1. Trang chủ
  2. » Vật lý

Download Ma trận đề thi thử Tốt nghiệp THPT vật lý 10

7 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 35,4 KB

Nội dung

Bài toán viết phương trình mặt cầu có mối liên hệ giữa điểm, đường thẳng và mặt phẳng. Thực hiện các phép toán trênn số phức[r]

(1)

MA TRẬN MỤC TIÊU GIÁO DỤC VÀ MỨC ĐỘ NHẬN THỨC

Chủ đề mạch kiến thức, kĩ năng

Tầm quan trọng

Trọng số

Tổng điểm Theo

ma trận

Thang 10

Khảo sát vẽ đồ thị hàm số 35 35 1,9

Sự tương giao đường thẳng đường cong 15 0,8

Phương trình, hệ phương trình, BPT mũ logarit 11 22 1,1

Nguyên hàm Tích phân 11 22 1,1

Giá trị lớn nhất, nhỏ 20 1,0

Khối đa diện 11 22 1,1

Phương pháp tọa độ không gian 12 36 2,0

Số phức 10 20 1,0

Tổng 100% 192 10,0

MA TRẬN ĐỀ THI THỬ TỐT NGHIỆP THPT DTNT CON CUÔNG Chủ đề hoặc

mạch kiến thức, kĩ năng

Mức độ nhận thức - Hình thức câu hỏi Tổng điểm

1

TL TL TL TL

Khảo sát vẽ đồ thị hàm số Câu 1.1

2

Sự tương giao đường thẳng đường cong

Câu 1.2

1

1 Phương trình Hệ phương

trình BPT mũ logarit

Câu 2.1

1

Nguyên hàm Tích phân Câu 2.2

1

Giá trị lớn nhất, nhỏ Câu 2.3

1

Khối đa diện Câu

1

Phương pháp tọa độ không gian

Câu 4.1

Câu 4.2

1

Số phức Câu

1

Tổng 10

(2)

Câu 1.1 Khảo sát vẽ đồ thị hàm số bậc trùng phương

Câu 1.2 viết phương trình tiếp tuyến đồ thị

Câu 2.1 Giải phương trình mũ logarit

Câu 2.2 Tính tích phân

Câu 2.3 Tìm giá trị lớn giá trị nhỏ hàm có chứa lượng giác

Câu Tìm thể tích khối chóp lăng trụ

Câu 4.1 Bài toán mối liên hệ đường thẳng mặt phẳng

Câu 4.2.Bài toán viết phương trình mặt cầu có mối liên hệ điểm, đường thẳng mặt phẳng

Câu Thực phép toán trênn số phức

SỞ GD & ĐT NGHỆ AN TRƯỜNG THPT DTNT CON CNG

ĐỀ CHÍNH THỨC

(3)

Thời gian làm 120 phút, không kể thời gian giao đề

Câu 1: (3,0 điểm) Cho hàm số y=2x4−4x2+2,(1)

1 Khảo sát vẽ đồ thị (C) hàm số (1)

2 Viết phương trình tiếp tuyến đồ thị (C) điểm có hồnh độ x = 2 Câu 2: (3,0 điểm)

1 Giải phương trình : log2x

−2 log100x=log100

2. Tính tích phân: I=∫

x

x+1dx

3 Tìm giá trị lớn nhất, giá trị nhỏ hàm số: y=sinx+|cosx| đoạn [0] Câu 3: (1,0 điểm)

Cho lăng trụ ABC A'B'C' có độ dài cạnh bên 2a, đáy ABC tam giác vuông A, AB=a , AC=a√3 hình chiếu vng góc đỉnh A' mặt phăng (ABC)là trung điểm cạnh BC Tính theo a thể tích khối chóp

A' ABC

Câu 4: (2,0 điểm)

Trong không gian Oyxz cho mặt phẳng (p) có phương trình: 2x – y + 2z + = và đường thẳng (d) có phương trình: x−−21=y

1=

z−2 −2 .

1 Tìm giao điểm A đường thẳng (d) với mặt phẳng (p).

2 Viết phương trình mặt cầu (S) qua A tiếp xúc với mặt phẳng (P) có bán kính 3

Câu 5: (1,0 điểm)

Cho số phức z=(1+2i) (2−i)+1−i

1+i . Tìm mô đun ´z

………Hết………

Giám thị khơng giải thích thêm

Họ tên: ……… SBD:……… SỞ GD & ĐT NGHỆ AN

TRƯỜNG THPT DTNT CON CUÔNG

(4)

ĐÁP ÁN CHÍNH THỨC Mơn: TỐN

Thời gian làm 120 phút, không kể thời gian giao đề

HƯỚNG DẪN VÀ BIỂU ĐIỂM CHẤM ĐỀ CHÍNH THỨC (Hướng dẫn biểu điểm chấm gồm 04 trang)

