Câu 3: Cho hình bình hành ABCD với O là giao điểm của hai đường chéo AC và B D.. Trục tọa độ là một đường thẳng mà trên đó đã chọn gốc tọa độ và hướng dương của trục.[r]
(1)Số điện thoại : 0946798489 Trang -1- I Trắc nghiệm
Câu 1: Phát biểu sau đúng:
A Hai vectơ khơng có độ dài khơng
B Hiệu vectơ có độ dài vectơ – không
C Tổng hai vectơ khác vectơ –không vectơ khác vectơ –không
D Hai vectơ phương với vec tơ khác 0 vec tơ phương với
Câu 2: Cho a (0,1),b ( 1; 2),c ( 3; 2).Tọa độ u 3a2b 4c:
A 10; 15 B 15;10 C 10;15 D 10;15
Câu 3: Điều kiện điều kiện cần đủ để điẻm O trung điểm đoạn AB.
A AOBO B OA OB C AOBO D OA OB 0
Câu 4: Tọa độ trung điểm M đoạn thẳng A2; , B4;0 là:
A 3; B 1; C 1; D 1; Câu 5: Cho điểm A1; , B1;3 , C 2; , D0; 2 Khẳng định sau đúng ?
A ABCD hình vng B ABCD hình chữ nhật
C ABCD hình thoi D ABCD hình bình hành
Câu 6: Cho ba điểm A,B,C phân biệt Đẳng thức sau sai:
A BA CA BC B AB BC AC C AB CA BC D AB AC CB
Câu 7: Cho tứ giác ABCD Nếu ABDC
ABCD hình gì? Tìm đáp án sai
A Hình bình hành B hình vng C Hình chữ nhật D Hình thang
Câu 8: Cho hình bình hành ABCD có tâm O Khẳng định sau sai:
A AOBOBC. B AODAOB. C AOBODC. D AOBOCD.
Câu 9: Cho tam giác ABC có trọng tâm G trung tuyến AM Khẳng định sau sai:
A AM 2MG B OA OB OC 3OG, với điểm O
C GA GB GC 0 D GA 2GM 0
Câu 10: Choa 1; , b3; 4 Vectơm2a 3 bcó toạ độ là:
A m 10;12 B m 11;16 C m 12;15 D m 13;14
II Tự luận:
Câu 11: Cho ABC M, N, P xác định bởi: ; ;
4
MA BM AN CN CP PB
a Chứng minh: AM CM CB NB AN
b Chứng minh: 15 3
4
MN AB BC
c Chứng minh: N, M, P thẳng hàng
Câu 12: Trong mặt phẳng Oxy Cho A(1; 2), ( 2; 6), (4; 4)B C
a Tìm tọa độ điểm D cho tứ giác ADCB hình bình hành
(2)Số điện thoại : 0946798489 Trang -2- Đáp án trắc nghiệm
1 10
(3)Số điện thoại : 0946798489 Trang -3- I Trắc nghiệm:
Câu 1: Mệnh đề sau đúng:
A Hai vectơ phương với vectơ thứ ba phương
B Hai vectơ phương với vectơ thứ ba khác 0 phương
C Hai vectơ phương với vectơ thứ ba hướng
D Hai vectơ ngược hướng với vectơ thứ ba hướng
Câu 2: Trong mặt phẳng toạ độ Oxy, cho a (2,1),b (3; 4) ,c ( 7; 2) Tọa độ x cho x abc là:
A 8; B 8; C 7;8 D 7;8
Câu 3: Cho tam giác ABC, có AM trung tuyến I trung điểm AM Ta có:
A 2IA IB IC 0 B IA IB IC 0 C 2 IA IB IC 4IAD IA IB IC 2IM
Câu 4: Cho a x; , b 5;1 , cx; 7 Vec tơ c2 a3b nếu:
A x3 B x 15 C x15 D x5
Câu 5: Cho tam giác ABC có trọng tâm gốc tọa độ O, hai đỉnh A B có tọa độ A2; 2; 3;5
B Tọa độ đỉnh C là:
A 1;7 B 1; C 3; D 2; Câu 6: Cho hình bình hành ABCD tâm O Khi đó:
A OB OA B OC OA C OB DO D BO DO
Câu 7: Cho hình bình hành ABCD tâm O Khẳng định sau sai?
A BD BA BC B OA OC OD OB
C OC OB OD OA D OA OB OD OC
Câu 8: Cho hình bình hành ABCD Đẳng thức sau đúng?
A ACADCD B ACBD2CD C ACBCAB D ACBD2BC
Câu 9: Cho tam giác ABC, I trung điểm BC, trọng tâm G Phát biểu
A AB+IC =AI B IB +IC = C GA = 2GI D GB + GC = 2GI
Câu 10: Khẳng định khẳng định sau đúng?
