1. Trang chủ
  2. » Giáo án - Bài giảng

Toán 12 Đề thi HK I số 9

6 301 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 341 KB

Nội dung

ĐỀ KIỂM TRA HỌC KỲ I Môn TOÁN – LỚP 12 Thời gian: 90 phút, kể cả thời gian giao đề. ------------------------------------------- A. PHẦN CHUNG: (7,0 điểm) Phần dành cho tất cả học sinh học chương trình chuẩn và chương trình nâng cao. Câu I: (3,0 điểm) Cho hàm số 3 y = x - 3x - 1 (1) 1) Khảo sát và vẽ đồ thị (C) của hàm số (1). 2) Dựa vào đồ thị (C), biện luận theo tham số m số nghiệm của phương trình: 3 - x + 3x +1+ m = 0 . 3) Viết phương trình tiếp tuyến của đồ thị (C) tại tiếp điểm có hoành độ x 0 = 2 . Câu II: (3,0 điểm) 1) Rút gọn biểu thức: A = 2+ 7 2+ 7 1+ 7 14 2 7 . 2) Giải các phương trình sau: a) x x 9 -10.3 +9 = 0 b) 1 4 4 1 log (x -3) =1+log x Câu III: (1,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, cạnh SA vuông góc với đáy, góc ABC bằng 0 60 , BC = a và SA = a 3 . Tính thể tích của khối chóp đó. B. PHẦN RIÊNG: (3,0 điểm) Học sinh học chương trình nào chỉ được làm phần dành riêng cho chương trình đó. I. Dành cho học sinh học chương trình chuẩn: Câu IVa : (3,0 điểm) 1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 1 2 y = log (x +1) trên đoạn [1 ; 3]. 2) Cho hình nón có đỉnh S, mặt đáy là hình tròn tâm O, đường kính AB = 2R và tam giác SAB vuông. a) Tính thể tích khối nón giới hạn bởi hình nón đó. b) Giả sử M là một điểm thuộc đường tròn đáy sao cho · 0 BAM 30 = . Tính diện tích thiết diện của hình nón tạo bởi mặt phẳng (SAM). II. Dành cho học sinh học chương trình nâng cao: Câu IVb: (3,0 điểm) 1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 3 2 1 1 1 2 2 2 1 y = log x + log x -3log x +1 3 trên đoạn 1 ;4 4 é ù ê ú ê ú ë û . 2) Cho mặt cầu tâm O, bán kính bằng R. Xét một hình nón nội tiếp mặt cầu có bán kính đáy bằng r. Tính diện tích xung quanh hình nón. ------------------Hết---------------------- ĐÁP ÁN & THANG ĐIỂM CHẤM ĐỀ KIỂM TRA HỌC KỲ Câu Ý Nội dung Điểm I Cho hàm số 3 y = x - 3x - 1 (1) (3.0 điểm) 1 Khảo sát và vẽ đồ thị (C) của hàm số (1). 1.5 điểm TXĐ: R 0.25 y’ = 3x 2 – 3, ' 0y = x = ±1Û y' > 0 Û x < - 1 hoặc x > 1; y' < 0 -1< x <1Û 0.25 HS đồng biến trên các khoảng ( ) ( ) ; 1 ; 1;- ¥ - + ¥ và nghịch biến trên khoảng (-1; 1) y CĐ = y(-1) = 1và y CT = y(1) = -3 0.25 Bảng biến thiên: x - ¥ -1 1 + ¥ y’ + 0 - 0 + y 1 + ¥ - ¥ -3 0.25 Đồ thị: + '' 6x, y'' = 0 x = 0. y = Û Đồ thị có tâm đối xứng là điểm (0; -1) + Các điểm khác thuộc (C) là (- 2; - 3), (2; 1) 3 2 1 -1 -2 -3 -4 -5 -6 -4 -2 2 4 6 O 1 1 2-2 -3 -1 0.50 2 Dựa vào đồ thị (C), biện luận theo tham số m số nghiệm của phương trình: 3 - x + 3x + 1+ m = 0 1.0 điểm Ta có: 3 3 1 0x x m- + + + = 3 3x - 1 = mx -Û (2) 0.25 (2) là PT HĐGĐ của (C) và (d): y = m, (d) song song hoặc trùng với Ox. Số nghiệm của PT (2) đúng bằng số giao điểm của (C) và (d). 0.25 Dựa vào đồ thị (C) ta có: - Khi m < -3 hoặc m > 1: (d) cắt (C) tại 1 điểm nên phương trình có 1 nghiệm duy nhất - Khi m = -3 hoặc m = 1: (d) và (C) có hai điểm chung phân biệt nên phương trình có hai nghiệm phân biệt. - Khi -3 < m < 1: (d) cắt (C) tại 3 điểm phận biệt nên phương trình có 3 nghiệm phân biệt (đúng 2 ý cho 0.25) 0.50 3 Viết phương trình tiếp tuyến của đồ thị (C) tại tiếp điểm có hoành độ x 0 = 2 0.5 điểm x 0 = 2 Þ y 0 = 1 y’ = 3x 2 – 3 Þ y’(2) = 9 0.25 PT tiếp tuyến của (C) tại điểm (2; 1) là: y = 9(x – 2) + 1 hay y = 9x – 17 0.25 II (3.0 điểm) 1 Rút gọn biểu thức: A = 2+ 7 2+ 7 1+ 7 14 2 .7 1.0 điểm A = 2 7 2 7 2 7 2 7 1 7 2 7 1 7 14 2 .7 2 .7 2 .7 + + + + + + + = 0.50 2 7 2 7 1 7 1 7 7 7 7 7 + + - - + = = = 0.50 2.a Giải phương trình x x 9 - 10.3 + 9 = 0 1.0 điểm PT Û ( ) ( ) 2 3 10 3 9 0 x x - + = 0.25 Đặt 3 x t = > 0 ta được phương trình theo t: t 2 – 10t + 9 = 0 Û t = 1 hoặc t = 9 0.25 Với t = 1 ta được 3 x = 1 Û x = 0 Với t = 9 ta được 3 x = 9 Û x = 2 0.25 Tập nghiệm của phương trình là: { } 0;2S = 0.25 2.b Giải phương trình 4 1 4 1 log (x - 3) = 1+ log x 1.0 điểm Điều kiện: 1 3 0 0 3x x x - > > >Ù Û 0.25 Khi đó: PT Û 4 4 log ( 3) 1 logx x- - = - Û 4 4 log log ( 3)x x- - = 1 0.25 Û 4 log 1 3 x x = - Û 4 3 x x = - 0.25 Û x = 4(x - 3) Û 3x = 12 Û x = 4 (thõa mãn điều kiện) Vậy phương trình có một nghiệm x = 4 0.25 III Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, cạnh SA vuông góc với đáy, góc ABC bằng 0 60 , BC = a và SA = a 3 . Tính thể tích của khối chóp đó. (1.0 điểm) a a 3 60 0 A C B S 0.25 Ta có: AC = BC.tanB = a.tan60 0 = 3a 0.25 Diện tích tam giác ABC: 1 dt(ΔABC) = CA.CB 2 2 1 3 = a 3.a = a 2 2 0.25 Theo giả thiết SA = 3a là chiều cao của hình chóp. Vậy thể tích của khối chóp là: 1 V = dt(ΔABC).SA 3 2 3 1 3 1 3 3 2 2 a a a= = 0.25 IVa (3,0 điểm) 1 Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 1 2 y = log (x + 1) trên đoạn [1 ; 3] 1.0 điểm Đặt t = x +1 , x Î [1; 3] Û t Î [2; 4]. Khi đó hàm số đã cho trở thành 1 2 y = log t . 0.25 Vì 1 0 < a = <1 2 nên hàm số 1 2 y = log t nghịch biến trên khoảng (0; )+ ¥ 0.25 Giá trị lớn nhất của hàm số trên đoạn [2; 4] là 1 2 log 2 1=- Giá trị nhỏ nhất của hàm số trên đoạn [2; 4] là 1 2 log 4 2=- (đúng 1 ý cho 0.25) 0.50 2 Cho hình nón có đỉnh S, mặt đáy là hình tròn tâm O, đường kính AB = 2R và tam giác SAB vuông. 2.a Tính thể tích khối nón giới hạn bởi hình nón đó. 1.0 điểm Ta có SA và SB là các đường sinh của hình nón nên SA = SB. Theo giả thiết thì tam giác ASB vuông tại S có SO là trung tuyến nên chiều cao hình nón là: h = SO = 1 2 AB = R. 0.25 Thể tích khối nón là V= 1 3 dt đáy .SO = 3 2 1πR πR .R = 3 3 0.25 30 R H O S A B M Nu hỡnh v ch phc v cõu a) cho 0.25 0.50 2.b Gi s M l im thuc ng trũn ỏy sao cho gúc ã BAM = 30 0 . Tớnh din tớch thit din ca hỡnh nún to bi mp(SAM). 1.0 im Vỡ M thuc ng trũn ng kớnh AB nờn tam giỏc ABM vuụng ti M cú gúc A bng 30 0 MA =AB.cosA = 2R.cos30 0 = R 3 . 0.25 Vỡ tam giỏc SOM vuụng ti O nờn OS = OM = R SM = 2R Gi H l trung im MA, ta cú MH = 1 3 MA = R. 2 2 . 0.25 SH ^ MA 2 2 SH = SM - MH = 2 2 3 R 5 2R - R = 4 2 0.25 Mp(SAM) ct hỡnh nún theo thit din l tam giỏc SAM cõn nh S cú SH l ng cao.: 2 SAM 1 1 R R 15 S = SH.AM = . 5.R 3 = 2 2 2 4 0.25 IVb (3.0 im) 1 Tỡm giỏ tr ln nht v giỏ tr nh nht ca hm s 3 2 1 1 1 2 2 2 1 y = log x + log x - 3log x + 1 3 trờn on ộ ự ờ ỳ ờ ỳ ở ỷ 1 ;4 4 1.0 im t t = 1 2 log x , ta thy 1 ;4 [-2; 2] 4 x t ộ ự ờ ỳ ẻ ẻ ờ ỳ ở ỷ . Bi toỏn tr thnh: Tỡm GTLN, GTNN ca hm s 3 2 1 y = t + t -3t +1 3 trờn on [-2; 2]. 0.25 2 y' = t + 2t -3 ; y' = 0 t = 1 [-2; 2] t = -3 [-2; 2] ẻ ẽ 0.25 8 25 ( 2) 4 6 1 3 3 y - - = + + + = ; 1 2 (1) 1 3 1 3 3 y = + - + =- ; 8 5 (2) 4 6 1 3 3 y = + - + = 0.25 Vy GTLN ca hm s l 25 4 , GTNN ca hm s l 2 3 - 0.25 2 Cho mặt cầu tâm O, bán kính bằng R. Xét một hình nón nội tiếp mặt cầu có bán kính đáy bằng r. Tính DTXQ hình nón. 2.0 điểm r R H O S M S' Hình vẽ phục vụ tốt cho lời giải (có thể với cách giải khác) 0.25 Vì S là đỉnh, H là tâm của hình tròn đáy của hình nón nội tiếp mặt cầu tâm O nên H thuộc đường kính SS’ của mặt cầu. Đặt SH = h là chiều cao của hình nón. 0.25 Vì M thuộc đường tròn (H) nên tam giác MSS’ vuông tại M Þ 2 2 r = MH = SH.S'H = h.(2R - h) Û h 2 – 2Rh + r 2 = 0 Û h = 2 2 R + R - r hoặc 2 2 h = R - R - r 0.50 * Nếu SH = h = 2 2 R + R - r thì độ dài đường sinh hình nón: l = SM = 2 2 2 2 SH + HM = h + r = 2 2 2 2R + 2R R - r . Diện tích chung quanh của hình nón: 2 2 2 xq S =πrl = πr 2R + 2R R - r 0.50 * Nếu SH = h = 2 2 R - R - r thì độ dài đường sinh hình nón: l = SM = 2 2 2 2 SH + HM = h + r = 2 2 2 2R - 2R R - r . Diện tích chung quanh của hình nón: 2 2 2 xq S =πrl = πr 2R - 2R R - r 0.50 Nếu học sinh chỉ tìm được một trong hai kết quả trên (có thể với cách trình bày khác) thì cho nửa số điểm của câu này. Lưu ý:  Phần riêng, nếu học sinh làm không đúng theo chương trình hoặc làm cả hai phần thì không chấm phần riêng đó.  Học sinh có thể giải bằng các cách khác nếu đúng vẫn cho điểm tối đa tương ứng với thang điểm của ý và câu đó. . ĐỀ KIỂM TRA HỌC KỲ I Môn TOÁN – LỚP 12 Th i gian: 90 phút, kể cả th i gian giao đề. ------------------------------------------- A. PHẦN CHUNG: (7,0 i m). tích thi t diện của hình nón tạo b i mặt phẳng (SAM). II. Dành cho học sinh học chương trình nâng cao: Câu IVb: (3,0 i m) 1) Tìm giá trị lớn nhất và giá trị

Ngày đăng: 01/11/2013, 04:11

HÌNH ẢNH LIÊN QUAN

III Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, cạnh SA vuông góc với đáy, góc ABC bằng 600, BC = a và SA = a 3  - Toán 12 Đề thi HK I số 9
ho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, cạnh SA vuông góc với đáy, góc ABC bằng 600, BC = a và SA = a 3 (Trang 3)
Theo giả thiết S A= a3 là chiều cao của hình chóp. Vậy thể tích của khối chóp là:  - Toán 12 Đề thi HK I số 9
heo giả thiết S A= a3 là chiều cao của hình chóp. Vậy thể tích của khối chóp là: (Trang 4)
Nếu hình vẽ chỉ để phục vụ câu a) cho 0.25 - Toán 12 Đề thi HK I số 9
u hình vẽ chỉ để phục vụ câu a) cho 0.25 (Trang 5)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w