Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 28 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
28
Dung lượng
1,32 MB
Nội dung
Tài liệu ôn tập - Đạisố8chuyênđề nhân đơn thức với đa thức, đa thức với đa thức và bẩy hằng đẳng thức đáng nhớ. I) Nhân đơn thức với đa thức: 1. Kiến thức cơ bản: A(B + C) = A. B + A. C 2. Bài tập áp dụng: Bài 1. Làm tính nhân: a) 3x(5x 2 - 2x - 1); b) (x 2 - 2xy + 3)(-xy); c) 1 2 x 2 y(2x 3 - 2 5 xy 2 - 1); d) 2 7 x(1,4x - 3,5y); e) 1 2 xy( 2 3 x 2 - 3 4 xy + 4 5 y 2 ); f)(1 + 2x - x 2 )5x; g) (x 2 y - xy + xy 2 + y 3 ). 3xy 2 ; h) 2 3 x 2 y(15x - 0,9y + 6); i) 3 7 x 4 (2,1y 2 - 0,7x + 35); Bài 2. Đơn giản biểu thức rồi tính giá trị của chúng. a) 3(2a - 1) + 5(3 - a) với a = 3 2 . b) 25x - 4(3x - 1) + 7(5 - 2x) với x = 2,1. c) 4a - 2(10a - 1) + 8a - 2 với a = -0,2. d) 12(2 - 3b) + 35b - 9(b + 1) với b = 1 2 Bài 3. Thực hiện phép tính sau: a) 3y 2 (2y - 1) + y - y(1 - y + y 2 ) - y 2 + y; b) 2x 2 .a - a(1 + 2x 2 ) - a - x(x + a); c) 2p. p 2 -(p 3 - 1) + (p + 3). 2p 2 - 3p 5 ; d) -a 2 (3a - 5) + 4a(a 2 - a). Bài 4. Đơn giản các biểu tức: a) (3b 2 ) 2 - b 3 (1- 5b); b) y(16y - 2y 3 ) - (2y 2 ) 2 ; c) (- 1 2 x) 3 - x(1 - 2x - 1 8 x 2 ); d) (0,2a 3 ) 2 - 0,01a 4 (4a 2 - 100). Bài 5. Chứng minh rằng giá trị các biểu thức sau không phụ thuộc vào biến x. a) x(2x + 1) - x 2 (x + 2) + (x 3 - x + 3); b) x(3x 2 - x + 5) - (2x 3 +3x - 16) - x(x 2 - x + 2); Bài 6. Chứng minh rằng các biểu thức sau đây bằng 0; a) x(y - z) + y((z - x) + z(x - y); b) x(y + z - yz) - y(z + x - zx) + z(y - x). Bài tập nâng cao Bài 7. Tính giá trị biểu thức: a) P(x) = x 7 - 80x 6 + 80x 5 - 80x 4 +.+ 80x + 15 với x = 79. b) Q(x) = x 14 - 10x 13 + 10x 12 - 10x 11 + + 10x 2 - 10x + 10 với x = 9. c) M(x) = x 3 - 30x 2 - 31x + 1 với x = 31. d) N(x) = x 5 - 15x 4 + 16x 3 - 29x 2 + 13x với x = 14. Bài 8. Chứng minh rằng : a) 35 6 - 35 5 chia hết cho 34 b) 43 4 + 43 5 chia hết cho 44. Bài 9. Cho a và b là cácsố nguyên. Chứng minh rằng: a) nếu 2a + b M 13 và 5a - 4b M 13 thì a - 6b M 13; b) nếu 100a + b M 7 thì a + 4b M 7; c) nếu 3a + 4b M 11 thì a + 5b M 11; II) Nhân đa thức với đa thức. 1. Kiến thức cơ bản: (A + B)(C + D) = A.C + A.D + B.C + B.D; 2. Bài tập áp dụng: Nguyễn Quang Huy Trờng THCS Dơng Đức 1 Tài liệu ôn tập - Đạisố8 Bài 1. Thực hiện phép tính: a) (5x - 2y)(x 2 - xy + 1); b) (x - 1)(x + 1)(x + 2); c) 1 2 x 2 y 2 (2x + y)(2x - y); d) ( 1 2 x - 1) (2x - 3); e) (x - 7)(x - 5); f) (x - 1 2 )(x + 1 2 )(4x - 1); g) (x + 2)(1 + x - x 2 + x 3 - x 4 ) - (1 - x)(1 + x +x 2 + x 3 + x 4 ); h) (2b 2 - 2 - 5b + 6b 3 )(3 + 3b 2 - b); i) (4a - 4a 4 + 2a 7 )(6a 2 - 12 - 3a 3 ); Bài 2.Chứng minh: a) (x - 1)(x 2 - x + 1) = x 3 - 1; b) (x 3 + x 2 y + xy 2 + y 3 )(x - y) = x 3 - y 3 ; Bài 3. Thực hiện phép nhân: a) (x + 1)(1 + x - x 2 + x 3 - x 4 ) - (x - 1)(1 + x + x 2 + x 3 + x 4 ); b) ( 2b 2 - 2 - 5b + 6b 3 )(3 + 3b 2 - b); c) (4a - 4a 4 + 2a 7 )(6a 2 - 12 - 3a 3 ); d) (2ab + 2a 2 + b 2 )(2ab 2 + 4a 3 - 4a 2 b) e) (2a 3 - 0,02a + 0,4a 5 )(0,5a 6 - 0,1a 2 + 0,03a 4 ). Bài 4. Viết các biểu thức sau dới dạng đa thức: a) (2a - b)(b + 4a) + 2a(b - 3a); b) (3a - 2b)(2a - 3b) - 6a(a - b); c) 5b(2x - b) - (8b - x)(2x - b); d) 2x(a + 15x) + (x - 6a)(5a + 2x); Bài 5. Chứng minh rằng giá trị các biểu thức sau không phụ thuộc vào biến y: a) (y - 5)(y + 8) - (y + 4)(y - 1); b) y 4 - (y 2 - 1)(y 2 + 1); Bài 6. Tìm x, biết: a) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4); b) (8x - 3)(3x + 2) - (4x + 7)(x + 4) = (2x + 1)(5x - 1); c) 2x 2 + 3(x - 1)(x + 1) = 5x(x + 1); d) (8 - 5x)((x + 2) + 4(x - 2)(x + 1) + (x - 2)(x + 2); e) 4(x - 1)( x + 5) - (x +2)(x + 5) = 3(x - 1)(x + 2). Bài tập nâng cao Bài 7. Chứng minh hằng đẳng thức: a 3 + b 3 + c 3 - 3abc = (a + b + c)(a 2 + b 2 + c 2 - ab - bc - ca). Bài 8. Cho a + b + c = 0. Chứng minh M = N = P với : M = a(a + b)(a + c); N = b(b + c)(b + a); P = c(c + a)(c + b); Bài 9. Số 3 50 + 1 có là tích của hai số tự nhiên liên tiếp không ? HD: Trớc hết chứng minh tích của hai số tự nhiên liên tiếp chia cho 3 thì d 0 hoặc 2. Thật vậy nêu trong hai số tự nhiên liên tiếp có một số chia hết cho 3 thì tích của chúng chia hết cho 3, nếu cả hai số đều không chia hết cho 3 thì tích của chúng chia cho 3 d 2 ( tự chứng minh). Số 3 50 + 1 chia cho 3 d 1 nên không thể là tích của hai số tự nhiên liên tiếp. Bài 10. Cho A = 2 9 + 2 99 . Chứng minh rằng A M 100 HD: Ta có A = 2 9 + 2 99 = 2 9 + (2 11 ) 9 = (2 + 2 11 )(2 8 - 2 7 .2 11 + 2 6 .2 22 - -2.2 77 + 2 88 ) = M M 11 Thừa số thứ nhất 2 + 2 2050 4100 100 Thừa số thứ hai chẵn A A III) Các hằng đẳng thức đáng nhớ 1) Kiến thức cơ bản: 1.1) (A + B) 2 = A 2 + 2AB + B 2 . 1.2) (A - B) 2 = A 2 - 2.AB + B 2 . 1.3) A 2 - B 2 = (A - B)(A + B). 1.4) (A + B) 3 = A 3 + 3A 2 B + 3AB 2 + B 3 . 1.5) (A - B) 3 = A 3 - 3A 2 B + 3AB 2 + B 3 . 1.6) A 3 + B 3 = (A + B)(A 2 - AB + B 2 ). Nguyễn Quang Huy Trờng THCS Dơng Đức 2 Tài liệu ôn tập - Đạisố8 1.7) A 3 - B 3 = (A - B)(A 2 + AB + B 2 ). 2) Bài tập áp dụng: Bài 1. Tính a) (x + 2y) 2 ; b) (x - 3y)(x + 3y); c) (5 - x) 2 . d) (x - 1) 2 ; e) (3 - y) 2 f) (x - 1 2 ) 2 . Bài 2. Viết các biểu thức sau dới dạng bình phơng của một tổng: a) x 2 + 6x + 9; b) x 2 + x + 1 4 ; c) 2xy 2 + x 2 y 4 + 1. Bài 3. Rút gọn biểu thức: a) (x + y) 2 + (x - y) 2 ; b) 2(x - y)(x + y) +(x - y) 2 + (x + y) 2 ; c) (x - y + z) 2 + (z - y) 2 + 2(x - y + z)(y - z). Bài 4. ứng dụmg các hằng đẳng thức đáng nhớ để thực hiện các phép tính sau; a) (y - 3)(y + 3); b) (m + n)(m 2 - mn + n 2 ); c) (2 - a)(4 + 2a + a 2 ); d) (a - b - c) 2 - (a - b + c) 2 ; e) (a - x - y) 3 - (a + x - y) 3 ; f) (1 + x + x 2 )(1 - x)(1 + x)(1 - x + x 2 ); Bài 5. Hãy mở các dấu ngoặc sau: a) (4n 2 - 6mn + 9m 2 )(2n + 3m) b) (7 + 2b)(4b 2 - 4b + 49); c) (25a 2 + 10ab + 4b 2 )(5a - 2b); d)(x 2 + x + 2)(x 2 - x - 2). Bài 6. Tính giá trị biểu thức: a) x 2 - y 2 tại x = 87 với y = 13; b) x 3 - 3x 2 + 3x - 1 Với x = 101; c) x 3 + 9x 2 + 27x + 27 với x = 97; d) 25x 2 - 30x + 9 với x = 2; e) 4x 2 - 28x + 49 với x = 4. Bài 7. Đơn giản các biểu thức sau và tính giá trị của chúng: a) 126 y 3 + (x - 5y)(x 2 + 25y 2 + 5xy) với x = - 5, y = -3; b) a 3 + b 3 - (a 2 - 2ab + b 2 )(a - b) với a = -4, b = 4. Bài 8. Sử dụng hằng đẳng thức đáng nhớ để thực hiện các phép tính sau: a) (a + 1)(a + 2)(a 2 + 4)(a - 1)(a 2 + 1)(a - 2); b) (a + 2b - 3c - d)(a + 2b +3c + d); c) (1 - x - 2x 3 + 3x 2 )(1 - x + 2x 3 - 3x 2 ); d) (a 6 - 3a 3 + 9)(a 3 + 3); e) (a 2 - 1)(a 2 - a + 1)(a 2 + a + 1). Bài 9. Tìm x, biết: a) (2x + 1) 2 - 4(x + 2) 2 = 9; b) (x + 3) 2 - (x - 4)( x + 8) = 1; c) 3(x + 2) 2 + (2x - 1) 2 - 7(x + 3)(x - 3) = 36; d)(x - 3)(x 2 + 3x + 9) + x(x + 2)(2 - x) = 1; e) (x + 1) 3 - (x - 1) 3 - 6(x - 1) 2 = -19. Bài 10.Tính nhẩm theo các hằng đẳng thức cácsố sau: a) 19 2 ; 28 2 ; 81 2 ; 91 2 ; b) 19. 21; 29. 31; 39. 