THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 55 |
Dung lượng | 573,25 KB |
Nội dung
Ngày đăng: 10/02/2021, 13:24
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||||||
---|---|---|---|---|---|---|---|---|
[2] Jiawei Han, Micheline Kamber and Jian Pei (2012), Data Mining. Concepts and Techniques, 3rd Edition, Elsevier, Waltham | Sách, tạp chí |
|
||||||
[3] Josh Patterson, Adam Gibson (2017), Deep Learning: A Practitioner’sApproach, O’Reilly Media, Sevastopol | Sách, tạp chí |
|
||||||
[1] M. Śmieja, Ł. Struski, and M. Figueiredo (2020), A Classification- Based Approach to Semi-Supervised Clustering with Pairwise Constraints, Neural Networks, vol.127, pp.193-203 | Khác | |||||||
[4] Rajul Anand, Chandan K. Reddy (2011), Graph-Based Clustering with Constraints, Advances in Knowledge Discovery and Data Mining, vol.6635, pp.51-62 | Khác | |||||||
[5] Viet-Vu Vu (2018), An Efficient Semi-Supervised Graph Based Clustering, Intelligent Data Analysis, vol.22, pp.297-307 | Khác | |||||||
[6] Viet-Vu Vu, Hong-Quan Do (2017), Graph-based Clustering with Background Knowlegde, In Proceedings of the Eighth International Symposium on Information and Communication Technology (SoICT 2017), pp.167-172 | Khác | |||||||
[7] D. Cheng, V. Murino, M. Figueiredo (2007), Clustering under prior knowledge with application to image segmentation, in: Advances in Neural Information Processing Systems (NIPS), pp.401-408 | Khác | |||||||
[8] M. Law, A. Topchy, A. Jain (2005), Model-based clustering with probabilistic constraints, in: SIAM Conference on Data Mining (SDM), pp.641-645 | Khác | |||||||
[9] Z. Lu, T. Leen (2004), Semi-supervised learning with penalized probabilistic clustering., in: Advances in Neural Information Processing Systems (NIPS), pp.849-856 | Khác | |||||||
[10] V. Melnykov, I. Melnykov, S. Michael (2016), Semi-supervised model-based clustering with positive and negative constraints, Advances in data analysis and classification 10 (3), pp.327-349 | Khác | |||||||
[11] M. Bilenko, S. Basu, R. Mooney (2004), Integrating constraints and metric learning in semi-supervised clustering, in: International Conference on Machine Learning (ICML), p.11 | Khác | |||||||
[12] P. Qian, Y. Jiang, S. Wang, K. Su, J. Wang, L. Hu, R. Muzic (2017), Affinity and penalty jointly constrained spectral clustering with all- compatibility, flexibility, and robustness, IEEE Transactions on Neural Networks and Learning Systems 28 (5), pp.1123-1138 | Khác | |||||||
[13] L. Hubert, P. Arabie (1985), Comparing partitions, Journal of Classification, vol.2, pp.193-218 | Khác | |||||||
[14] Strehl, Alexander, and Joydeep Ghosh (2002), Cluster ensembles – a knowledge reuse framework for combining multiple partitions, Journal of Machine Learning Research, vol.3, pp.583-617 | Khác | |||||||
[15] Y. Pei, X. Fern, T. Tjahja, R. Rosales (2016), Comparing clustering with pairwise and relative constraints: A unified framework, ACM Transactions on Knowledge Discovery from Data (TKDD) 11 (2) | Khác | |||||||
[16] M. Smieja, O. Myronov, J. Tabor (2018), Semi-supervised discriminative clustering with graph regularization, Knowledge-Based Systems 151, pp.24–36 | Khác | |||||||
[17] H. Zhang, S. Basu, I. Davidson (2019), Deep constrained clustering- algorithms and advances, in: Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-EKDD), p.17 | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN