1. Trang chủ
  2. » Luận Văn - Báo Cáo

Áp dụng các thuật toán dựa trên tìm kiếm bầy đàn để tính toán điều độ tối ưu trong hệ thống điện có xét đến nguồn năng lượng gió

175 26 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 175
Dung lượng 3,01 MB

Nội dung

ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH TRƢỜNG ĐẠI HỌC BÁCH KHOA LÊ ANH DŨNG ÁP DỤNG CÁC THUẬT TỐN DỰA TRÊN TÌM KIẾM BẦY ĐÀN ĐỂ TÍNH TỐN ĐIỀU ĐỘ TỐI ƢU TRONG HỆ THỐNG ĐIỆN CÓ XÉT ĐẾN NGUỒN NĂNG LƢỢNG GIÓ LUẬN ÁN TIẾN SĨ KỸ THUẬT TP HỒ CHÍ MINH NĂM 2019 ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH TRƢỜNG ĐẠI HỌC BÁCH KHOA LÊ ANH DŨNG ÁP DỤNG CÁC THUẬT TOÁN DỰA TRÊN TÌM KIẾM BẦY ĐÀN ĐỂ TÍNH TỐN ĐIỀU ĐỘ TỐI ƢU TRONG HỆ THỐNG ĐIỆN CÓ XÉT ĐẾN NGUỒN NĂNG LƢỢNG GIÓ Chuyên ngành: Mạng hệ thống điện Mã số chuyên ngành: 62525005 NGƢỜI HƢỚNG DẪN KHOA HỌC PGS-TS Võ Ngọc Điều TS Đinh Hoàng Bách TP HỒ CHÍ MINH NĂM 2019 ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH TRƢỜNG ĐẠI HỌC BÁCH KHOA LÊ ANH DŨNG ÁP DỤNG CÁC THUẬT TỐN DỰA TRÊN TÌM KIẾM BẦY ĐÀN ĐỂ TÍNH TỐN ĐIỀU ĐỘ TỐI ƢU TRONG HỆ THỐNG ĐIỆN CÓ XÉT ĐẾN NGUỒN NĂNG LƢỢNG GIÓ Chuyên ngành: Mạng hệ thống điện Mã số chuyên ngành: 62525005 Phản biện độc lập 1: GS-TS Lê Kim Hùng Phản biện độc lập 2: PGS-TS Quyền Huy Ánh Phản biện 1: PGS-TS Võ Viết Cƣờng Phản biện 2: TS Nguyễn Trung Nhân Phản biện 3: PGS-TS Phạm Đình Anh Khôi NGƢỜI HƢỚNG DẪN KHOA HỌC PGS-TS Võ Ngọc Điều TS Đinh Hồng Bách TP.HỒ CHÍ MINH NĂM 2019 LỜI CAM ĐOAN Tôi xin cam đoan báo cáo luận án cơng trình nghiên cứu tự thân Các kết nghiên cứu kết luận luận án trung thực, không chép từ nguồn dƣới hình thức Trong nghiên cứu này, việc tham khảo nguồn tài liệu đƣợc thực trích dẫn ghi nguồn tài liệu tham khảo qui định Tác giả Lê Anh Dũng i TÓM TẮT LUẬN ÁN Hiện thị trƣờng điện đƣợc nhiều nƣớc giới áp dụng có nhiều ƣu điểm, Việt Nam bắt đầu hình thành vận hành thị trƣờng điện nƣớc Một yếu tố quan trọng vận hành hệ thống điện theo thị trƣờng điện phải tính đƣợc công suất phát NMPĐ giá thành điện theo yêu cầu phụ tải trƣớc tham gia phát điện Hơn nữa, hệ thống điện vận hành cần đến yếu tố quan trọng nhƣ: tối ƣu kinh tế, tối ƣu phân bố công suất, tối ƣu công suất phản kháng để hệ thống phát điện với chi phí thấp vận hành ổn định Năng lƣợng gió ngày đƣợc sử dụng nhiều giới nguồn lƣợng tái tạo không ô nhiễm môi trƣờng không tốn chi phí nhiên liệu, nhiên lƣợng gió có chi phí đầu tƣ cao tham gia vào vận hành hệ thống điện làm thay đổi chế độ vận hành đặc biệt vấn đề tối ƣu vận hành hệ thống điện Do nghiên cứu tập trung giải tốn nhƣ sau: điều độ kinh tế hệ thống điện (ED), điều độ tối ƣu phân bố công suất (OPF) điều độ tối ƣu công suất phản kháng (ORPD) hệ thống điện có tham gia nhà máy điện gió (NMĐG) theo yêu cầu phụ tải 24 trƣớc phát điện Các toán nhằm tính giải u cầu chính: cơng suất phát nhà máy với chi phí thấp nhất, cơng suất tối ƣu truyền tải đƣờng dây, điện áp tụ bù nút hệ thống, tổn thất công suất thấp, nâng cao ổn định điện áp nút Từ kết tính đƣợc lựa chọn nhà máy có cơng suất phát tối ƣu, giá bán điện thấp điều kiện ổn định điện áp, công suất truyền tải, tổn thất công suất tốt để tham gia vào hệ thống Trong báo cáo chuyên đề trình bày áp dụng thành cơng phƣơng pháp tìm kiếm bầy đàn cho tốn tối ƣu với hàm số chuẩn, từ lựa chọn thông số cài đặt tốt cho phƣơng pháp tìm kiếm bầy đàn giải toán tối ƣu Trong báo cáo chuyên đề tiếp tục phát triển phƣơng pháp tìm kiếm bầy đàn để áp dụng giải toán ED, OPF ORPD cho hệ thống điện chuẩn IEEE 30 nút tham gia lƣợng gió, lập trình sử dụng phần mềm Matlab Từ kết ii chuyên đề chuyên đề 2, nghiên cứu tiếp tục thực áp dụng phƣơng pháp tìm kiếm bầy đàn để giải toán ED, OPF ORPD cho hệ thống điện chuẩn IEEE 30 nút có tham gia NMĐG yêu cầu phụ tải 24 Kết sau tính tốn có so sánh với kết nghiên cứu đƣợc cơng bố ngồi nƣớc vận hành tối ƣu hệ thống điện có tham gia NMĐG Nghiên cứu khoa học gồm phần sau: Chƣơng 1: Mở đầu Chƣơng 2: Tổng quan Chƣơng 3: Các phƣơng pháp tìm kiếm tối ƣu Chƣơng 4: Điều độ kinh tế hệ thống điện Chƣơng 5:Phân bố tối ƣu công suất hệ thống điện Chƣơng 6: Điều độ tối ƣu công suất phản kháng hệ thống điện Chƣơng 7: Kết luận hƣớng phát triển iii ABSTRACT Electricity deregulation is a popular issue of developed countries Vietnam will operate electricity deregulation in near future years The important problems in power deregulation system operation are power output of generations, load demands, cost of generators, power loss, power flow with compulsive constraints in system Three main subjects relate to this problems which are economic dispatch (ED), optimization power flow (OPF) and optimization reactive power dispatch (ORPD) Moreover, operational parameters of electricity system should calculate 24 hours load before a day, because power load can change following hours per day Although wind farms have high investment cost however, wind energy has many advantages characteristics such as environmental friendly, non-emission, non-fuel operation In future, Vietnam should build many new wind farms because Vietnamese geography position has long beach and convenient weather condition to build wind farms The targets of this research solve three problems about operational optimization of power system with wind farm and 24 hours load demand Three problems are economic dispatch, optimization power flow and optimization reactive power dispatch The research find out particle swarm