41; c) 29 2 - 8 2 ; 56 2 - 46 2 ; 67 2 - 56 2 ; Bài 11. Chứng mih các hằng đẳng thức sau: a) a 2 + b 2 = (a + b) 2 - 2ab; b) a 4 + b 4 = (a 2 + b 2 ) 2 - 2a 2 b 2 ; c) a 6 + b 6 = (a 2 + b 2 )[(a 2 + b 2 ) 2 - 3a 2 b 2 ]; d) a 6 - b 6 = (a 2 - b 2 )[(a 2 + b 2 ) 2 - a 2 b 2 ]. Các bài toán nâng cao Bài 12. Chứng minh các hằng đẳng thức sau: X 4 + y 4 + (x + y) 4 = 2(x 2 + xy + y 2 ) 2 ; Bài 13. Hãy viết các biểu thức dới dạng tổng của ba bình phong: (a + b + c) 2 + a 2 + b 2 + c 2 . Bài 14. Cho (a + b) 2 = 2(a 2 + b 2 ). Chứng minh rằng a = b. Bài 15. Cho a 2 + b 2 + c 2 = ab + bc + ca. Chứng minh rằng a = b =c. Bài 16. Cho ( a + b + c) 2 = 3(ab + bc + ca). Chứng minh rằng a = b = c. Bài 17. Cho a + b + c = 0 (1) a 2 + b 2 + c 2 = 2(2) Nguyễn Quang Huy Trờng THCS Dơng Đức 3 Tài liệu ôn tập - Đạisố8 Tính a 4 + b 4 + c 4 . Bài 18. cho a + b + c = 0. Chứng minh đẳng thức: a) a 4 + b 4 + c 4 = 2(a 2 b 2 + b 2 c 2 +c 2 a 2 ); b) a 4 + b 4 + c 4 = 2(ab + bc + ca) 2 ; c) a 4 + b 4 + c 4 = ( ) 2 2 2 2 2 a b c+ + ; Bài 19. Chứng minh rằng các biểu thức sau luôn luôn có giá trị dơng với mọi giá trị của biến. a) 9x 2 - 6x +2; b) x 2 + x + 1; c) 2x 2 + 2x + 1. Bài 20. Tìm giá trị nhỏ nhất của các biểu thức sau: a) A = x 2 - 3x + 5; b) B = (2x -1) 2 + (x + 2) 2 ; Bài 21. Tìm giá trị lớn nhất của biểu thức: a) A = 4 - x 2 + 2x; b) B = 4x - x 2 ; Bài 22. Cho x + y = 2; x 2 + y 2 = 10. Tính giá trị của biểu thức x 3 + y 3 . Bài 23. Cho x + y = a; xy = b. Tính giá trị của các biểu thức sau theo a và b: a) x 2 + y 2 ; b) x 3 + y 3 ; c) x 4 + y 4 ; d) x 5 + y 5 ; Bài 24. a) cho x + y = 1. Tính giá trị biểu thức: x 3 + y 3 + 3xy. b) cho x - y = 1. Tính giá trị của biểu thức: x 3 - y 3 - 3xy. Bài 25. Cho a + b = 1. Tính giá trị của các biểu thức sau: M = a 3 + b 3 + 3ab(a 2 + b 2 ) + 6a 2 b 2 (a + b). Bài 26. Rút gọn các biểu thức sau: a) A = (3x + 1) 2 - 2(3x + 1)(3x + 5) + (5x + 5) 2 ; b) B = (3 + 1)(3 2 + 1)(3 4 + 1)(3 8 + 1)(3 18 + 1)(3 32 + 1); c) C = (a + b - c) 2 + (a - b + c) 2 - 2(b - c) 2 ; d) D = (a + b + c) 2 + (a - b - c) 2 + (b - c - a) 2 + (c - b - a) 2 ; e) E = (a + b + c + d) 2 + (a + b - c - d) 2 + (a + c - b - d) 2 + (a + d - b - c) 2 ; g) G = (a + b + c) 3 - (b + c - a) 3 - (a + c - b) 3 + (a + b - c) 3 ; h) H = (a + b) 3 + (b + c) 3 + (c + a) 3 - 3(a + b)(b + c)(c + a). Bài 28. Chứng minh các đẳng thức sau: a) (a + b + c) 2 + a 2 + b 2 + c 2 = (a + b) 2 +(b + c) 2 + (c + a) 2 ; b) (a + b + c) 3 - a 3 - b 3 - c 3 = 3(a + b)(b + c)(c + a). Bài 29. Cho a + b + c = 0. chứng minh rằng: a 3 + b 3 + c 3 = 3abc. Bài 30. Chứng minh rằng: a) nếu n là tổng hai số chính phơng thì 2n cũng là tổng của hai số chính phơng. b) nếu 2n là tổng hai số chính phơng thì n cũng là tổng của hai số chính phơng. c) nếu n là tổng của hai số chính phơng thì n 2 cũng là tổng của hai số chính phơng. Bài 31. a) Cho a = 111(n chữ số 1), b = 10005(n - 1 chữ số 0). Chứng minh rằng: ab + 1 là số chính phơng. b) Cho một dãy số có số hạng đầu là 16, cácsố hạng sau là cácsố tạo thành bằng cách viết chèn số 15 vào chính giữa số hạng liền trớc : 16, 1156, 111556, Chứng minh rằng mọi số hạng của dãy đều là số chính phơng. Bài 32. Chứng minh rằng ab + 1 là số chính phơng với a = 1112(n chữ số 1), b = 1114(n chữ số 1). Bài 33. Cho a gồm 2n chữ số 1, b gồm n + 1 chữ số 1, c gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phơng. Bài 34. Chứng minh rằng các biểu thức sau là số chính phơng: a) A = { { 2 11 .1 22 .2 n n b) B = { { 2 11 .1 44 .4 1 n n + + Bài 35. Cácsố sau là bình phơng của số nào ? a) A = { { 99 .9 00 .0 25 n n ; b) B = { { 99 .9800 .01 n n ; c) C = { { 1 44 .488 .89 n n ; d) D = { { 1 11 .122 .25 n n+ . Nguyễn Quang Huy Trờng THCS Dơng Đức 4 Tài liệu ôn tập - Đạisố8chuyênđề Phân tích đa thức thành nhân tử I) Phơng pháp đặt nhân tử chung: A(B + C ) =A.B +A.C *) Bài tập: Phân tích đa thức thành nhân tử *) Bài 1: Phân tích thành nhân tử Nguyễn Quang Huy Trờng THCS Dơng Đức 5 Tài liệu ôn tập - Đạisố8 + + + + + + + + + + + + + + 2 3 2 2 2 2 2 3 2 10 6 2 2 2 2 a) 3x - 3y b) 2x 5x x y c)14x 21xy 28x y d)4x 14x e)5y 15y f)9x y 15x y 21xy g)x(y 1) y(y 1) h)10x(x y) 8y(y x) i)3x (x 1) 2(x 1) j)a(b c) 3b 3c k)a(c d) c d l)b(a c) 5a 5c m)b(a c) 5a 5c n)a(m n) m n o)mx + + + + + + + + + + + + + 2 2 2 2 2 2 2 2 my 5x 5y p)ma mb a b q)1 xa x a r)(a b) (b a)(a b) t)a(a b)(a b) (a b)(a ab b ) Bài 2: Phân tích các đa thức sau thành nhân tử a)2x(x+3)+2(x+3) b)4x(x-2y)+8y(2y-x) c) y (x y) zx zy d)3x(x 7) 11x (x 7) 9( + + + + + + + + + + + + + + + 2 2 2 2 3 2 m 2 m 1 3 2 n 1 n 3 5 5 2 2 x 7) e)(x 5) 3(x 5) f)2x(x 3) (x 3) g)x(x 7) (7 x) h)3x(x 9) (9 x) i)5x(x 2) (2 x) j)4x(x 1) 8x (x 1) k)p .q p .q p .q p.q o)5x (x 2z) 5x (2z x) p)10x(x y) 8y(y x) q)21x 12xy r)2x(x 1) 2(x 1) t) + 4x(x 2y) 8y(2y x) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 3 2 2 2 2 2 2 2 5 Bài 3: Phân tích đa thức thành nhân tử a) 4x 6x; b)21x y 12xy ; c)x x 2x; d)3x x 1 7x x 1 ; e)x y z xy z x yz; f )2x x 1 2 x 1 ; g)4x x 2y 8y 2y x Bài 4: Tính giá trị của biểu thức a) 15.91,5+150.0,85 b) 5x (x 2z) + + + + + + + + 5 2 2 5x (2z x)tại x=1999; y=2000; z=-1 Bài 4: Tìm x, biết a) 5x(x-2)-(2-x)=0 b) 4x(x+1)=8(x+1) 1 2 c) x(2x-1)+ x 0 3 3 d)x(x 4) (x 4) 0 e)x 5x 0; f )3x(x 2) 2(2 x) 0; g)5x(3x 1) x(3x 1) 2(3x 1) 0. Bài 5:Chứng minh r + = + = = + = + = ( ) ( ) 2 ằng a) Bình phương của một số lẻ chia cho 4 thì dư 1 b) Bình phương của một số lẻ chia cho 8 thì dư 1 Bài 6: chứng minh rằng: n n 1 2n n 1 luôn chia hết cho 6 với mọi số nguyên n. + + + II) Phân tích đa thức thành nhân tử bằng phơng pháp dung hằng đẳng thức: Nguyễn Quang Huy Trờng THCS Dơng Đức 6 Tài liệu ôn tập - Đạisố8 1) Phơng pháp: Biến đổi các đa thức thành dạng tích nhờ sử dụng hằng đẳng thức 1. A 2 + 2AB + B 2 = (A + B) 2 2. A 2 - 2AB + B 2 = (A + B) 2 3. A 2 - B 2 = (A - B)(A + B) 4. A 3 + 3A 2 B + 3AB 2 +B 2 = (A + B) 3 5. A 3 -3A 2 B + 3AB 2 - B 3 = ( A - B) 3 6. A 3 + B 3 = (A + B)(A 2 - AB + B 2 ) 7. A 3 - B 3 = (A - B)(A 2 + AB +B 2 ) 2)Bài tập: Bài 1: Phân tích đa thức thành nhân tử: a) x 2 - 9; b) 4x 2 - 25; c) x 6 - y 6 d) 9x 2 + 6xy + y 2 ; e) 6x - 9 - x 2 ; f) x 2 + 4y 2 + 4xy g) 25a 2 + 10a + 1; h)10ab + 0,25a 2 + 100b 2 i)9x 2 -24xy + 16y 2 j) 9x 2 - xy + 1 36 y 2 k)(x + y) 2 - (x - y) 2 l)(3x + 1) 2 - (x + 1) 2 n) x 3 + y 3 + z 3 - 3xyz. Bài 2: Phân tích đa thức thành nhân tử. a) x 3 + 8; b) 27x 3 -0,001 c) x 6 - y 3 ; d)125x 3 - 1 e) x 3 -3x 2 + 3x -1; f) a 3 + 6a 2 + 12a + 8 Bài 3: Phân tích đa thức thành nhân tử. a) x 6 + 2x 5 + x 4 - 2x 3 - 2x 2 + 1; b) M = ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 4 4abcd a b c d cd a b ab c d + + + + + + Bài 4 Tính nhanh: a) 25 2 - 15 2 ; b) 87 2 + 73 2 - 27 2 - 13 2 c) 73 2 -27 2 ; d) 37 2 - 13 2 e) 2009 2 - 9 2 Bài 5 Tìm x, biết a) x 3 - 0,25x = 0; b) x 2 - 10x = -25 c) x 2 - 36 = 0; d) x 2 - 2x = -1 e) x 3 + 3x 2 = -3x - 1 Bài 6: Phân tích đa thức thành nhân tử a) 2x 8 - 12x 4 + 18; b) a 4 b + 6a 2 b 3 + 9b 5 ; c) -2a 6 - 8a 3 b - 8b 2 ; d) 4x + 4xy 6 + xy 12 . Bài 7 Chứng minh rằng các đa thức sau chỉ nhận những giá trị không âm a) x 2 - 2xy + y 2 + a 2 ; b) x 2 + 2xy + 2y 2 + 2y + 1; c) 9b 2 - 6b + 4c 2 + 1; d) x 2 + y 2 +2x + 6y + 10; Bài 8 Chứng minh rằng các đa thức sau không âm với bất kì giá trị nào của các chữ: a) x 2 + y 2 - 2xy + x - y + 1 b) 2x 2 + 9y 2 + 3z 2 + 6xy - 2xz + 6yz c) 8x 2 + y 2 + 11z 2 + 4xy - 12 xz - 5yz d) 5x 2 + 5y 2 + 5z 2 + 6xy - 8xz - 8yz Bài 9 Chứng minh rằng với mọi số nguyên n ta có: (4n + 3) 2 - 25 chia hết cho 8. III) Phân tích đa thức thành nhân tử bằng phơng pháp nhóm các hạng tử. 1) Kiến thức cơ bản: Tìm cách tách đa thức đã cho thành nhóm các hạng tử thích hợp sao cho khi phân tích mỗi nhóm hạng tử thành nhân tử thì xuất hiện nhân tử chung. 2) Bài tập áp dụng: Bài 1 Phân tích các đa thức sau thành nhân tử: a) x 2 - xy + x - y; b) xz + yz - 5(x + y) c) 3x 2 -3xy - 5x + 5y. Nguyễn Quang Huy Trờng THCS Dơng Đức 7 Tài liệu ôn tập - Đạisố8 d) x 2 + 4x - y 2 + 4; e) 3x 2 + 6xy + 3y 2 - 3z 2 ; f) x 2 -2xy + y 2 - z 2 + 2zt - t 2 ; g) x 2 - x - y 2 - y; h) x 2 - 2xy + y 2 - z 2 ; i) 5x - 5y + ax - ay; j) a 3 - a 2 x - ax + xy; k) 7a 2 -7ax - 9a + 9x; l) xa - xb + 3a - 3b; Bài 2 Phân tích các đa thức sau thành nhân tử; a) ma - mb + na - nb -pa + pb; b) x 2 + ax 2 -y - ax +cx 2 - cy; c) ax - bx - cx + ay - by - cy; d) ax 2 + 5y - bx 2 + ay + 5x 2 - by; Bài 3 Phân tích đa thức thành nhân tử. a) x 3 + y 3 + 2x 2 -2xy + 2y 2 ; b) a 4 + ab 3 - a 3 b - b 4 ; c) a 3 - b 3 + 3a 2 + 3ab + 3b 2 ; c) x 4 + x 3 y - xy 3 - y 4 ; Bài 4 Phân tích đa thức thành nhân tử. a) 70a - 84b - 20ab - 24b 2 ; b) 12y - 9x 2 + 36 - 3x 2 y; c) 21bc 2 - 6c - 3c 3 +42b; d) 30a 3 - 18a 2 b - 72b + 120a. Bài 5 Phân tích đa thức thành nhân tử. a) x 3 + 3x 2 y + x +3x 2 y + y + y 3 ; b) x 3 + y(1 - 3x 2 ) + x(3y 2 - 1) - y 3 ; c) 27x 3 + 27x 2 + 9x +1 + x + 1 3 ; d) x(x + 1) 2 + x(x - 5) - 5(x +1) 2 . Bài 6 Tìm x, biết: a) x 3 + x 2 + x + 1 = 0; b) x 3 - x 2 - x + 1 = 0; c) x 2 - 6x + 8 = 0; d) 9x 2 + 6x - 8 = 0. e) x(x - 2) + x - 2 = 0; f) 5x(x - 3) - x + 3 = 0. Bài 7 Tính nhanh giá trị của mỗi đa thức sau; a) x 2 - 2xy - 4z 2 + y 2 tại x = 6; y = -4; z = 45. b) 3(x - 3)(x + 7) + (x - 4) 2 + 48 tại x = 0,5 Bài 8. Tính nhanh : a) 37,5 . 6,5 - 7,5 . 3,4 - 6,6 . 7,5 + 3,5 . 37,5; b) 45 2 + 40 2 - 15 2 + 80.45. Bài 9. Phân tích đa thức sau thành nhân tử: P = ab(a - b) + bc(b - c) + ca(c - a). Bài 10. Phân tích các đa thức sau thành nhân tử: a) x 3 z + x 2 yz - x 2 z 2 - xyz 2 ; b) p m+2 q - p m+1 q 3 - p 2 q n+1 + pq n+3 . IV) Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phơng pháp. 1) Kiến thức cơ bản: - Đặt nhân tử chung. - Dùng hằng đẳng thức. - Nhóm nhiều hạng tử và các phơng pháp khác. 2) Bài tập áp dụng: Bài 1. Phân tích đa thức sau thành nhân tử: a) x 3 - 2x 2 + x; b) 2x 2 + 4x + 2 - 2y 2 ; c) 2xy - x 2 - y 2 + 16; d) a 4 + a 3 + a 3 b + a 2 b e) a 3 + 3a 2 + 4a + 12; f) a 3 + 4a 2 + 4a + 3; g) x 2 y + xy 2 + x 2 z + xz 2 + y 2 z + yz 2 + 2xyz; h) a 2 + b 2 + 2a - 2b - 2ab; i) 4a 2 - 4b 2 - 4a + 1; j) a 3 + 6a 2 + 12a + 8; k) (a + b + c) 3 - (a + b - c) 3 - ( a - b + c) 3 - (-a + b +c) 3 . Bài 2. Phân tích đa thức thành nhân tử: a) (2x + 3y) 2 - 4(2x + 3y); b) (x + y) 3 - x 3 - y 3 ; c) (x - y + 4) 2 - (2x + 3y - 1) 2 ; d) (a 2 + b 2 - 5) 2 - 4(ab + 2) 2 . e) bc(b + c) + ca(c - a) - ab(a + b); f) 2a 2 b + 