A Hai vec tơ u 4; 2 v 8;3 phương
B Hai vec tơ a 5; 0 b 4; 0 hướng
C Hai vec tơ a 6;3 b 2;1 ngược hướng
D Vec tơ c 7;3 vec tơ đối d 7;3
II Tự luận:
Câu 11: Cho ABCvới trọng tâm G K I, xác định bởi: ; 2
5
KB BA ID DA( D trung
điểm BC)
(4)Số điện thoại : 0946798489 Trang -4-
b Phân tích CI theo vectơ AC BC
c Chứng minh: I C K, , thẳng hàng
Câu 12: Trong mặt phẳng Oxy Cho A(2; 4), ( 1;3), (4; 1)B C
a Tìm tọa độ điểm E cho tứ giác EACB hình bình hành
b Tìm tọa độ điểm M cho: 10MB 16MA7MC
Đáp án trắc nghiệm
1 10
(5)Số điện thoại : 0946798489 Trang -5- I Trắc nghiệm:
Câu 1: Phát biểu sau đúng:
A Hai vectơ phương với vectơ khác 0 vec tơ phương với
B Hai vectơ khơng có độ dài khơng
C Hiệu vectơ có độ dài vectơ – không
D Tổng hai vectơ khác vectơ –không vectơ khác vectơ –khơng
Câu 2: Cho hình chữ nhật ABCD, goi O giao điểm AC vàBD, phát biểu đúng?
A OA OBOCOD B ACBD
C OA OB OC OD 0 D ACADAB
Câu 3: Nếu AB 3AC thi đẳng thức đúng?
A BC 2AC B BC 4AC C BC 4AC D BC 2AC
Câu 4: Trong hệ trục O i j; ; tọa độ i j là:
A ( 1;1). B (1;1) C (1; 1). D ( 1; 1). Câu 5: Cho ba điểm A(1;3); B( 1; 2) ;C( 2;1) Toạ độ vectơ ABAC là:
A (1;1) B ( 1;5). C (1; 2) D (2;1)
Câu 6: Cho a ( 1; 2), b (5; 7)
Tọa độ a b là:
A ( 6;9). B ( 6; 9). C (6;9) D (6; 9). Câu 7: Cho a( ; ),x y b ( 5;1),c( ; 7)x
Vectơ c 2a 3 b nếu:
A x15; y2 B x5; y2 C x 15; y2 D x5; y 2
Câu 8: Cho hình bình hành ABCD. Đẳng thức sau đúng
A ACBD B BCDA C ABCD D ADBC
Câu 9: Cho ABC có trung tuyến AM, tìm khẳng định đúng:
A 1( )
2
AM ABAC
B 1( )
2
AM ABAC
C 1( )
2
AM ABAC
D AM AB2BM
Câu 10: Với điểm A B C, , tùy ý; đẳng thức sau sai:
A CA BA BC B BCBA CA C ABBC CA D BC ACBA
II Tự luận:
Câu 11: Cho ABC vuông cân A M, N, P xác định bởi:
4
; ;
3
MC AM BN BA PC PB
a Chứng minh: AMBMBCNCAN
b Phân tích MP theo vectơ AB BC
c Chứng minh: N, M, P thẳng hàng
(6)Số điện thoại : 0946798489 Trang -6-
a Tìm tọa độ điểm E cho tứ giác EACB hình bình hành
b Tìm tọa độ điểm M cho: 10MB 16MA7MC
Đáp án trắc nghiệm
1 10
(7)Số điện thoại : 0946798489 Trang -7- I Trắc nghiệm:
Câu 1: Cho vectơ a khác vectơ không Phát biểu sau đúng:
A Hai vectơ a 2a phương B Hai vectơ a 2a hướng
C Hai vectơ a 2a có độ dài D Hai vectơ a 2a có giá song song với
nhau
Câu 2: Cho tứ giácABCD Nếu ABDC ABCD hình gì? Tìm đáp án Đúng
A Hình vng B Hình bình hành C Hình chữ nhật D Hình thang
Câu 3: Cho ABC có D trung điểm BC Vị trí điểm I thỏa mãnAI 2ID là?
A I trực tâm củaABC B I trung điểm củaAD
C I tâm đường tròn ngoại tiếpABC D I trọng tâm ABC
Câu 4: ChoABC, có AM trung tuyến vàI trung điểm củaAM Ta có:
A IA IB IC0 B 2 IA IB IC0
C 2IA IB IC4 IA D IA IB ICAM
Câu 5: Tứ giác ABCD hình bình hành khi:
A ABCD B ACBD C ADCB D ABDC
Câu 6: Cho điểm E F G, , Đẳng thức đây đúng?
A FE FGEG B FEFGGE C EFFGEG D EF GFGE
Câu 7: Trong mặt phẳng tọa độ Oxy, cho ba điểm A(2;1), B( 1; 2) , C(3; 0) v 2 AB3BC CA
Khẳng định đúng là:
A v (2; 0) B v ( 7;3) C v (5; 3). D v (4;3)
Câu 8: Trong mặt phẳng tọa độ Oxy,choA(1;0), (0; 2)B Vectơ đối AB có tọa độ là:
A ( 1; 2). B ( 1; 2). C (1; 2). D (1; 2)
Câu 9: Cho a (1; 2)và b (3; 4) Vec tơ m 2a3bcó toạ độ
A m (10;12) B m (11;16) C m (12;12) D m (13;14)
Câu 10: Cho A(3; 2) ;B( 5; 4) C( ; 0)1
3 Ta có ABx AC
giá trị x
A x3 B x 3 C x2 D x 4
II Tự luận:
Bài 1: ChoABC M N P, , trung điểm AB BC AC, , vàH I, xác định bởi:
0
CI CAGB GH ( với G trọng tâm ABC )
a) Chứng minh: AB IC CB AHIH
b) Phân tích IN theo AB BC
c) Chứng minh: N H I, , thẳng hàng
Bài 3: Trong mặt phẳng Oxy, cho A(1; 2), (0; 4), (3; 2). B C
a) Tìm tọa độ điểm D đối xứng A qua C
(8)Số điện thoại : 0946798489 Trang -8- Đáp án trắc nghiệm
1 10
(9)I Trắc nghiệm:
Câu 1: Cho ABC có M N trung điểm AB AC. Phát biểu sau SAI ?
A 1 .
2
CN AC B BC 2MN. C AC 2AN. D AB2AM.
Câu 2: Cho a MN điểm A tùy ý Khi đó, có điểm B thỏa hệ thức: AB MN?
A 0 B 2 C Vô số D 1
Câu 3: Cho hình bình hành ABCD với O giao điểm hai đường chéo AC BD. Hãy nối cụm từ cột với cột cho phù hợp?
A 1 2B C, ,3D,4A B 1 2B, A,3D,4C C 1 2A, D,3C,4B D 1 2A, B,3C,4D
Câu 4: Khẳng định sau điều kiện cần đủ để để ba điểm A, B, C phân biệt thẳng hàng?
A AC ABBC. B M MA: MB2MC.
C k : ABk AC với AC 0. D AB AC0.
Câu 5: Cho bốn điểm A, B, C, D Khẳng định sau ĐÚNG?
A AB ADDCBC. B ABBCCDDA.
C ABCD ADCB. D ABBC CDDA.
Câu 6: Phát biểu sau ĐÚNG?
A Trục tọa độ đường thẳng mà chọn gốc tọa độ hướng dương trục
B Trục tọa độ đường thẳng mà chọn vectơ đơn vị
C Cả ba câu sai
D Trục tọa độ đường thẳng mà chọn gốc tọa độ vectơ đơn vị i.
Câu 7: Trong mặt phẳng Oxy, cho A(3;3), ( 1; 1), (7;7).B C Khẳng định sau ĐÚNG?
A G( ; )3 trọng tâm ABC. B Điểm B nằm hai điểm A C
C Hai vectơ AB AC hướng D Điểm A nằm hai điểm B C
Câu 8: Ba điểm M, N, P phân biệt thỏa hệ thức MN MP0 nào?
A P thuộc đường trung trực MN B M trung điểm NP
C M, N, P thẳng hàng D N điểm đối xứng với M qua P
Câu 9: Trong mặt phẳng Oxy, cho A(3;1), B(2; 2),C(1;6), D(1; 6). Hỏi điểm G(2; 1) trọng tâm tam giác sau đây?
(10)Số điện thoại : 0946798489 Trang -10- Câu 10: Cho ( 1; ).3
2
a Tìm vectơ đối a ?
A (1; 3). 2
b B (1; ).3 2
b
C ( ; 1).3 2
b D ( 3;1).
2
b II Tự luận:
Bài 1: Cho ABC có M, D trung điểm BC, AM Chứng minh: ?
2 DADBDC0 Bài 2: Trong mặt phẳng Oxy, cho ( ; ), (A1 B 2 3; )
a) Tìm tọa độ điểm M thuộc trục Ox cho điểm B, M, A thẳng hàng?
b) Tìm tọa độ điểm P cho: BP 2 PO PA?
Bài 3: Cho hình bình hành ABCD. Lấy M, N hai điểm AB, CD cho: ;
1
3
AM CN
AB CD điểm I thỏa
6 11 BI BC
Gọi G trọng tâm BMN J trung
điểm MN
a) Phân tích AI theo vectơ AB AC?
b) Chứng minh điểm A, I, G thẳng hàng?
- HẾT -
(11)Số điện thoại : 0946798489 Trang -11- I Trắc nghiệm:
Câu 1: Trong mặt phẳng Oxy, cho (3; 2), ( 1;1), ( ;0),1 ( 1; 3). 3
A B C D Ba điểm bốn
điểm cho thẳng hàng?
A A C D, , . B A B C, , . C A B D, , . D B C D, , .
Câu 2: Cho hình thang cân ABCD có hai đáy AB CD. Trong phát biểu sau:
I Bốn vectơ AB CD BA DC, , , phương II AB DC hướng
III AD CB ngược hướng IV AD BC
Phát biểu ĐÚNG?
A I, II B I, III C II, III D III, IV
Câu 3: Phát biều sau đậy SAI?
A Nếu G trọng tâm ABC GA GB GC 0.
B Với điểm I, J, K Ta có: IJ JK IK.
C Nếu OA OB O trung điểm AB
D Nếu ABAD AC tứ giác ABCD hình bình hành
Câu 4: Trong mặt phẳng Oxy, cho (3; 2), ( 5; 4), ( ;0).1 3
A B C Biết ABx AC. Tìm giá trị x?
A x3. B x2. C x 3. D x 4.
Câu 5: Cho a 3 b Khẳng định sau ĐÚNG?
A a b ngược hướng a 3 b B a b có giá song song
C a b ngược hướng a 3 b D a b hướng
Câu 6: Trong mặt phẳng Oxy, cho a(3x2 1;5x1) b (3; 6). Tính giá trị x (với x0)
để a b , phương?
A 1. 6
x B 3.
2
x C x1. D 4.
5
x Câu 7: Cho ABC điểm M thỏa hệ thức: MA MBCM. Xác định vị trí điểm M?
A M trung điểm AB B M tùy ý
C M đỉnh thứ tư hình bình hành ABCM D Khơng có điểm M
Câu 8: Khẳng định sau KHÔNG PHẢI điều kiện cần đủ để G trọng tâm ABC với M trung điểm BC O điểm bất kỳ?
A 1 .
2
GM GA B AGBGCG 0.
(12)Số điện thoại : 0946798489 Trang -12- Câu 9: Cho hình bình hành MNPQ Trong hệ thức sau, tìm hệ thức ĐÚNG?
A QM NM MP. B PM PQPN. C NQNM NP.D MN MQMP.
Câu 10: Trong mặt phẳng Oxy, cho A(3; 2), B( 1; 4), C( 2; 6). Tìm tọa độ trọng tâm ABC?
A G(0;12). B G(2;4). C G(6;12). D G(0;0).
II Tự luận:
Bài 1: Cho ABC có G trọng tâm Lấy điểm N, D tùy ý Chứng minh: ?
0 GA GD CD GN NB Bài 2: Trong mặt phẳng Oxy, cho ( ; ), ( ; ), (A1 C D 1 1; ) a) Tìm tọa độ tâm I hình bình hành ACBD?
b) Tìm tọa độ điểm E cho: EC 3EAED?
Bài 3: Cho hình vng ABCD tâm O Gọi I trung điểm AB G trọng tâm
ABC
Lấy M, N thỏa MB 4MC NA 5NC
a) Phân tích MG theo hai vectơ AB AC?
b) Chứng minh: M, N, G thẳng hàng?
- HẾT -
(13)Số điện thoại : 0946798489 Trang -13- I.TRẮC NGHIỆM (5 ĐIỂM)
Câu 1: Cho tứ giác ABCD. Số vecto khác 0 có điểm đầu điểm cuối đỉnh tứ giác bằng:
A 8 B 6 C 12 D 4
Câu 2: Cho ABC có cạnh a AB BC là:
A
2
a
B a C a 2 D 3
2
a
Câu 3: Cho ABC có trọng tâm G, D trung điểm BC Chọn câu
A GA 2DG B 1
2
AG GD
C GA 2GD D 1
2
GA DG Câu 4: Cho ba điểm phân biệt A B C, , Đẳng thức đúng?
A
AB AC BC B CA BA BC C AB BC CA D AB CA CB
Câu 5: Cho hai điểm phân biệt A B, Điều kiện để I trung điểm AB là:
A
0
IA IB B AI BI C IAIB D IAIB
Câu 6: Cho ABC có trọng tâm G, I trung điểm BC Chọn câu
A GB GC 2GI B GA 2GI C
IG IA D GB GC GA
Câu 7: Cho ABC có A 3;5 ,B 1;2 ,C 5;2 Tìm toạ độ trọng tâm G ABC
A G3;4 B G4;0 C G 3;3 D G 2;3 Câu 8: Cho ba điểm A1;5 , B 5;5 ,C 1;11 Khẳng định sau đúng?
A ABvà AC không phương B AB AC phương
C AC BC phương D A, B, C thẳng hàng
Câu 9: Cho a3; , b 1;2 Toạ độ vecto a b là:
A 2;2 B 4; 6 C 4;6 D 2; 2
Câu 10: Cho ax;2 , b 5;1 , cx;7.Vecto c2 a3b nếu:
A 5 B 15 C 3 D 15
II.TỰ LUẬN (5 ĐIỂM)
Câu (2 điểm): Trong mặt phẳng 0xy cho A2;3 , B 4; , C 1; 3
a.Tìm toạ độ điểm A' đối xứng với A qua B
(14)Số điện thoại : 0946798489 Trang -14- Câu (2 điểm):Cho điểm A B C D, , , Chứng minh rằng:
AB BC AD BC BD
Câu (1 điểm): Cho ABC với I J K, , xác định bởi:
1
2 , ,
2
IB IC JC JA KA KB
a.Phân tích IK theo AB AC
b.Chứng minh ba điểm I J K, , thẳng hàng
1 2 3 4 5 6 7 8 9 10
(15)Số điện thoại : 0946798489 Trang -15- I.TRẮC NGHIỆM (5 ĐIỂM)
Câu 1: Cho tứ giác ABCD. Số vecto khác 0 có điểm đầu điểm cuối đỉnh tứ giác bằng:
A 12 B 6 C 8 D 4
Câu 2: Cho ABC có cạnh a BA BC là:
A a 2 B
2
a
C a D 3
2
a
Câu 3: Cho ABC có trọng tâm G, D trung điểm BC. Chọn câu
A 2
3
GA AD B 1
2
AG GD
C GA 2GD D 1
2
GA GD Câu 4: Cho ba điểm phân biệt A, B, C Đẳng thức đúng?
A AB AC BC B CA BA BC C AB BC CA D BA BC CA
Câu 5: Cho hai điểm phân biệt A, B Điều kiện để I trung điểm AB là:
A IAIB B
AI BI C IA IB D AIBI 0
Câu 6: Cho hình bình hành ABCD. Đẳng thức đúng?
A
2
AC BD CD B AC BD 2BC C AC BC AB D ACADCD
Câu 7: Trong mặt phẳng Oxy cho A2; , B 4;7.Toạ độ trung điểm I đoạn thẳng AB là:
A I3;2 B I6; 4 C I2;10 D I 2; 10
Câu 8: Trong mặt phẳng Oxy cho A 5;2 ,B 10;8.Toạ độ AB là:
A 15;5 2
B 5; 6 C 6; 5 D 5;6
Câu 9: Cho a 1;2 , b5; 7 Toạ độ vecto 2 a b là:
A 7;11 B 7; 11 C 6;9 D 4; 5 Câu 10: Cho a 5;0 , b4;x Hai vecto
a b phương số x là:
A 0 B 5 C 4 D 4
5
II.TỰ LUẬN (5 ĐIỂM)
Câu (2 điểm):Trong mặt phẳng 0xy cho A1;3 , B 2; , C 5; 1
a.Tìm toạ độ điểm Dsao cho B trọng tâm ACD
b.Tìm toạ độ điểm M cho CM 2AB3AC
(16)Số điện thoại : 0946798489 Trang -16-
AD BE CF AE BF CD
Câu (1 điểm): Cho ABC với M N P, , xác định bởi:
3 , ,
MB MC NA CN PA PB
a.Phân tích PM theo AB AC
b.Chứng minh ba điểm M N P, , thẳng hàng
1 2 3 4 5 6 7 8 9 10
(17)Số điện thoại : 0946798489 Trang -17- Câu 1: Khẳng định khắng định sau sai?
A a 3;5 b 5;3 hai vectơ đối
B a 4;0 i1;0 hai vectơ ngược hướng
C a 2;3 b 2; 3 hai vectơ đối
D Hai vectơ chúng có hồnh độ tung độ
Câu 2: Cho tam giác ABC. Số vectơ khác 0
có điểm đầu điểm cuối đỉnh tam giác bằng:
A 3. B 4. C 6. D 5.
Câu 3: Cho tam giác ABC có cạnh a Khi ABAC bằng:
A a 2. B a. C 3.
2
a
D 2 a
Câu 4: Cho a ( 2;1), b(0;2) Tọa độ a b là:
A 2;3 B 2;3 C 2;1 D 2;
Câu 5: Cho hai điểm phân biệt A B.Điều kiện cần đủ để O trung điểm đoạn thẳng AB là:
A OA OB 0. B AO OB . C .
OA OB D OA OB 0. Câu 6: Cho điểm A1;6 , B 3;2 Tọa độ trung điểm I AB là:
A 2;2 B 4; C 1; D 2;8
Câu 7: Cho tam giác ABC có trọng tâm gốc tọa độ O, hai đỉnh A B có tọa độ
3;5 , 1;2
A B Tọa độ đỉnh C là:
A 2;7 B 1; C 3; D 2; Câu 8: Cho hình bình hành ABCD Trong mệnh đề sau, tìm mệnh đề sai?