optimization algorithms which can solve these problems with the best results which are power output of thermal generators, power output of wind turbines, minimum operation cost of thermal power plants and wind farms, 24 hours load demand, power flow, voltage of all bus in system, capacity of capacitor banks, minimum power loss and voltage stability index increasing The research reports four particle swarm optimization algorithms to solve ED, OPF and ORPD problems Four algorithms are particle swarm optimization time varying acceleration coefficients (PSO-TVAC), pseudo gradient particle swarm optimization (PG-PSO), pseudo gradient particle swarm optimization constriction factor (PGPSOCF) and cuckoo search (CS) These algorithms can help to solve ED, OPF, ORPD problems of power system with wind farms connecting and supply 24 hours load demand Combination of these methods and Matlab programming calculate the IEEE iv 30 bus system with wind farm Final results also are compared to scientific reports in international technique journals Chapter introduces the subject of the research Chapter reviews former reports about power system optimization and algorithms in solving ED, OPF and ORPD problems in power system In chapter 2, give assessment, comparison and definition for researching direction Chapter shows particle swarm optimization methods such as PSO-TVAC, PG-PSOCF and CS This chapter details setting parameters for these methods to program exactly and best results Chapter presents and draws the PSO, PSO improvement, CS flowcharts Chapter collects 24 hours wind data from Phuyen province – Vietnam and builds wind power function, wind cost function following wind speed This chapter programs ED problem by IEEE 30 bus system with wind farm connecting The result of ED problem was compared and analyzed to select the best method From wind data and wind cost function of chapter 4, chapter and chapter continue to program and show the results OPF and ORPD problems of IEEE 30 bus system with wind farm combination The results of OPF and OPRD problems have been assessed and compare with scientific public report Chapter generalizes all content of this research and analyzes results in chapter 4, and chapter In this chapter, includes particle swarm optimization algorithms application in ED, OPF and ORPD in Vietnam power system and larger electricity system in future The author would like to thank Associate Professor – Doctor Dieu Ngoc Vo, Doctor Bach Hoang Dinh, all Lecturers and Staffs of Hochiminh City University of Technology for advice and support during my study period and this thesis completion v LỜI CẢM ƠN Tôi xin chân thành cảm ơn Phó giáo sƣ -Tiến sĩ Võ Ngọc Điều, Tiến sĩ Đinh Hồng Bách tận tình hƣớng dẫn giúp đỡ định hƣớng nghiên cứu thu thập tham khảo tài liệu q chun ngành ngồi nƣớc, dẫn soạn thảo hoàn chỉnh luận án Tôi xin trân trọng cảm ơn Thầy Cô giáo viên Bộ môn Hệ thống điện Khoa Điện Điện tử - Trƣờng Đại học Bách Khoa Thành phố Hồ Chí Minh trao đổi đóng góp nhiều ý kiến q giá để hồn thành luận án Tơi xin cảm ơn Q Thầy Cơ cơng tác Phịng Đào tạo sau Đại học Trƣờng Đại học Bách Khoa Thành phố Hồ Chí Minh tận tình trao đổi, cung cấp hƣớng dẫn tham khảo biểu mẫu biên soạn theo qui định, nhƣ giúp đỡ công tác liên quan để hoàn thành báo cáo luận án Sau xin chân thành biết ơn tất tập thể giáo viên Trƣờng Đại học Bách Khoa Thành phố Hồ Chí Minh dạy dỗ giúp đỡ suốt thời gian nghiên cứu sinh Trƣờng vi MỤC LỤC DANH MỤC CÁC HÌNH VẼ x DANH MỤC CÁC BẢNG BIỂU xii DANH MỤC CÁC LƢU ĐỒ xiii DANH MỤC CÁC TỪ VIẾT TẮT xiv DANH MỤC CÁC KÝ HIỆU xvi CHƢƠNG MỞ ĐẦU 1.1 Lý chọn đề tài 1.2 Mục đích nghiên cứu 1.3 Đối tƣợng phạm vi nghiên cứu 1.3.1 1.3.2 Đối tƣợng nghiên cứu Phạm vi nghiên cứu 1.4 Phƣơng pháp nghiên cứu CHƢƠNG TỔNG QUAN 2.1 Giới thiệu 2.2 Thuật tốn tìm kiếm bầy đàn tối ƣu hóa 2.3 Tua bin gió tiềm điện gió Việt Nam 2.3.1 Tua bin gió 2.4 Điều độ tối ƣu hệ thống điện 2.4.1 2.4.2 2.4.3 Điều độ kinh tế hệ thống điện Điều độ phân bố tối ƣu công suất 10 Điều độ tối ƣu công suất phản kháng 15 2.5 Điều độ tối ƣu hệ thống điện có tham gia NMĐG 18 2.5.1 2.5.2 2.5.3 Điều độ kinh tế có tham gia NMĐG 19 Điều độ phân bố tối ƣu cơng suất có tham gia NMĐG 24 Điều độ tối ƣu công suất phản kháng có tham gia NMĐG 29 2.6 Các khiếm khuyết cần khắc phục 32 2.7 Kết luận chƣơng 34 CHƢƠNG CÁC PHƢƠNG PHÁP TÌM KIẾM TỐI ƢU 35 3.1 Tối ƣu hoá bầy đàn (PSO) 35 3.2 Các bƣớc xây dựng thuật toán PSO 37 3.3 Các phƣơng pháp PSO cải tiến 37 3.3.1 3.3.2 3.3.3 Phƣơng pháp PSO với hệ số gia tốc biến đổi thời gian PSO-TVAC 38 Phƣơng pháp PSO với gradient giả PG (Pseudo - Gradient) 41 Phƣơng pháp PSO với hệ số giới hạn (CF) 43 3.4 Phƣơng pháp chim tu hú (Cuckoo Search) 46 vii [42] L D Luong, D N Vo, and D A Le, "A Hybrid Differential Evolution and Harmony Search for Nonconvex Economic Dispatch Problems", Power Engineering and Optimization Conference (PEOCO), July 2013 [43] N A Rahmat, I Musirin, A F Abidin and M R Ahmad, "Economic load dispatch with valve-point loading effect by using Differential Evolution Immunized Ant Colony optimization technique", Australasian Universities Power Engineering Conference (AUPEC), 10.1109/AUPEC.2014 6966560, pp 1-6, Sept 2014 [44] A M Elaiw, X Xia and A M Shehata, "Solving dynamic economic emission dispatch problem with valve-point effects using hybrid DE-SQP", IEEE Power and Energy Society Conference and Exposition in Africa: Intelligent Grid Integration of Renewable Energy Resources (PowerAfrica), 10.1109/PowerAfrica.6498646, pp 1-6, July 2012 [45] K K Swarnkar, S Wadhwani and A K Wadhwani, "Optimal Power Flow of large distribution system solution for Combined Economic Emission Dispatch Problem using Partical Swarm Optimization",2009 International Conference on Power Systems, 10.1109/ICPWS.2009.5442713, pp 1-5, Dec 2009 [46] J T Haider, " Study of the Economic Dispatch Problem on IEEE-30 bus system using Whale Optimization Algorithm", International Journal of Engineering Technology and Sciences (IJETS), vol.5, 10.15282/ijets.5 2016.1.2.1041, June 2016 [47] M Al-jumaili, J Rahebi, A Akbas and A Farzamnia, "Economic dispatch optimization for thermal power plants in Iraq", 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS), 10.1109/I2CACIS.2017.8239047, pp 140-143, Kota Kinabalu, 2017 [48] G Y G Tchapda, Z Wang and Y Sun, "Application of Improved Particle Swarm Optimization in Economic Dispatch of Power System", 2017 10th International Symposium on Computational Intelligence and Design (ISCID), 10.1109/ISCID.2017.234, pp 500-503, Hangzhou, 2017 [49] E Mostafa, M Abdel-Nasser and K Mahmoud, "Performance evaluation of metaheuristic optimization methods with mutation operators for combined economic and emission dispatch", 2017 Nineteenth International Middle East Power Systems Conference (MEPCON),10.1109/MEPCON.2017.8301304, pp 1004-1009, Cairo, Egypt, 2017 [50] H Pulluri, R Naresh, V Sharma and Preeti, "A new colliding bodies optimization for solving optimal power flow problem in power system", IEEE 6th International Conference on Power Systems (ICPS), 141 10.1109/ICPES.2016.7584138, pp 1-6, March 2016 [51] C Wang, Y Liu and XinXiang Pan, "Load flow calculation of integrated shipboard power system based on Particle Swarm Optimization algorithm", International Conference on Test and Measurement, 10.1109/ICTM.2009 5412998, pp 83-87, Dec 2009 [52] C Y Chang, J Cortés and S Martínez, "A scheduled-asynchronous distributed optimization algorithm for the optimal power flow problem", American Control Conference (ACC), 10.23919/ACC.2017.7963563, pp 3968-3973, May 2017 [53] J Eickmann, J Kellermann and A Moser, "Efficient power flow approximation methodology for topology optimization algorithms in transmission system operation", International Conference on Clean Electrical Power (ICCEP), 10.1109/ICCEP.2015.7177615, pp 147-154, June 2015 [54] Q Sun and L Liu and D Ma and H Zhang, "The initial guess estimation newton method for power flow in distribution systems", IEEE/CAA Journal of Automatica Sinica, 10.1109/JAS.2017.7510514, vol 4, pp 231-242, April 2017 [55] A Cherukuri, A D Domínguez-García and J Cortés, "Distributed coordination of power generators for a linearized optimal power flow problem",2017 American Control Conference (ACC), 10.23919/ACC.2017.7963562, pp 3962-3967, May 2017 [56] Y Liu, J H Hours, G Stathopoulos and C N Jones, "Real-time distributed algorithms for nonconvex optimal power flow", American Control Conference (ACC), 10.23919/ACC.2017.7963469, pp 3380-3385, May 2017 [57] J Soare, T Sousa, A Z Vale, H Morais, and P Faria, "Ant Colony Search algorithm for the optimal power flow problem", 10.1109/PES.2011.6039840, Power and Energy Society General Meeting, pp 1-6, 2011 [58] M N Suharto, M Y Hassan, M S Majid, M P Abdultah, and F Hussin, "Optimal power flow solution using evolutionary computation techniques", IEEE Region 10 Conference, 10.1109/TENCON-2011-6129074, pp.113 – 11, 2011 [59] C Sumpavakup, I Srikun and Chusanapipult, "A solution to the optimal power flow using artificial Bee colony algorithm",IEEE, Publication POWERCON, 10.1109/2010, 5666516, pp 1-5, 2010 [60] T Sousa, J S Vale, Z A H Morais, and P Faria, "Simulated Annealing metaheuristic to solve the optimal power flow", IEEE Power and Energy Society General Meeting, 10.1109/PES.2011.6039543, pp 1-8, 2011 142 [61] L Imen, L Djamel, S Hassiba, D Abdellah and F Selwa, "Optimal power flow study using conventional and neural networks methods", International Conference on Renewable Energy Research and Applications (ICRERA), 10.1109/ICRERA.2015.7418642, pp 1422-1427, Nov 2015 [62] B E Turkay and R I Cabadag, "Optimal power flow solution using particle swarm optimization algorithm", IEEE EUROCON,10.1109/6625164, pp 1418 – 1424, 2013 [63] M A Abido and M Waqar Ahmed, "Multi-objective optimal power flow considering the system transient stability", in IET Generation, Transmission & Distribution, 10.1049/iet-gtd.2016.1007, vol 10, no 16, pp 4213-4221, 12-8-2016 [64] M Abokrisha, A Diaa, A Selim and S Kamel, "Development of newtonraphson power-flow method based on second order multiplier",2017 Nineteenth International Middle East Power Systems Conference (MEPCON), 10.1109/MEPCON.2017.8301299, pp 976-980, Cairo, Egypt, 2017 [65] K Saurabh and S Gupta, "Modified artificial killer whale optimization for optimal power flow", 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 10.1109/ICCCNT 2017.8204138, pp 1-7, Delhi, 2017 [66] T Niknam, M R Narimani, J Aghaei and R Azizipanah-Abarghooee, "Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index", IET Generation, Transmission & Distribution, 10.1049/iet-gtd.2011.0851, vol 6, no 6, pp 515-527, June 2012 [67] E C Ferreira, M S I Neto and E N Asada, "Metaheuristic strategies for solving the Optimal Reactive