4ab 2 - a 2 c + ac 2 - 4b 2 c + 2bc 2 - 4abc; g) y(x - 2z) 2 + 8xyz + x(y - 2z) 2 - 2z(x + y) 2 ; h) x 5 - 5x 3 + 4x; i) x 3 - 11x 2 + 30x; j) 4x 4 - 21x 2 y 2 + y 4 ; k) x 3 + 4x 2 - 7x - 10; l) (x 2 + x) 2 - (x 2 + x) + 15; n) (x +2)(x + 3)(x + 4)(x + 5) - 24; m) (x 2 + 8x + 7)(x 2 + 8x + 15) + 15; o) (x 2 + 3x + 1)(x 2 + 3x + 2) - 6. Bài 2: Tìm x, biết. a) 5x(x - 1) = x - 1; b) 2(x + 5) - x 2 - 5x = 0; c) x 3 - 1 4 x = 0; Nguyễn Quang Huy Trờng THCS Dơng Đức 8 Tài liệu ôn tập - Đạisố8 d) (2x - 1) 2 - (x + 3) 2 = 0 e) x 2 (x - 3) +12 - 4x =0. Bài 3. Tính nhanh giá trị biểu thức: a) x 2 + 1 2 x + 1 16 tại x = 49,75; b) x 2 - y 2 - 2y - 1 tại x = 93 và y = 6. Toán khó mở rộng: Bài 4. a) Số 7 17 + 17. 3 - 1 chia hết cho 9. Hỏi số 7 18 + 18.3 - 1 có chia hết cho 9 không? b) Biến đổi thành tích các biểu thức: A = 1 + a[(a + 1) 9 + (a + 1) 8 + (a + 1) 7 + + (a + 1) 2 + a + 2]. Bài 5. Chứng minh các hằng đẳng thức sau: 1) x 6 + 3x 2 y 2 + y 6 = 1 Với x 2 + y 2 = 1 2) x 4 + x 2 y 2 + y 4 = a 2 - b 2 với x 2 + y 2 = a, xy = b 3) (a 3 + b 3 - a 3 b 3 ) 3 + 27a 6 b 6 = 0 với ab = a + b. 4) p 2 + (p - a) 2 + (p - b) 2 + (p - c) 2 = a 2 + b 2 + c 2 với a + b + c = 2p. Bài 6. Tính giá trị biểu thức: a) A = 2 17 - 2 16 - 2 15 - 2 14 - - 2 2 - 2 - 1. b) B = x 17 - 12x 16 + 12x 15 - 12x 14 +- 12x 2 + 12x - 1 với x = 11. Bài 7. Rút gọn: a) A = 3(2 2 + 1)(2 4 + 1)(2 8 + 1)(2 16 + 1)(2 32 + 1)(2 64 + 1). b) Mở rộng: B = 2 3 4 2 2 2 2 2 3(2 1)(2 1)(2 1)(2 1) .(2 1) n + + + + + Bài 8. Chứng minh: a 5 (b 2 + c 2 ) + b 5 (a 2 + c 2 ) + c 5 (a 2 + b 2 ) = 1 2 (a 3 + b 3 + c 3 )(a 4 + b 4 + c 4 ) với a + b + c = 0 Bài 9. Chứng minh: 2(a 5 + b 5 + c 5 ) = 5abc(a 2 + b 2 + c 2 ) với a + b + c = 0. Bài 10. Tổng cácsố nguyên a 1 , a 2 , a 3 , , a n chia hết cho 3. Chứng minh rằng A = a 1 3 + a 2 3 + a 3 3 + + a n 3 cũng chia hết cho 3 V) Một số phơng pháp khác để phân tích đa thức thành nhân tử. 1) Phơng pháp tách một số hạng thành nhiều số hạng khác. 1.1) Đa thức dạng f(x) = ax 2 + bx + c. - Bớc 1: Tìm tích ac. - Bớc 2: Phân tích a.c ra tích của hai thứa số nguyên bằng mọi cách. - Bớc 3: Chọn hai thừa số mà tổng bằng b. Các bài tập áp dụng dạng này: Bài 1. Phân tích đa thức thành nhân tử a) 4x 2 - 4x - 3; b) x 2 - 4x + 3; c) x 2 + 5x + 4; d) x 2 - x - 6; e) x 2 + 8x + 7; f) x 2 - 13 x + 36; g) x 2 +3x - 18; h) x 2 - 5x - 24; i) 3x 2 - 16x + 5; j) 8x 2 + 30x + 7; k) 2x 2 - 5x - 12; l) 6x 2 - 7x - 20. 1.2) Đa thức từ bậc ba trở lên ngời ta dùng phơng pháp tìm nghiệm của đa thức. a) Chú ý: nếu đa thức f(x) có nghiệm x = a thì nó chứa thừa số x - a. Trong đó a là ớc số của a n, , với f(x) = a 0 x n + a 1 x n-1 + a 2 x n-2 + + a n-1 + a n . b) Ví dụ: Phân tích đa thức thành nhân tử: f(x) = x 3 - x 2 - 4. Lần lợt kiểm tra với x = 1, 2, 4, ta thấy f(2) = 2 3 - 2 2 - 4 = 0. Đa thức có nghiệm x =2, do đó chứa thừa số x - 2. Ta tách nh sau: Cách 1: x 3 - x 2 - 4 = x 3 - 2x 2 + x 2 - 2x + 2x - 4 = x 2 (x - 2) + x(x - 2) + 2(x - 2) = ( x - 2)(x 2 + x + 2). Cách 2: x 3 - x 2 - 4 = x 3 - 8 - x 2 + 4 = (x - 2)(x 2 + 2x + 4) - (x + 2)(x - 2) = (x - 2)(x 2 + 2x + 4 - x - 2) = (x - 2)(x 2 + x + 2). 