1. Trang chủ
  2. » Kỹ Năng Mềm

Đề thi tuyển sinh vào 10 tỉnh Thanh Hóa năm 2009 - 2010

4 28 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 794,88 KB

Nội dung

Chứng minh tứ giác BDQO nội tiếp được trong một đường tròn.. Chứng minh tam giác BKD đồng dạng với tam giác AKC, từ đó suy ra CQ DQ CK  DK.[r]

(1)

1 Truy cập trang http://tuyensinh247.com để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử - Địa – GDCD tốt nhất!

SỞ GD & ĐT THANH HOÁ KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2009 – 2010

MƠN: TỐN

THỜI GIAN LÀM BÀI: 120 PHÚT

Bài 1: (1,5 Điểm) Cho phương trình: x2 – 4x + q = (1) với q tham số Giải phương trình (1) q =

2 Tìm q để phương trình (1) có nghiệm

Bài 2: (1,5 Điểm) Giải hệ phương trình:

2

x y x y

  

   

Bài 3: (2,5 Điểm)

Trong mặt phẳng toạ độ Oxy cho parabol (P): y = x2 điểm D(0;1) Viết phương trình đường thẳng (d) qua điểm D(0;1) có hệ số góc k

2 Chứng minh đường thẳng (d) cắt parabol (P) hai điểm phân biệt G H với k

3 Gọi hoành độ hai điểm G H x1 x2 Chứng minh rằng: x1.x2 = -1, từ

suy tam giác GOH tam giác vuông

Bài 4: (3,5 Điểm) Cho nửa đường trịn tâm O, đường kính AB = 2R Trên tia đối tia BA lấy điểm K (khác với điểm B) Từ điểm K, A B kẻ tiếp tuyến với nửa đường tròn (O) Tiếp tuyến kẻ từ điểm K cắt tiếp tuyến kẻ từ điểm A B C D

1 Gọi Q tiếp điểm tiếp tuyến kẻ từ K tới nửa đường tròn (O) Chứng minh tứ giác BDQO nội tiếp đường tròn

2 Chứng minh tam giác BKD đồng dạng với tam giác AKC, từ suy CQ DQ CKDK

3 Đặt BOD =  Tính độ dài đoạn thẳng AC BD theo R  Chứng tỏ tích AC.BD phụ thuộc vào R, khơng phụ thuộc vào 

Bài 5: (1 Điểm) Cho số thực t, u, v thoả mãn: u2 + uv + v2 = 1-

2

3 t

Tìm giá trị lớn giá trị nhỏ biểu thức: D = t + u + v

(2)

2 Truy cập trang http://tuyensinh247.com để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử - Địa – GDCD tốt nhất!

ĐÁP ÁN

SỞ GD & ĐT THANH HOÁ KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2009 – 2010

MƠN: TỐN

THỜI GIAN LÀM BÀI: 120 PHÚT

Bài 1: Phương trình: x2 – 4x + q = (1) với q tham số 1 Khi q = Phương trình (1) trở thành x2 – 4x + = Ta có: a + b + c = + (- 4) + =

Nên phương trình cho có hai nghiệm x1 = 1, x2 =

c a = Để phương trình (1) có nghiệm thì:

2

' ( 2)

4

q

q q

    

    

Vậy với q4 phương trình (1) có nghiệm Bài 2: Giải hệ phương trình:

2 2 10 3

2 7

x y x y x x

x y x y y y

     

   

  

          

   

Vậy hệ phương trình cho có nghiệm x y

    

Bài 3: Trong mặt phẳng toạ độ Oxy cho parabol (P): y = x2 điểm D(0;1) Phương trình đường thẳng (d) qua điểm D(0;1) có hệ số góc k là: y = k(x - 0) +  y = kx +

2 Hoành độ giao điểm parabol (P) đường thẳng (d) nghiệm phương trình: x2 = kx +  x2 - kx - = (2)

Ta có:  = k2 –4.(- 1) = k2 + > với k

Nên phương trình (2) ln có hai nghiệm phân biệt với k Hay đường thẳng (d) cắt parabol (P) hai điểm phân biệt G H với k

3 Hoành độ hai điểm G H x1 x2 Khi x1 x2 hai nghiệm phương

trình (2)., áp dụng định lý vi – ét ta có: x1.x2 =

1

c a

 = -1 Đường thẳng d1 qua O(0;0)

điểm G(x1 ; x1

(3)

3 Truy cập trang http://tuyensinh247.com để học Toán – Lý – Hóa – Sinh – Văn – Anh – Sử - Địa – GDCD tốt nhất!

Đường thẳng d2 qua O(0;0) điểm H(x2 ; x2

) có phương trình là: y = x2.x

Vì x1.x2 = -1 nên d1  d2 hạy OG  OH suy ra:

Tam giác GOH tam giác vuông O Bài 4:

1 Ta có:

OQD +OBD = 900 + 900=1800  Tứ giác BDQO nội tiếp đường trịn

2 Xét BKD AKC có: KBD = KAC = 900 BKD = AKC

Do đó: BKD AKC  CA BD

CKDK (1)

Mà CA = CQ, DQ = DB (2) (hai tiếp tuyến xuất phát điểm) Từ (1) (2) suy ra: CQ DQ

CKDK

3 Trong tam giác ODB vng B ta có: BD = OB tgBOD = R.tg Ta có: BOQ = 2BOD = 2 (Theo tính chất hai tiếp tuyến cắt nhau)

 OKQ = 900 - KOQ = 900 - 2

Trong tam giác vuông OQK vuông Q ta có: OK = cos

OQ KOQ

 = cos

R   KA = OK + OA =

cos

R

+ R

Trong tam giác KAC vng A ta có: AC = AK.tgAKC = (

cos

R

+ R) tg(90

0

- 2) Ta có: DOQ =

2 BOQ, COQ =

2 AOQ (tính chất hai tiếp tuyến cắt nhau)

Do đó: COD = DOQ + COQ =

2(BOQ + AOQ) = 2.180

0

= 900

O

Q D C

K B

(4)

4 Truy cập trang http://tuyensinh247.com để học Tốn – Lý – Hóa – Sinh – Văn – Anh – Sử - Địa – GDCD tốt nhất!

 COD vuông O

Mà OQ  KC nên OQ2 = CQ.QD = AC.BD (vì CA = CQ, DQ = DB )  AC.BD = R2

Vậy: tích AC.BD phụ thuộc vào R, không phụ thuộc vào  Bài 5: (1 Điểm)

Ta có: D2 = (t + u + v)2 = u2 + v2 + t2 + 2uv + 2ut + 2vt (1) Mặt khác: Theo giả thiết u2 + uv + v2 = 1-

2

3 t

 2uv = - 2u2 - 2v2 -3t2 (2) Thay (2) vào (1) ta được:

D2 = - u2 - v2 -2t2 + 2ut + 2vt = – (u - t)2 – (v - t)2 

D2 =

2

2 2

2 3 2 3 t t

u v uv t

u t u t u

v t v t

v                                      3 t u v                 -  D 

Vậy: giá trị nhỏ D -

2 3 t u v               

Giá trị lớn D

2 3 t u v            

Ngày đăng: 04/02/2021, 23:21

TỪ KHÓA LIÊN QUAN

w