Power Dispatch with discrete variables", 2016 12th IEEE International Conference on Industry Applications (INDUSCON), 10.1109/INDUSCON.2016.7874516, pp 1-6, Nov 2016 [68] A Latif, I Ahmad, P Palensky and W Gawlik, "Multi-objective reactive power dispatch in distribution networks using modified bat algorithm", 2016 IEEE Green Energy and Systems Conference (IGSEC), 10.1109/IGESC.2016 7790069, pp 1-7, Nov 2016 [69] D Kaur, T T Lie, N K C Nair and B Valles, "An optimal reactive power dispatch for voltage security using particle swarm optimization in graph theory", 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET), 10.1109/ICSET.2016.7811751, pp 25-30, Nov 2016 143 [70] R Maharjan and S Kamalasadan, "Secondary voltage control of power grid using voltage stability index and voltage control areas", North American Power Symposium (NAPS), 10.1109/NAPS.2017.8107330, pp 1-6 Morgantown, WV, 2017 [71] S M Mohseni-Bonab and A Rabiee, "Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation", in IET Generation, Transmission & Distribution, 10.1049/iet-gtd.2016.1545, vol 11, no 4, pp 815-829, 2017 [72] C Reis and F P M Barbosa, "A comparison of voltage stability indices",MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference, 10.1109/MELCON.2006.1653269, pp 1007-1010, Malaga, 2006 [73] K Rayudu and G Yesuratnam and M Ali and A Jayalaxmi, "Optimal reactive power dispatch based on particle swarm optimization and LP technique", International Conference on Emerging Technological Trends (ICETT), 10.1109/ICETT.2016.7873777, pp 1-7, Oct 2016 [74] M S Alam and M De, "Optimal reactive power dispatch using hybrid loopgenetic based algorithm", 2016 National Power Systems Conference (NPSC), 10.1109/NPSC.2016.7858901, pp 1-6, Dec 2016 [75] A Latif, I Ahmad, P Palensky and W Gawlik, "Multi-objective reactive power dispatch in distribution networks using modified bat algorithm",2016 IEEE Green Energy and Systems Conference (IGSEC), 10.1109/IGESC.2016.7790069, pp 1-7, Nov 2016 [76] A Abbasy, and S H Hosseini, "Ant Colony Optimization Based Approach to Optimal Reactive Power Dispatch: A Comparison of Various Ant Systems", Power Engineering Society Conference and Exposition in Africa, IEEE,10.1109/PESAFR.2007.4498067, pp - 8, PowerAfrica 2007 [77] M A Abido, and J M Bakhashwain, "A novel multiobjective evolutionary algorithm for optimal reactive power dispatch problem",Electronics Circuits and Systems ICECS, IEEE International Conference, vol 3, 10.1109 ICECS.2003.1301691, pp 1054 - 1057, 2003 [78] K Vaisakh, P.K Rao, "Optimal reactive power allocation using PSO DV hybrid algorithm",India Conference INDICON IEEE, vol 1, 10.1109 INDCON.2008.4768834, pp: 246 – 252, 2008 [79] B Zhao, C X Guo, and Y J Cao, "An improved particle swarm optimization algorithm for optimal reactive power dispatch", IEEE Power 144 Engineering Society General Meeting,10.1109/PES.2005.1489159, vol 1, pp: 272–279, 2005 [80] Y Zeng and Y Sun, "Comparison of multiobjective particle swarm optimization and evolutionary algorithms for optimal reactive power dispatch problem",IEEE Congress on Evolutionary Computation (CEC), 10.1109/CEC.2014.6900260, pp 258-265, Beijing, 2014 [81] K Lenin, B R Reddy, and M.Surya Kalavathi, "Improved Compound Swarm Intelligence Algorithm for Solving Optimal Reactive Power Dispatch Problem", Journal of Electrical and Control Engineering JECE, Vol No 3, pp 5-12, 2014 [82] J Jithendranath and B Y Babu, "Solving ORPD problem with modal analysis by differential evolution", 2014 IEEE 2nd International Conference on Electrical Energy Systems (ICEES), 10.1109/ICEES.2014.6924140, pp 51-55, Chennai, 2014 [83] K Lenin, B R Reddy, M S Kalavathi, "Quantum stirred cuckoo search algorithm for solving optimalreactive power dispatch problem", American Journal of Science and Technology, vol 1(4), pp 199-205, 2014 [84] Y Fu et al., "Comparison of modeling methods of dynamic economic dispatch with stochastic wind power integration", 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), 10.1109/EI2.2017 8245442, pp 1-6, Beijing, 2017 [85] L B Shi, Z X Weng, L Z Yao and Y X Ni, "An Analytical Solution for Wind Farm Power Output", in IEEE Transactions on Power Systems, 10.1109/TPWRS.2014.2315498, vol 29, no 6, pp 3122-3123, Nov 2014 [86] L Yong, and S Tao, "Economic dispatch of power system incorporating wind power plant", International, Power Engineering Conference, Publication, IEEE Conference Publications, pp 159 - 162, 2007 IPEC 2007 [87] F Guo, C Wen, J Mao and Y D Song, "Distributed Economic Dispatch for Smart Grids With Random Wind Power", in IEEE Transactions on Smart Grid, 10.1109/TSG.2015.2434831, vol 7, no 3, pp 1572-1583, May 2016 [88] X Dui and G Zhu, "Optimal unit commitment based on second-order cone programming in high wind power penetration scenarios", in IET Renewable Power Generation, 10.1049/iet-rpg.2017.0353, vol 12, no 1, pp 52-60, 2018, [89] Y Shengjie, Y JianGang, S Qian and X ZhiYuan, "Analysis of integrated wind power cost based on Dynamic Economic Dispatch", Advanced Power System Automation and Protection (APAP), International Conference, 145 10.1109/APAP.2011.6180460, pp 539 - 542, vol.1, 2011 [90] J Wu and E Al, "Optimal economic dispatch model based on risk management for wind-integrated power system", in IET Generation, Transmission & Distribution, 10.1049/iet-gtd.2015.0209, vol 9, no 15, pp 2152-2158, 2015 [91] Y Tang, C Luo, J Yang and H He, "A chance constrained optimal reserve scheduling approach for economic dispatch considering wind penetration", in IEEE/CAA Journal of Automatica Sinica, 10.1109/JAS.2017.7510499, vol 4, no 2, pp 186-194, April 2017 [92] A Sl-Subhi, M Alsumiri and S Alalwani, "Novel MPPT algorithm for low cost wind energy conversion systems",2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems & 2017 Intl Conf on New Paradigms in Electronics & Information Technology (PEIT), 10.1109/ACCS-PEIT.2017 8303033, pp 144-148, Alexandria, Egypt, 2017 [93] M Li, J Pan, Q Su and Y Niu, "Analyzing sensitivity of power system wind penetration to thermal generation flexibility", 2017 13th IEEE Conference on Automation Science and Engineering (CASE), 10.1109/COASE.2017 8256337, pp 1628-1632 , Xi'an, 2017 [94] M Modiri-Delshad, M Barati and N A Rahim, "Economic power dispatch in microgrids through backtracking search algorithm", 4th IET Clean Energy and Technology Conference (CEAT 2016), pp 1-8, 10.1049/cp.2016.1326, Kuala Lumpur, 2016 [95] H T Jadhav, H Bhandari, Y Dalal and R Roy, "Economic load dispatch including wind power using plant growth simulation algorithm," 2012 11th International Conference on Environment and Electrical Engineering, 10.1109/EEEIC.2012.6221408, pp 388-393, Venice, 2012 [96] K Dhayalini, S Sathiyamoorthy and C C Asir Rajan, "Genetic algorithm solution to coordinate the wind and thermal generation dispatch",IEEEInternational Conference On Advances In Engineering, Science And Management (ICAESM -2012), pp 326-331, Nagapattinam, Tamil Nadu, 2012 [97] M G Dozein, J Ansari and M Kalantar, "Economic Dispatch incorporating wind power plant using Particle Swarm Optimization",2012 Second Iranian Conference on Renewable Energy and Distributed Generation,pp 178-182, 10.1109/ICREDG.2012.6190458, Tehran, 2012 [98] Z Hasan and M E El-Hawary, "Optimal power flow incorporating wind energy and load reduction by BH algorithm and KOA algorithm", 2017 IEEE 146 Electrical Power and Energy Conference (EPEC), 10.1109/EPEC.2017 8286203, pp 1-7, Saskatoon, SK, 2017 [99] S S Reddy and J A Momoh, "Minimum emissions optimal power flow in wind-thermal power system using Opposition based Bacterial Dynamics algorithm", 2016 IEEE Power and Energy Society General Meeting (PESGM), 10.1109/PESGM.2016.7741635, pp 1-5, Boston, MA, 2016 [100] J J Chen and Q H Wu, "Probability interval optimization for optimal power flow considering wind power integrated", 2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), 10.1109/PMAPS 2016.7764075, pp.1-5, Beijing, 2016 [101] M Siavash, C Pfeifer, A Rahiminejad and B Vahidi, "An application of grey wolf optimizer for optimal power flow of wind integrated power systems",2017 18th International Scientific Conference on Electric Power Engineering (EPE), 10.1109/EPE.2017.7967230, pp 1-6, Kouty nad Desnou, 2017 [102] M B Maskar, A R Thorat, P D Bamane and I Korachgaon, "Optimal power flow incorporating thermal and wind power plant", 2017 International Conference on Circuit,Power and Computing Technologies (ICCPCT), 10.1109/ICCPCT.2017.8074265, pp 1-6, Kollam, 2017 [103] I Molina-Moreno, A Medina and R Cisneros-Magaña, "Methodology for optimal bus placement to integrate wind farm optimizing power flows", 2015 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 10.1109/ROPEC.2015.7395149, pp 1-6, Ixtapa, 2015 [104] Yang Guang, "Application of catastrophic adaptive genetic algorithm to reactive power optimization in power system with wind farm," International Conference on Automatic Control and Artificial Intelligence (ACAI 2012), 10.1049/cp.2012.1034, pp 534-537, Xiamen, 2012 [105] C B Mendonca Oliveira, M F de Medeiros and J T de Oliveira, "New Method based in Particle Swarm Optimization for Power Factor Remote Control and Loss Minimization in Power Systems with Wind Farms Connected", 2009 15th International Conference on Intelligent System Applications to Power Systems, 10.1109/ISAP.2009.5352870, pp 1-6, Curitiba, 2009 [106] H V Pham, S N Ahmed and I Erlich, "Multi-agent system based solution of the optimal reactive power dispatch problem in autonomously operated multi-area systems", 2015 IEEE Eindhoven PowerTech, 10.1109/PTC.2015 7232525, Eindhoven,pp 1-6, 2015 147 [107] S M Mohseni-Bonab and A Rabiee, "Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation", in IET Generation, Transmission & Distribution, 10.1049/iet-gtd.2016.1545, vol 11, no 4, pp 815-829, 2017 [108] A M Shaheen, R A El-Sehiemy and S M Farrag, "A novel framework for power loss minimization by modified wind driven optimization algorithm",2018 International Conference on Innovative Trends in Computer Engineering (ITCE),10.1109/ITCE.2018.8316648, Aswan, Egypt, pp 344349, 2018 [109] https://en.wikipedia.org/wiki/Particle_swarm_optimization [110] Y Sun, "Comparative analysis of PSO and quasi-newton methodsfor economic dispatch of power systems",2017 International Conference on Machine Learning and Cybernetics (ICMLC), 10.1109/ICMLC.2017 8108953, pp 390-396, Ningbo, China, 2017 [111] W Zhou, W Tommy, and S Chow, "A local multiobjective optimization algorithmusing neighborhood field", Springer-Verlag 2012, Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong, March 2012 [112] C Chokpanyasuwan, S Anantasate, S Pothiya, W Pattaraprakorn, and P Bhasaputr, "Honey Bee Colony Optimization to solve