABABAA B  y   xy  b)

Gọi H trung điểm BC   

3

; '

2 a d M BB C AH

   0,25

2

' 12 ' 2 ' 13 ' 123

BB C a MBB C BB C a

S  BB BC  VAH S 

0,25 Gọi I tâm hình vng BCC’B’ (Học sinh tự vẽ hình)

Ta có B C' MI B C; ' BC' B C' MB

0,5 Câu VIa

(Học sinh tự vẽ hình)

Gọi K hình chiếu A d  K cố định;

Gọi   mặt phẳng chứa d H hình chiếu A  

0,25

Trong tam giác vuông AHK ta có AHAK

Vậy AHmaxAK    mặt phẳng qua K vng góc với AK

0,25

Gọi   mặt phẳng qua A vng góc với d    : 2x y 2z15 0

3;1; 4

K

0,25

  mặt phẳng qua K vng góc với AK    :x 4y z  0 0,25

Câu Vb a)

Gọi  

2

2

:x y

H

ab

(H) tiếp xúc với d x y:   0  a2 b24  1

0,25

    162 42  

4 4; 2

x y A H

a b

        0,25

Từ (1) (2) suy  

2

2 8; 4 : 1

8

x y ab   H  

0,5 b)

(Học sinh tự vẽ hình)

Lấy B’ OB; C’ OC cho OA OB 'OC' 4

0,25

Lấy M trung điểm B’C’  OAM  OB C' '  Kẻ AHOMAH OB C' '

0,25

Ta có

2

2

3

AMOM   MH   AH0,25

1 15

.sin

2

OBC

SOB OC BOC

Vậy

1

10

3

OABC OBC

VAH S

0,25

Câu VIb

(14)

 

 ;  2 1 0;

d M P   t   t t

Trường hợp 1: t 0 M1;3;0 , MN 6 ' 4; ' 3; ' 5tt   t  



 

' 5;0;

P P

MNnMN n   t   N

                                                       

0,25

Trường hợp 2: t 1 M3;0; , N1; 4;0  0,25

Ngày đăng: 04/03/2021, 17:59

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w