2) Phơng pháp đặt ẩn phụ: Khi một đa thức phức tạp, hoặc có bậc cao, ta có thể đặt ẩn phụ nhằm giảm bậc của đa thức để phân tích. 2.1) Ví dụ. Phân tích các đa thức sau thành nhân tử: Nguyễn Quang Huy Trờng THCS Dơng Đức 9 Tài liệu ôn tập - Đạisố8 a) f(x) = (x 2 + x + 1)(x 2 + x + 2) - 12. b) g(x) = (x + 1)(x + 2)(x + 3)(x + 4) - 24. HD: a) Đặt y = x 2 + x + 1, khi đó đa thức f(x) = y(y + 1) - 12 = y 2 + y - 12 = (y - 3)(y + 4) Thay ngợc trở lại y = x 2 + x + 1 vào đa thức f(x) ta đợc: f(x) = (x 2 + x + 1 - 3)(x 2 + x + 1 + 4) = (x 2 + x + 5)(x 2 + x - 2) = (x - 1)(x + 2)(x 2 + x + 5) b) f(x) = [(x + 1)(x + 4)][(x + 2)(x + 3)] - 24 = (x 2 + 5x + 4)(x 2 + 5x + 6) - 24 = y(y + 2) - 24với y = x 2 + 5x + 4 = y 2 + 2y - 24 = (y - 4)(y + 6) Thay ngợc trở lại y = x 2 + 5x + 4 ta đợc f(x) = (x 2 + 5x + 4 - 4)(x 2 + 5x + 4 + 6) = (x 2 +5x)(x 2 + 5x + 10) = x(x + 5)(x 2 + 5x + 10) 3) Phơng pháp thêm, bớt một hạng tử thích hợp để làm xuất hiện hằng đẳng thức hiệu hai bình phơng. *) Ví dụ: Phân tích các đa thức sau thành nhân tử a) x 8 + x 4 + 1; b) x 4 + 4; HD: a) x 8 + x 4 + 1 = x 8 + 2x 4 + 1 - x 4 = (x 4 + 1) 2 - x 4 = (x 4 + x 2 +1)(x 2 - x 2 + 1) = [(x 4 + 2x 2 + 1) - x 2 ][(x 4 + 2x 2 + 1) - 3x 2 ] = [(x 2 + 1) 2 - x 2 ][(x 2 + 1) 2 - ( 3 x) 2 ] = (x 2 +1 - x)(x 2 + 1 - 3 x)(x 2 + 1 + x)(x 2 + 1 + 3 x) *) Bài tập áp dụng : Bài 1. Phân tích đa thức thành nhân tử: a) f(x) = x 4 + 324 b) f(x) = x 8 + 1024; c) f(x) = x 8 + 3x 4 + 4 Bài 2. a) Phân tích n 4 + 1 4 b) áp dụng: Rút gọn S = 4 4 4 4 4 4 1 1 1 1 2 . 19 4 4 4 1 1 1 2 4 . 20 4 4 4 + + + ữ ữ ữ + + + ữ ữ ữ 4) Phơng pháp xét giá trị riêng: Trớc hết ta xác định dạng của các thừa số chứa biến của đa thức, rồi gán cho các biến các giá trị cụ thể để xác định thừa số còn lại. a) Ví dụ: Phân tích thành thừa số: P = x 2 (y - z) + y 2 (z - x) + z 2 (x - y). Giải: Thử thay x bởi y thì P = y 2 (y - z) - y 2 (z - y) = 0. Nh vậy P chứa thừa số x = y nếu thay x bởi y, y bởi z, z bởi x thì P không đổi. Do đó P chứa thừa số có dạng (x - y), (y - z), (z - x). vậy P có dạng P = k(x - y)(y - z)(z - x). Vì đăngt thức x 2 (y - z) + y 2 (z - x) + z 2 (x - y) = k(x - y)(y - z)(z - x) đúng với mọi x, y, z, Nên ta gán x = 2, y = 1, z = 0 vào đẳng thức ta đợc: 4.1 + 1.(-2) + 0 = k.1.1.(-2) 2 = -2k k = -1 vậy P = -(x - y)(y - z)(z - x) Các bài tập áp dụng của các dạng trên. Bài 1: Phân tích ra thừa số nguyên tố a) 6x 2 - 11x + 3; b) 2x 2 + 3x - 27; c) 2x 2 - 5xy + 3y 2 ; d) 2x 2 -5xy - 3y 2 . Bài 2. Phân tích ra thừa số nguyên tố: a) x 3 + 2x - 3; b) x 3 - 7x + 6; c) x 3 + 5x 2 + 8x + 4; d) x 3 - 9x 2 + 6x + 16; e) x 3 - x 2 - 4; f) x 3 - x 2 - x - 2; g) x 3 + x 2 - x + 2; h) x 3 - 6x 2 - x + 30. Bài 3. Phân tích đa thức thành nhân tử (bằng nhiều cách). x 3 - 7x - 6. Bài 4. Phân tích đa thức thành nhân tử: Nguyễn Quang Huy Trờng THCS Dơng Đức 10 [...]... cho x2 + 3x - 10; c) ax4 + bx3 + 1 chia hết cho đa thức(x - 1)2; d) x4 + 4 chia hết cho x2 + ax + b Bài 8 Tìm các hằng số a và b sao cho x3 + ax + b chia cho x + 1 thì d 7, chia cho x - 3 thì d - 5 Chuyênđề phân thức đạisố I) Phân thức đại số: 1) Kiến thức cơ bản: A a) Định nghĩa: Một phân thức đạisố (hay nói gọn là phân thức) là một biểu thức có dạng , B trong đó A, B là những đa thức, B là đa thức... đôi một : 1 1 2 4 8 2 2 4 8 4 4 8 A= + + + + = + + + = + + 2 4 8 2 2 4 8 4 4 1 x 1 + x 1 + x 1 + x 1 + x 1 x 1 + x 1 + x 1 + x 1 x 1 + x 1 + x8 88 16 + = = 88 1 x 1 + x 1 x16 Chú ý: Khi trình bày phải viết thêm điều kiện để biểu thức có nghĩa Bài 20 Rút gọn biểu thức : Nguyễn Quang Huy 26 Trờng THCS Dơng Đức Tài liệu ôn tập - Đại số8 3 5 2n + 1 B = (1.2) 2 + (2.3) 2 + + 2 [ n(n + 1)] HD Ta tách... 2 + x + 2 với x = -99 1 x Các bài tập nâng cao a b x2 + 5 + Bài 8 Tìm cácsố a và b sao cho phân thức 3 viết đợc thành x 2 ( x + 1) 2 x 3x 2 HD: Dùng một trong hai phơng pháp (hệ số bất định hoặc xét giá trị riêng) để tìm a và b sau khi quy đồng Bài 9 Chứng minh các biểu thức sau không phụ thuộc vào x e) 2 Nguyễn Quang Huy 22 Trờng THCS Dơng Đức Tài liệu ôn tập - Đại số8 x y yz zx y z x + + + +... 