economic dispatch problem with generator constraints", Electrical Engineering/Electronics, Computer, Telecommunications and Information Technolog 10.1109/ ECTICON.2009.51369932009, pp 200 - 203, 2009 [113] V N Dieu, P Schegner, and W Ongsakul, "A newly improved particle swarm optimization for economic dispatch with vanve point loading effects", IEEE Power & Energy Society General Meeting, USA, July 2011 [114] Turing Finance, "http://www.turingfinance.com/portfolio-optimization-usingparticle-swarm-optimization/", 2017 [115] D N Vo, L D Le, and D A Le, "Economic Dispatch with Multiple Fuels by Self-Organizing Hierarchical Particle Swarm Optimization", IEEE, vol 23, Transactions on Power Systems, Issue: 3, Print ISSN: 0885-8950, pp 1079 1087, Aug 2013 [116] L D Le, L D Ho, J Polprasert, W Ongsakul, D N Vo, and D A Le, "Stochactis weight trade-off paticle swarm optimization for optimal power flow", Journal of Automation and Control Engineering (JOACE), vol 2, No 1, ISSN, pp 31-37, March 2014 148 [117] D N Vo, K P Nguyen, G Fujita, M N Muhtazaruddin, and D A Le, "Pseudo-gradient based particle swarm optimization for security constrained optimal power flow", Seventeenth International on Intelligent, System Applications to Power Systems, July 2013 [118] K Ben Oualid Medani and S Sayah, "Optimal reactive power dispatch using particle swarm optimization with time varying acceleration coefficients", 8th International Conference on Modelling, Identification and Control, 10.1109/ICMIC.2016.7804219, pp 780-785, Nov 2016 [119] D N Vo, and D A Le, "Optimal Reactive Power Dispatch by PseudoGradient Guided Particle Swarm Optimization", IEEE 10.1109.1947-1262, pp 12-14, Dec 2012 [120] D N Vo, D A Le, and K P Nguyen, "Particle Swarm Optimization with Constriction Factor for Optimal Reactive Power Dispatch", GMSARN International Journal, GMSARN 2013, pp 31 -40, July 2013 [121] B Zhao, C X Guo, and Y J Cao, "A Multiagent - Based Particle Swarm Optimization Approach for Optimal Reactive Dispatch", IEEE, vol 20, no 2, pp 0885-8950, May 2005 [122] X S Yang and S Deb, "Engineering optimisation by cuckoo search",Int J Mathematical Modelling and Numerical Optimisation, vol 1(4), pp 330-343, 2010 [123] X S Yang, and S Deb, "Cuckoo search via Lévy flights",(NaBIC 2009), Proc, World Congress on Nature & Biologically Inspired Computing, pp 210-214, India, 2009 [124] R N Mantegna, "„Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes", Physical Review E, vol 49(5), pp 4677-4683, 1994 [125] I.A Farhat, and M.E El-Hawary, "Dynamic adaptive bacterial foraging algorithm for optimum economic dispatch with valve-point effects and wind power", vol 4, no 9, IET Generation, Transmission & Distribution, pp 989999, 2010 [126] M A Abido, and J M Bakhashwain, "A novel multiobjective evolutionary algorithm for optimal reactive power dispatch problem", vol 3, 10.1109/ ICECS.2003.1301691, pp 1054 - 1057, 2003 [127] A N Henrik, "Short Term Forecast of Wind Power", Department of Informatics and Mathematical Modelling, Technical University of Denmark, 10.1007/978-3-540-88258-9-4, pp 107-132, 2800 Kongens Lyngby, Denmark 149 2011 [128] Wikipedia Wikipedia contributors, "Normal distribution", Date retrieved: 2015, 20 August, Page Version, 676642395, https://en wikipedia org/w/index [129] Wikipedia contributors Wikipedia, "Correlation and dependence", The Free Encyclopedia, 2015 14:16 UTC, 20 August, https://en.wikipedia org/w/index.php?title=Correlation_and_dependence&oldid=674856525 [130] S Mathew, and G S Philip, "Advances in Wind Energy Conversion Technology", Publisher Springer Berlin Heidelberg, ISBN 978-3-540-882572, 2011 [131] http://www.wind-power-program.com/wind_statistics.htm [132] R K Behera, and W Gao, "A Novel Controller Design for Gird-side Converter of Doubly Fed Induction Generator for Wind Power Interface: An Experimental Investigation ", Electric Power Components and System - Taylor & Fancis , 10.1080/15325008.2010.482093, pp 1531-1544, May 2010 [133] W Hongtao, H Chengming, and Z Qinyong, "The power system dispatching rolling optimization model based on the coordination of day-ahead and withinday wind-power prediction", Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 10.1109/DRPT.2011.5993982, 4th International Conference, pp 698 - 702, 2011 [134] S Tegen, M Hand, B Maples, E Lantz, P Schwabe and A Smith, "Cost of Wind Energy Review", NREL is a national laboratory of the U.S Department of Energy, operated by the Alliance for Sustainable Energy LLC, Technical Report, Office of Energy Efficiency & Renewable Energy, NREL/TP-5000 52920, April 2012 [135] T.Y Lee, "Short term hydroelectric power system scheduling with wind turbine generators using the multi-pass iteration particle swarm optimization approach", Energy Conversion and Management, , vol 49, pp 751–760, 2008 [136] R Jonathan, and I A Hiskens, "Estimating Wind Turbine Parameters and Quantifying Their Effects on Dynamic Behavior", IEEE Power and Energy Society General Meeting, Pittsburgh, July 2008 [137] P Prakornchai, "Optimal placement of wind farm on power system using multiobjective Bee Algorithm", Proceedings of the World Congress on Engineering, London UK, vol II, July 6-8 WCE 2011 [138] L Yong, and S Tao, "Economic dispatch of power system incorporating wind power plant", IPEC 2007, International, Power Engineering Conference, Publication , IEEE Conference