A AC BD. B ABCD0. C ABADAC. D ABCB AC.
Câu 9: Cho hình bình hành ABCD. Gọi O giao điểm hai đường chéo AC BD. Trong
mệnh đề sau, tìm mệnh đề sai?
A OA OBOCOD. B BC ABAC.
C AB AD AC. D BA BC 2BO.
Câu 10: Cho ba điểm phân biệt A, B,C Đẳng thức sau đúng?
(18)Số điện thoại : 0946798489 Trang -18-
1 2 3 4 5 6 7 8 9 10
A B C D TỰ LUẬN
Bài 1: Cho điểm A,B,C, D Chứng minh rằng: AB CD AD CB . Bài 2: Trong mặt phẳng Oxy, cho ba điểm A4;1 , B 2; , C 2; Tìm tọa độ của:
a Đỉnh D hình bình hành ABCD.
b Điểm E cho 2BE 4CE EA.
Bài 3: Cho tam giác ABC. Gọi I, J điểm định bởi: IA 2IB, 3JA2JC0.
a Phân tích IJ theo AB AC.
(19)Số điện thoại : 0946798489 Trang -19- Câu 1: Cho hình chữ nhật ABCD. Trong đẳng thức sau, đẳng thức đúng?
A AC BD. B BCDA. C ABCD. D ADBC.
Câu 2: Cho tam giác ABC có trọng tâm G Trong mệnh đề sau, tìm mệnh đề đúng:
A CA CBCG. B BABC 3BG.C 2 . 3
AB AC AG
D CA CB2CG.
Câu 3: Hai vectơ
a
bđược gọi chúng:
A Ngược hướng có độ dài B Cùng phương có độ dài
C Cùng hướng có độ dài D Có độ dài
Câu 4: Cho a ( 4;0), b(2; )x Hai vectơ a
b
phương số x là:
A 2 B 1.
2
C 4. D 0
Câu 5: Cho tam giác ABC với đường cao AK Đẳng thức sau đúng?
A 2 .
AC KC B KBKC. C AB AC. D 2 AK 3 BC. Câu 6: Khẳng định khẳng định sau đúng?
A Hai vectơ a ( 5;0) vaø b ( 4;0)cùng hướng
B Vectơ c 7;3 vectơ đối vectơ d 7;3
C Hai vectơ u(4;2) vaø v(8;3)cùng phương
D Hai vectơ a (6;3) vaø b(2;1)ngược hướng
Câu 7: Cho hình vng ABCD có cạnh a Khi ACBD bằng:
A 2 a B 2a 2. C a. D 0
Câu 8: Cho a(3; 4), b ( 1;2) Tọa độ a b là:
A 4;6 B 4; C 2; D 3;
Câu 9: Cho tam giác ABC. Tìm mệnh đề đúng:
A ABBC AC. B ABBC CA0.
C ABAC BC. D AB BC AB BC.
Câu 10: Các điểm M1;5 , N4;1 , P 3;2 trung điểm cạnh BC, CA AB tam
giác ABC. Tọa độ đỉnh A tam giác ABC là:
A 6;2 B 0;6 C 6; D 0;
-
- HẾT -
(20)Số điện thoại : 0946798489 Trang -20- Bài 1: Cho tứ giác ABCD. Gọi O trung điểm AB. Chứng minh rằng:
.
OD OC AD BC
Bài 2: Trong mặt phẳng Oxy, cho ba điểm A1; , B 2;3 ,C 1;
Tìm tọa độ của:
a Đỉnh M cho C trọng tâm tam giác ABM
b Điểm K cho AK 3KBCK.
Bài 3: Cho ABC có ba điểm M, N, P định bởi:
2 2 0.
MB MC NA NC PAPB
a Phân tích PM theo AB AC.
b Chứng minh: M, N, P thẳng hàng
1 2 3 4 5 6 7 8 9 10
(21)Số điện thoại : 0946798489 Trang -21- I Trắc nghiệm
Câu 1: Cho a2; , b3; , c 7;2 Tọa độ u3a2b4c
A 16; 19 B 40; 19 C 28; 3 D 40; 13 Câu 2: Phát biểu sau đúng?
A Hai vectơ khơng có độ dài khơng
B Hiệu vectơ có độ dài vectơ – không
C Hai vectơ phương với vec tơ khác 0 vec tơ phương với
D Tổng hai vectơ khác vectơ –không vectơ khác vectơ –không
Câu 3: Cho ba điểm A, B, C phân biệt Đẳng thức sau sai?
A BA CA BC B AB CA BC C AB ACCB D ABBC AC Câu 4: Cho vectơu(1;5)vàv(5; 6) Tọa độx3u4vlà
A 17;39 B 12;24 C 13; D 3;34 Câu 5: Cho ABC, M trung điểm BC. Đẳng thức sau sai?