Mơn: TỐN

U

NỘI DUNG ĐIỂM

I 3,0

1 2,0

TXĐ: D= R\{1} 0,25

y’= 8x3

−8x=8x(x2−1)=0[ x=0

x=±1

0,25

y’ > 0 ∀x∈(−1;0)(1;+)

Suy hàm số đồng biến khoảng (−1;0)(1;+)

y’ < 0 ∀x∈(−∞;−1)(0;1)

Suy hàm số nghịch biến khoảng (−∞ ;1)(0;1)

0,25

Cực trị: Hàm số đạt cực đại xCĐ = yCĐ = 2

Hàm số đạt cực tiểu xCT = ±1 và yCT =

0,25

Giới hạn: x →lim+ y=+ x →lim− y=+

0,25

Bảng biên thiên:

x - -1 + y’ - + - +

y + -

0,25

(5)

x y

-1

2

0 Cắt Oy (0;2)

2 1,0

Tại x = suy y = 18 0,25

Hệ số góc: y'(2

)=48 0,25

Phương trình tiếp tuyến: y = 48(x – 2) + 18 Hay : y = 48x – 78

0,5

II 2,0

1 1,0

ĐK: x > 0,25

Với ĐK PT cho tương đương với

log2x−logx−2=0

0,25

Đặt t = logx

Ta được: t2

t−2=0[t=−1

t=2

0,25

Khi đó: [logxlogx=−1

=2 [

x=

10

x=100

0,25

2 1,0

Đặt : t=√x+1→t2=x+1→ x=t2−1→ dx=2tdt 0,25

Đổi cận: x =  t =

x =  t =

0,25

Khi đó: :

t t

¿

(¿2−1¿)dt

¿

(¿¿2−1)2tdt

t =2∫1

¿

I=∫

¿

(6)

B A A’ C’ C H B’

¿2(1

3t

3 −t)|

1

=8

3

3 1,0

Xét đoạn [0

2]ta có:y=sinx+cosx=√2[sinx(x+

π

4)]

y'=√2[cosx(x+π

4)]=0↔ x=

π

4

0,25

Xét đoạn [π

2; π]tacó:y=sinxcosx=√2[sinx(x

π

4)]

y'=√2[cosx(xπ

4)]=0↔ x= 3π 0,25 BBT: x 0 π π 3π π

y’ + | +

-y

√2 √2

1 1

0,25

Dựa vào BBT ta có: max

[0; π]

y=√2khi x=π

4ho cặ x= 3π

4

min

[0]

y=1khi x=π

2ho cặ x=π

0,25

III 1,0

Hình vẽ: 0,25

Gọi H hình chiếu vng góc A’ lên mặt phẳng (ABC)

Do ABC vuông A H trung điểm BC nên AH=1

2BC= 2√a

2

+3a2=a

(7)

AHA’ vuông H nên

A'H=√A A'2−AH2=√4a2−a2=a√3

Do ABC vuông A nên SABC=a

2

√3

0,25

Thể tích hình chóp A’ABC là: V

A ’ ABC=1 A

'H S ABC=a

3

2 (đvtt)

0,25

IV 2.0

1 1,0

Phương trình tham số đường thẳng (d): {

x=1−2t y=t

z=2−2t ; t∈R

0,25

Gọi điểm A(1 – 2t ; t ; 2-2t) thuộc đường thẳng (d), A giao điểm (d) với mặt phẳng (p) nên thoả mãn:

0,25 2(1 – 2t) – t +2(2 – 2t) + =  - 9t + =  t = 0,25

Vậy toạ độ điểm A(-1; 1; 0) 0,25

2 1,0

Do A thuộc mặt (P) nên mặt cầu (S) tiếp xúc với (P) A Vì tâm I mặt cầu (S) nằm đường thẳng qua A vng góc với mặt phẳng (P)

Ta nhận thấy đường thẳng (d) mặt phẳng (P) vng góc với nên tâm I mặt cầu (S) nằm đường thẳng (d)

0,25

Gọi I(1 – 2t; t; 2-2t) IA = hay IA2 = (2+2t)2 + (1+t)2

+(2+2t)2 = 9 9(1+t)2 = [ 1+t=1

1+t=−1[

t=0

t=−2

0,25

Khi t =  I1 (1; 0; 2)

Khi t = -2  I2 (5; -2; 6)

0,25 Vậy có hai mặt cầu thoả mãn toán:

(S1): (x - 1)2 + y2 +(z - 2)2 = 9

(S1): (x - 5)2 + (y + 2)2 +(z - 6)2 = 9

0,25

V 1,0

z=(1+2i) (2−i)+1−i

1+i=4+3i+ (1−i)2

2 =4+3ii=4+2i

0,5

´

z=4−2i→z|=√42+22=2√5 Vậy môđun ´z 2√5

Ngày đăng: 19/02/2021, 22:15

w