Publications, vol 4, pp 159 - 162, 2007 150 [139] A Christoper, and Walford, "Wind Turbine Reliability: Understanding and Minimizing Wind Turbine Operation and Mainternance Costs", Sandia National Laboratories, SAND2006-1100, Global Energy Concepts, LLC, March 2006 [140] R Jonathan, and I A Hiskens, "Estimating Wind Turbine Parameters and Quantifying Their Effects on Dynamic Behavior", IEEE Power and Energy Society General Meeting, Pittsburgh, July 2008 [141] J Hetzer, D C Yu, and K Bhattarai, "An Economic Dispatch Model Incorporating Wind Power", IEEE Trans Energy Conversion, vol 23, no 2, pp 603-611, Jun 2008 [142] Z Yujiao, and S Yanguang, "Comparison of multiobjective particle swarm optimization and evolutionary algorithms for optimal reactive power dispatch problem", 10.1109/CEC.2014.6900260, pp 258 – 265, 2014 [143] S Affijulla and S Chauhan, "Swarm intelligence solution to large scale thermal power plant Load Dispatch", 2011 International Conference on Emerging Trends in Electrical and Computer Technology, 10.1109/ICETECT.2011.5760115, pp 196-199, March 2011 [144] M M Delshad, S H A Kaboli, E Taslimi, J Selvaraj and N A Rahim, "An iterated-based optimization method for economic dispatch in power system", 2013 IEEE Conference on Clean Energy and Technology (CEAT), 10.1109/CEAT.2013.6775605, pp 88-92, Nov 2013 [145] V N Dieu , P Schegner, W Ongsakul, "Cuckoo search algorithm for nonconvex economic dispatch", IET 7, no 6, 10.1049/iet-gtd.2012.0142.2013, pp 645 - 655, 2013 [146] https://energydata.info/dataset/vietnam-wind-measurements-giz [147] P Kachore and M V Palandurkar, "TTC and CBM Calculation of IEEE-30 Bus System", 2009 Second International Conference on Emerging Trends in Engineering Technology, 10.1109/ICETET.2009.227, pp 539-542, Dec 2009 [148] R D Zimmerman, C E Murillo-Sánchez and R J Thomas, "MATPOWER Steady-State Operations, Planning and Analysis Tools for Power Systems Research and Education", IEEE Transactions on, 10.1109/TPWRS, 2010 2051168, Power Systems, pp 12-19, 2011 [149] K K Swarnkar, S Wadhwani, A K Wadhwani, "Optimal Power Flow of large distribution system solution for Combined Economic Emission Dispatch Problem using Partical Swarm Optimization", ICPS '09 International Conference, 10.1109/ICPWS.2009.5442713, pp 1-5, 2009 [150] P Prakornchai, "Optimal placement of wind farm on power system using 151 multiobjective Bee Algorithm",WCEProceedings of the World Congress on Engineering 2011, Vol II, July 6-8 2011, London UK [151] A N Henrik, "Short Term Forecast of Wind Power", Department of Informatics and Mathematical Modelling, Technical University of Denmark 2800 Kongens Lyngby, 10.1007/978-3-540-88258-9-4, Denmark, pp 107-132, 2011 [152] W Liu and Z Luan and Y Yang and R Gan and H Zhao, "The application of the improved Particle Swarm Optimization on dynamic economic dispatch of power system with wind farms",TENCON 2015 - 2015 IEEE Region 10 Conference, 10.1109/TENCON.2015.7372978, pp 1-6, Nov 2015 [153] T Sousa, J Soares, Z A Vale, H Morais and P Faria, "Simulated Annealing metaheuristic to solve the optimal power flow", 2011 IEEE Power and Energy Society General Meeting, 10.1109/PES.2011.6039543, pp.1-8, July 2011 [154] C Y Chang, J Cortés and S Martínez, "A scheduled-asynchronous distributed optimization algorithm for the optimal power flow problem", 2017 American Control Conference (ACC), 10.23919/ACC.2017.7963563, pp 3968-3973, May 2017 [155] Y Shi, H D Tuan, S W Su and A V Savkin, "Multiple matrix rank constrained optimization for optimal power flow over large scale transmission networks", 2016 5th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), Transmission Networks, pp 1-6, April 2016 [156] R H Bhesdadiya, I N Trivedi, M H Pandya, D P Ladumor, P Jangir and A Parmar, "Solution of Optimal Power Flow with voltage stability enhancement using Grey Wolf Optimization", 2016 International Conference on Electrical Power and Energy Systems (ICEPES), 10.1109/ICEPES.2016 7915936, pp 232-238, Dec 2016 [157] D Abdellah and L Djamel, "Power flow analysis using adaptive neuro-fuzzy inference systems", 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), 10.1109/IRSEC.2015.7455102, pp 1-5, Dec 2015 [158] D Abdellah and L Djamel, "Power flow analysis using adaptive neuro-fuzzy inference systems", 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), 10.1109/IRSEC.2015.7455102, pp 1-5, Dec 2015 [159] C Gonggui, C Jinfu, D Xianzhong, "Power flow and dynamic optimal power flow including wind farms", Sustainable Power Generation and Supply, 2009 SUPERGEN '09, IEEE Conference, pp 1-6, 10.1109/SUPERGEN 2009.5348135, International Conference 2009 [160] H L Liao and Q H Wu, "Optimal power flow in wind power integrated 152 systems using function optimization by learning automata", 2011 IEEE Power and Energy Society General Meeting, 10.1109/PES.2011.6039532, pp 1-8, July 2011 [161] D K Molzahn and I A Hiskens, "Convex Relaxations of Optimal Power Flow Problems: An Illustrative Example", IEEE Transactions on Circuits and Systems I: Regular Papers, vol 63, 10.1109/TCSI.2016.2529281, pp 650-660, May 2016 [162] K K Swarnkar, S Wadhwani and A K Wadhwani, "Optimal Power Flow of large distribution system solution for Combined Economic Emission Dispatch Problem using Partical Swarm Optimization", 2009 International Conference on Power Systems, 10.1109/ICPWS.2009.5442713, pp 1-5, Dec 2009 [163] D.A Le, and D N Vo, "Application of Cuckoo Search Algorithm for Optimization Power Flow in Power Sytem", GMSARN , International Journal Green Economy with Energy, Environmental & Social Responsibility, pp 4550, Sep 2015 [164] C Mishra, S P Singh, J Rokadia, "Optimal power flow in the presence of wind power using modified cuckoo search",Generation, Transmission & Distribution, IET, vol 9, IET Journals & Magazines, 10.1049/iet-gtd 2014 0285, pp 615 - 626, 2015 [165] S Biswal and A K Barisal and A Behera and T Prakash, "Optimal power dispatch using BAT algorithm", 2013 International Conference on Energy Efficient Technologies for Sustainability, 10.1109/ICEETS.2013.6533526, pp 1018-1023, April 2013 [166] K Lenin, B R Reddy, and M S Kalavathi, "Improved compound swarm intelligence algorithm for solving optimal reactive power dispatch problem", JECE American V-King Scientific Publishing, vol 4, no 2014, pp 5-12, 2014 [167] K Vaisakh and P.K Rao, "Optimal reactive power allocation using PSO-DV hybrid algorithm", IEEE India Conference INDICON, 10.1109/INDCON 2008.4768834, vol 1, pp 246 – 252, 2008 [168] H Youssef, S Kamel and M M Aly, "Optimal allocation and size of appropriate compensation devices for voltage stability enhancement of power systems", 2018 International Conference on Innovative Trends in Computer Engineering (ITCE)Aswan, 10.1109/ITCE.2018.8316642, pp 305-310, 2018 [169] Y R Hernandez, and T Hiyama, "Minimization of Voltage Deviations", Power Losses and Control Actions in a Transmission Power System 10.1109/ISAP.2009.5352949, pp - 5, 2009 153 [170] Z Sahli, A Hamouda, A Bekrar, and D Trentesaux, "Hybrid PSO-tabu search for the optimal reactive power dispatch problem", 10.1109/IECON.2014 7049024, pp 3536 - 3542, 2014 [171] Z Jizhong , C Kwok, "Selection of wind farm location based on fuzzy set theory", Power and Energy Society General Meeting IEEE, 10.1109/PES 2010.558944, pp 1-6, Sep-2010 [172] D A Le, D N Vo, "Cuckoo Search Algorithm for Minimization of Power Loss and Voltage Deviation", International Journal of Energy Optimization and Engineering , 10.4018/IJEOE.2016010102, pp 12-20, 2016 [173] Võ Ngọc Điều, Lê Anh Dũng, Vũ Phƣơng Tú, "Áp dụng phƣơng pháp tối ƣu hóa phần tử bầy đàn với hệ số giới hạn cho toán tối ƣu hóa cơng suất phản kháng", Tạp chí phát triển khoa học công nghệ , vol 16, số K2, 2013 [174] Y Li, Y Cao, Z Liu, Y Liu, and Q Jiang, "Dynamic Optimal Reactive Dispatch Based on Paralell Particle Swarm Optimization Algorithm", Computer Mathematics with Appication, vol 57, pp 1835-1842, 2009 [175] Y Li, Y Cao, Z Liu, Y Liu, and Q Jiang, "Dynamic Optimal Reactive Dispatch Based on Paralell Particle Swarm Optimization Algorithm", Computer Mathematics with Appication, vol 57, pp 1835-1842, 2009 [176] K Lenin, B R Reddy, M S Kalavathi, "Quantum stirred cuckoo search algorithm for solving optimal reactive power dispatch problem", American Journal of Science and Technology, vol 1(4), pp 199-205, 2014 [177] S M Mohseni-Bonab and A Rabiee, "Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation", IET Generation, Transmission Distribution, 10.1049/iet-gtd.2016.1545, vol 11, pp 815-829, 2017 [178] D A Le, D N Vo, "Cuckoo Search Algorithm Application for Economic Dispatch with Wind Farm in Power Systems", IJETRM 2017, International Journal of Engineering Technology Research & Management, vol 01, Issue 2, 2017 [179] R H Liang, and J H Liao, "A fuzzy-optimization approach for generation scheduling with wind and solar energy systems", IEEE Trans Power Systems, vol 22, no 4, pp 1665-1674, Nov 2007 [180] U Sharma and B Moses, "Analysis and optimization of economic load dispatch using soft computing techniques," 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, 154 2016, pp 4035-4040.doi: 10.1109/ICEEOT.2016.7755472 [181] S J Plathottam, H Salehfar and P Ranganathan, "Equitable wind power scheduling in power system with multiple wind farms," 2015 IEEE International Conference on Electro/Information Technology (EIT), Dekalb, IL, 2015, pp 392-396.doi: 10.1109/EIT.2015.7293427 [182] J Luo, L Shi and Y Ni, "A Solution of Optimal Power Flow Incorporating Wind Generation and Power Grid Uncertainties," in IEEE Access, vol 6, pp 19681-19690, 2018 doi: 10.1109/ACCESS.2018.2823982 [183] M Khalid, "Economic Dispatch Using Functional Network Wind Forecast Model," 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE), Cairns, QLD, 2018, pp 502-507 doi: 10.1109/ISIE.2018.8433599 [184] A Tyagi, A Verma and A Saxena, "Optimal economic dispatch considering wind energy conversion systems using Gray coded genetic algorithm," 2015 Annual IEEE India Conference (INDICON), New Delhi, 2015, pp 1-5 doi: 10.1109/INDICON.2015.7443234 155 ... BÁCH KHOA LÊ ANH DŨNG ÁP DỤNG CÁC THUẬT TỐN DỰA TRÊN TÌM KIẾM BẦY ĐÀN ĐỂ TÍNH TỐN ĐIỀU ĐỘ TỐI ƢU TRONG HỆ THỐNG ĐIỆN CÓ XÉT ĐẾN NGUỒN NĂNG LƢỢNG GIÓ Chuyên ngành: Mạng hệ thống điện Mã số chuyên... Hiện để tính tốn vận hành tối ƣu hệ thống điện, ngƣời ta dùng số thuật toán truyền thống với hỗ trợ máy tính để tính điều độ tối ƣu hệ thống điện Áp dụng thuật toán để giải toán vận hành tối ƣu hệ. .. pháp tìm kiếm bầy đàn giải toán tối ƣu Trong báo cáo chuyên đề tiếp tục phát triển phƣơng pháp tìm kiếm bầy đàn để áp dụng giải toán ED, OPF ORPD cho hệ thống điện chuẩn IEEE 30 nút khơng có

Ngày đăng: 28/02/2021, 21:34

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w