A MB MC0 B BABC AC
C AB AC2AM
D ACCBBA
Câu 6: Cho a3i4 ;j b i j
Tìm phát biểu sai?
A a phương b B a b 4; C 2a6; D a b 2;
Câu 7: Với giá trị m a 3m1;42m khơng phương b5 ;6 m
A m5 B m 5 C m 5 D m5
Câu 8: 10 Trong đẳng thức sau đây: ABCDADCB 1 ; ACBD AD AC 2 ,
khẳng định sai?
A (1) (2) sai B (1) đúng, (2) sai C 2đúng D (1) sai, (2)
Câu 9: Cho tam giác ABC, I trung điểm BC, G trọng tâm Phát biểu sau đúng? A GA2GI
B IB IC 0 C ABIC AI
D GBGC2GI Câu 10: Cho hình bình hành ABCD có O giao điểm hai đường chéo, M điểm Đẳng
thức sau đúng?
A DA CA CD
B ABCA CD C OA OB DA
D DADCDO II Tự Luận
Bài 1: Cho tam giác ABCvà M trung điểm BC.
a Chứng minh: GA GM CM MBMG0
(22)Số điện thoại : 0946798489 Trang -22-
b Gọi điểm IAB cho 1
3
AI AB
Dlà điểm đối xứng vớiC qua A. Hãy phân tích
MD
theo BA BC
c Chứng minh M I D, , thẳng hàng
Câu 11: Cho điểm A5;6 , B 4; , C 4;3
a Tìm tọa độ điểm E Ox cho AE BC, phương
b Tìm tọa độ điểm K thỏa 3 2 3
3
AK BK CA
1 2 3 4 5 6 7 8 9 10
A B C D
-
(23)Số điện thoại : 0946798489 Trang -23- I Trắc nghiệm
Câu 1: Cho vectơu(2;5) vàv ( 5; 6), ta có tọa độx 3u4vlà
A 26;39 B 12;24 C 13; D 3;34
Câu 2: Chọn khẳng định
A Hai vectơ phương giá chúng song song
B Hai vectơ phương hướng
C Hai vectơ có giá vng góc phương
D Hai vectơ ngược hướng với vectơ thứ ba hướng
Câu 3: Chỉ vectơ tổng AB ACCDDEEF FGtrong vectơ sau đây?
A GB
B CG
C BG
D GC
Câu 4: Gọi I trung điểm đoạn thẳng AB M trung điểm đoạn thẳng AI Khẳng định
nào sau đây đúng?
A IA IB 0
B 3AI AB
C NINB2NM D 3NA NB4NM
Câu 5: Cho tam giác ABC cạnh a, trọng tâm G Phát biểu sau đúng? A ABAC 2a
B ABAC 3AG
C 3
3
a
GB GC D ABAC
Câu 6: Cho tam giác ABC có trọng tâm E K trung điểm BC. Khẳng định sau sai?
A EB EC 2EK B EBEACE C EA2EK
D AE2EK Câu 7: Hãy vectơ tổng ABDCBDCA
A 0
B AD
C 0 D 2BD
Câu 8: 10 Cho a 2;1 , b 3; , c 7;2 Tọa độ u 3a2b4c
A 16; 19 B 28; 3 C 40; 13 D 40; 13 Câu 9: Với giá trị m a 3m1;42m phương b5 ;6 m
A m5 B m5 C m 5 D m 5
Câu 10: Cho a3i4 ;j b1i2j
Tìm phát biểu sai?
A 3a9;12
B a
phương b. C a b 2;6
D a b 4;2
II Tự Luận
Bài 1: Cho điểm A1;3 , B 2;4 , C0;1
(24)Số điện thoại : 0946798489 Trang -24-
b Tìm tọa độ điểm Ethỏa 2 7
4
EA EB CE
Bài 2: Cho tam giác ABCcó trọng tâm Gvà điểm Mthỏa 3MA2BM 3MC 0
a Phân tích MG theo vectơ AB AC,
b CMR: điểm M B G, , thẳng hàng
1 2 3 4 5 6 7 8 9 10
A B C D
-
(25)Số điện thoại : 0946798489 Trang -25- I Trắc nghiệm
Câu 1: Mệnh đề sau ĐÚNG:
A Hai vectơ a b gọi chúng hướng độ dài
B Hai vectơ a b gọi chúng phương độ dài
C Hai vectơ AB CD gọi tứ giác ABCD hình bình hành
D Hai vectơ a b gọi chúng độ dài
Câu 2: Cho hình bình hành ABCD tâm O, câu sau SAI:
A ABADAC B BA BC CA
C DA BC D OA OB OC OD0
Câu 3: Cho ABC có trọng tâm G, D trung điểm BC. Chọn câu
A
3
GA AD B
2
AG GD
C GA 2GD D
2
GA GD
Câu 4: Cho a ( 1; 2), b(5; 7) Tọa độ vectơ a b là:
A (6; -9) B (4; -5) C ( -6;9) D ( -5; -14)
Câu 5: Cho tam giác ABC có A(3;5), B(1;2), C(5;2) Trọng tâm tam giác ABC là:
A G(-3;4) B G(4;0) C G( 2;3) D G(3;3)
Câu 6: Cho điểm phân biệt A B Gọi I trung điểm AB, ta có đẳng thức
A IA IB 0 B AI BI AB C IB IA 0 D AB AI BI Câu 7: Với điểm A, B, C tùy ý; đẳng thức sau sai:
A AB BC CA B CA BA BC C BC BA CA D BC AC BA
Câu 8: Cho hai điểm I( 1;3), (0; 2). K Tìm tọa độ điểm J cho :K trung điểm IJ ?
