Gọi tên và nêu công thức tính số đo của các góc được ký hiệu trong mỗi hình vẽ sau:.. H1 H2 H3[r]
(1)GV:HUỲNH THỊ YẾN NGUYỆT
GÓC CÓ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRỊN GĨC CĨ ĐỈNH Ở BÊN NGỒI ĐƯỜNG TRỊN
(2)KIỂM TRA BÀI CŨ
Gọi tên nêu công thức tính số đo góc được ký hiệu hình vẽ sau:
H1 H2 H3
Đỉnh trùng với tâm
Đỉnh thuộc đường tròn Đỉnh nằm
(3)1 Góc có đỉnh bên đường trịn
Hình học §5 GĨC CĨ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRỊN Tuần 23 Tiết 44 GĨC CĨ ĐỈNH Ở BÊN NGỒI ĐƯỜNG TRỊN Hình học §5 GĨC CĨ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRÒN Tuần 23 Tiết 44 GĨC CĨ ĐỈNH Ở BÊN NGỒI ĐƯỜNG TRỊN
Góc BEC có đỉnh nằm bên đường trịn (O) gọi góc có đỉnh bên đường trịn
Góc BEC góc có đỉnh bên đường tròn, chắn hai cung AmD BnC.
Số đo góc BEC có quan hệ với số đo cung
(4)1 Góc có đỉnh bên đường trịn: Định lí: Số đo góc có đỉnh bên trong đường tròn nửa tổng số đo hai cung bị chắn.
Hình học §5 GĨC CĨ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRỊN Tuần 23 Tiết 44 GĨC CĨ ĐỈNH Ở BÊN NGỒI ĐƯỜNG TRỊN Hình học §5 GĨC CĨ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRỊN Tuần 23 Tiết 44 GĨC CĨ ĐỈNH Ở BÊN NGỒI ĐƯỜNG TRỊN
?1
?1 GTGT BEC lBEC là góc có đỉnh bên à góc có đỉnh bên trong đường trịn
trong đường trịn KL
(5)1 Góc có đỉnh bên
trong đường tròn: Chứng minh
Hình học §5 GĨC CĨ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRỊN Tuần 23 Tiết 44 GĨC CĨ ĐỈNH Ở BÊN NGỒI ĐƯỜNG TRỊN Hình học §5 GĨC CĨ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRỊN Tuần 23 Tiết 44 GĨC CĨ ĐỈNH Ở BÊN NGỒI ĐƯỜNG TRÒN
E O D C A B
là góc ngồi EBD
· = ¼ ¼ 2 2 sdBC sdAD BEC + · = ¼ ¼ 2 sdBC sdAD BEC + · =· ·
BEC BDE DBE+
·
(6)Áp dụng góc có đỉnh đường trịn:
AEF = ; AFE =
sđ AN+ sđ MB 2
sđ NC+ sđ AM 2
Mà AN = NC, AM = MB (gt)
AEF = AFE
Tam giác AEF cân A
Hình học §5 GĨC CĨ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRỊN Tuần 23 Tiết 44 GĨC CĨ ĐỈNH Ở BÊN NGỒI ĐƯỜNG TRỊN Hình học §5 GĨC CĨ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRỊN Tuần 23 Tiết 44 GĨC CĨ ĐỈNH Ở BÊN NGỒI ĐƯỜNG TRỊN
(7)Nhận xét quan hệ đỉnh, cạnh góc F với đường trịn? Góc F có:
+ Đỉnh nằm ngồi đường trịn. + Hai cạnh cắt đường trịn.
Hình học §5 GĨC CĨ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRỊN Tuần 23 Tiết 44 GĨC CĨ ĐỈNH Ở BÊN NGỒI ĐƯỜNG TRỊN Hình học §5 GĨC CĨ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRỊN Tuần 23 Tiết 44 GĨC CĨ ĐỈNH Ở BÊN NGỒI ĐƯỜNG TRỊN
(8)2 Góc có đỉnh bên ngồi đường trịn:
m n
Số đo góc có đỉnh bên ngồi đường trịn có quan hệ với số đo cung bị
chắn?
(9)Hình 1 Hình 2 Hình 3
2 Góc có đỉnh bên ngồi đường trịn:
Định lí: Số đo góc có đỉnh bên ngồi đường trịn nửa hiệu số đo hai cung bị chắn.
F = sđ CD - sđ AB 2
m n
F = sđ BC – sđ AB
2 F =
sđ AmB – sđ AnB 2
(10)2 Góc có đỉnh bên ngồi đường trịn: (sgk) * Định lí:
GT BFC góc có đỉnh bên ngồi
đường trịn
KL SđBFC = sđ BC- sđ AD
2
(11)2 Góc có đỉnh bên ngồi đường tròn: F = sđ CD - sđ AB sđ CD sđ AB -F = -F =
Chứng minh: F = sđ CD - sđ AB
2
CAD ADB
CAD góc ADF
CAD = F + ADB
(12)Hình học §5 GĨC CĨ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRÒN Tuần 23 Tiết 44 GĨC CĨ ĐỈNH Ở BÊN NGỒI ĐƯỜNG TRỊN Hình học §5 GĨC CĨ ĐỈNH Ở BÊN TRONG ĐƯỜNG TRỊN Tuần 23 Tiết 44 GÓC CÓ ĐỈNH Ở BÊN NGỒI ĐƯỜNG TRỊN
Trường hợp 1
Nhóm 1+2 Trường hợp 2Nhóm 3 Trường hợp 3Nhóm 4
(13)(14)Nắm định nghĩa, tính chất góc với đường trịn.
Làm tập 37, 38,39 SGK.
(15)Bài 37/82 (sgk):
Cho đường tròn (O) hai dây AB, AC Trên cung nhỏ AC lấy điểm M Gọi S giao điểm AM BC
Chứng minh: ASC = MCA
MCA = sđ AM
ASC = sđ AB – sđ MC
2
sđ AB – sđ MC = sđ AM
sđ AB = sđ AC ASC = MCA
(16)