6 x 2 + x 8 x { 2; 2; 4 ;8} ) a) A = ; (ĐS : A = 2 x 2 + 1 x 3 x3 3 x 4 2 x3 3x 2 + 8 x 1 2 x { 0; 2} ) b) B = ; (ĐS : B = x 4 + 2 ( x 1) 2 x 2x +1 2 x 4 + 3x 3 + 2 x 2 + 6 x 2 x { 0} c) C = (ĐS : C = x 2 + 3 x 2 x +2 x2 + 2 1 1 2 4 8 + + + + Bài 19 Rút gọn biểu thức : A = 2 4 1 x 1 + x 1 + x 1 + x 1 + x8 HD Rút gọn bằng cách quy đồng từng đôi một : 1 1 2 4 8 2 2 4 8 4 4 8 A= + + +... 0) IV) Quy đồng mẫu thức 1) Tìm mẫu thức chung của nhiều phân thức: - Phân tích các mẫu thành nhâ tử (nếu cần) - Lập tích các nhân tử bằng số và chữ: +) Nhân tử bằng số là BCNN của cácsố ở mẫu +) Nhân tử bằng chữ là luỹ thừa với số mũ lớn nhất 2) Bài tập áp dụng Các bài tập cơ bản và nâng cao Bài 1 Quy đồng mẫu thức các phân thức sau: 25 14 11 3 , , a) b) ; 2 5 ; 4 14 x y 21xy 102 x y 34 xy 3 3x... ; b) xy yz zx ( x y )( y z ) ( y z )( z x) ( z x)( x y ) Bài 10 Cộng các phân thức : 1 1 1 + + 2 2 2 2 2 (b c)(a + ac b bc) (c a )(b + ab c ac) (a b)(c + bc a 2 ab) (Đề thi học sinh giỏi lớp 8 toàn quốc 1 980 ) Bài 11 Rút gọn biểu thức : 1 1 2 4 8 + + + + A= 2 4 1 x 1 + x 1 + x 1 + x 1 + x8 Bài 12 Tìm cácsố A, B, C để có : x2 x + 2 A B C = + + 3 3 2 ( x 1) ( x a ) ( x 1) x 1... Cho + + = + + Chứng minh rằng trong ba số a, b, c tồn tại hai số bằng nhau b c a a b c HD Từ giả thiết suy ra : a2c + ab2 + bc2 = b2c + ac2 +a2b a 2 (c b) a (c 2 b 2 ) + bc(c b) = 0 (c b)(a 2 ac ab + bc) = 0 (c b)(a b)(a c) = 0 Tóm lại một trong các thừa số c- b, a - b, a - c bằng 0 Do đó trong ba số a, b, c tồn tại hai số bằng nhau Bài 18 Tìm các giá trị nguyên của x để phân thức sau... tử chung đó 2) Bài tập áp dụng: Bài 1 Rút gọn các phân thức sau: 14 xy 5 (2 x 3 y ) 8 xy (3 x 1)3 a) ; b) ; 21x 2 y (2 x 3 y ) 2 12 x3 (1 3x ) Nguyễn Quang Huy 17 Trờng THCS Dơng Đức Tài liệu ôn tập - Đại số8 20 x 2 45 5 x 2 10 xy c) ; d) ; (2 x + 3) 2 2(2 y x)3 80 x 3 125 x 9 ( x + 5) 2 e) ; f) 2 ; 3( x 3) ( x 3) (8 4 x) x + 4x + 4 32 x 8 x 2 + 2 x 3 5 x3 + 5 x g) ; h) ; x 3 + 64 x4... 1 Bài 13 Cho phân số A = (mẫu có 99 chữ số 0) Tính giá trị của A với 200 chữ số thập phân 1, 00 01 HD 10100 Ta có A = 100 Nhân tử và mẫu với 10100 - 1, ta đợc: 10 + 1 a) Nguyễn Quang Huy 19 Trờng THCS Dơng Đức Tài liệu ôn tập - Đại số8 100 100 } } 10 (10 1) 99 9 00 0 A= = = 0,99 9 00 0 { { 10200 1 99 9 100 100 { 100 100 200 (Theo quy tắc đổi số thập phân tuần hoàn đơn ra phân số) (a 2 + b 2 + c... 2 4.2) Phơng pháp hệ số bất định - Nếu hai đa thức f(x) và g(x) bằng nhau với mọi giá trị của biến số x thì ngời ta goi là hai đa thức hằng đẳng hoặc hai đa thức đồng nhất Kí hiệu f(x) g(x) - Hai đa thức (đã viết dới dạng thu gọn) đợc gọi là đồng nhất (hằng đẳng) khi và chỉ khi các hệ số của các đơn thức đồng dạng chứa trong hai đa thức đó là bằng nhau *) Ví dụ: Xác định cácsố hữu tỷ a và b để đa . chính phơng. b) Cho một dãy số có số hạng đầu là 16, các số hạng sau là các số tạo thành bằng cách viết chèn số 15 vào chính giữa số hạng liền trớc : 16, 1156,. b. Bài 8. Tìm các hằng số a và b sao cho x 3 + ax + b chia cho x + 1 thì d 7, chia cho x - 3 thì d - 5. Chuyên đề phân thức đại số I) Phân thức đại số: 1)