A (1;7) B (1; 7) C ( 1;7) D ( 1; 7) Câu 9: Cho điểm O, H, I Đẳng thức đúng?
A OH IH IO B OH HI OI C HO HI OI D HO HI IO
Câu 10: Cho hình bình hành ABCD có I tâm Biết B(2;0), ( 4;1).D Tọa độ tọa độ tâm I?
A ( 1; )1
B ( 1; 1)
C (1; )1
2 D
1 (1; )
2 II Tự luận:
Câu 11: Cho điểm M, N, P, Q CMR: MN QP MP QN
Câu 12: Trong mặt phẳng Oxy Cho A(1;3), ( 2;2), (3; 2)B C
a Tìm tọa độ điểm F cho tứ giác AFCB hình bình hành
b Tìm tọa độ điểm M cho: 3MB 2MA MC
Câu 13: Cho ABC Gọi D, E điểm thuộc cạnh BC, AC thỏa ;
3
BD BC AE AC
I
trung điểm AD
a) Phân tích BI BE , theo vectơ BA BC ,
(26)Số điện thoại : 0946798489 Trang -26-
ĐÁP ÁN TRẮC NGHIẸM
1 10
(27)Số điện thoại : 0946798489 Trang -27- I Trắc nghiệm
Câu 1: Mệnh đề sau SAI:
A Vectơ đoạn thẳng có hướng
B Vectơ - khơng vectơ có điểm đầu điểm cuối trùng
C Hai vectơ phương hướng với
D Hai vectơ đối chúng độ dài ngược hướng
Câu 2: Cho ba điểm A,B,C phân biệt Đẳng thức sau SAI:
A AB CA BC B AB BC AC C BA CA BC D AB AC CB
Câu 3: Cho I trung điểm BC M điểm tùy ý Đẳng thức sau đúng?
A BM CM 2IM B MB MC MI C MB MC 2MI D BM CM IM
Câu 4: Cho điểm A(1;4), B(7;4) ta có tọa độ trung điểm I AB
A ( 3; 4) B ( 3;1) C (3;4) D (4; 4) Câu 5: Cho a (3; 4) , b ( 1;2)
Tọa độ a b là:
A ( 3;8) B (2; 2) C (4; 2) D (2;2) Câu 6: Cho điểm M N P Q, , , phân biệt Đẳng thức đúng:
A MN NPMQ PQ B MN PQMP NQ
C MN PQ QM NM D MN MPQNQP
Câu 7: Cho a (2; 1) , b ( 1;2)
Tọa độ 2a 3b là:
A (2; 2) B ( ; 4)7
2 C (4; 2) D (2;2)
Câu 8: Trong hệ trục ( ; ; )O i j
, tọa độ véc tơ ij
là:
A (1;-1) B (1; 1) C (0;1) D (1; 0)
Câu 9: Cho điểm A B C D, , , Hiệu AB AC CD bằng:
A BD
B AD
C DB
D CB
Câu 10: Cho ABO cóA( 1;3), (2; 5) H Tìm tọa độ điểm B cho H trọng tâm ABO?
A ( 7; 18) B (7;18) C ( 7;18) D (7; 18) II Tự luận:
Câu 11: Cho điểm phân biệt A B C M N, , , , Chứng minh: AC MN MC CN CB AB
Câu 12: Trong mặt phẳng 0xy cho A2;3 , B 4; , C 1; 3
a.Tìm toạ độ điểm A' đối xứng với A qua B
b.Tìm toạ độ điểm M cho AM 2BM4CM0
Câu 13: Cho tam giác ABC, I thuộc cạnh AB cho
IA AB, I điểm thỏa
2
CJ AB AC
a Phân tích vectơ CI theo vectơ AB AC,
(28)Số điện thoại : 0946798489 Trang -28-
ĐÁP ÁN TRẮC NGHIẸM
1 10