Trong không gian Oxyz cho tứ diện ABCD với , điểm D thuộc Oy và thể tích của tứ diện ABCD bằng 5A. Trong không gian Oxyz cho tứ diện ABCD với.[r]
(1)BÀI TẬP ƠN TẬP TỐN 12 Câu Tìm nguyên hàm
2
2 x f x x
A/
2
4 x x C
B/
2 x x C
C/
2
2 x x C
D/
3 x C
Câu Tìm nguyên hàm
2
1
3
f x x
x
A/
3
x x C
x B/
3
3
x x C x
C/
3
3
x x C x
D/ 2x1 2x C
Câu Tìm
3 x x dx
A/
4
3
2
3x 4x C B/
4
3
2
3x 3x C C/
4
3
3
2x 3x C D/ 2 x33 x C Câu Tìm
x x x dx x
A/
2
2 x C
x
B/
2
2 x C
x
C/
2
x C
x
D/
1
x C
x
Câu Nếu ( )
3 d
3
x
x
f x x= + +e C
ị ( )f x bằng:
A ( )
x
x f x = +e
B f x( )=3x2+ex C ( )
12
x x
f x = +e
D f x( )=x2+ex Câu Tìm nguyên hàm hàm số f x( )= 2x-
A ( ) ( )
2
d 2
f x x= x- x- +C
ò
B ( ) ( )
1
d 2
3
f x x= x- x- +C
ò C ( )
1
d
3
f x x=- x- +C
ò
D ( )
1
d
2
f x x= x- +C
ò
Câu Tìm nguyên hàm hàm số f x cos3x A.cos3xdx3sin 3x C B
sin cos3
3 x xdx C
.
C
sin cos3
3 x xdx C
. D cos 3xdx sin 3x C
Câu Cho F x( ) nguyên hàm hàm số ( )f x ex 2x thỏa mãn
3 (0)
2
F
Tìm F x( ) A
2 ( )
2
x
F x e x
B
2 ( )
2
x
F x e x
C
2 ( )
2
x
F x e x
D
2 ( )
2
x
F x e x
(2)A f x( ) 3 x5cosx5 B f x( ) 3 x5cosx2
C f x( ) 3 x 5cosx2 D f x( )3x 5cosx15
Câu 10 Tìm cos xdx
A/
sin
2
x x
C
B/ 2cos x C C/ cos sin x x C D/
sin
4
x x
C
Câu 11 Tìm hàm số yf x , biết f x' 2x f 1
A/ x2 x B/ x2 x C/ x2 x D/ x2 x Câu 12 Tìm hàm số yf x , biết f x' 2 x2
7
3
f
A/
3
2
3 x x
B/
3
2
3 x x
C/
3
2
3 x x
D/
3
2
3 x x
Câu 13 Tìm nguyên hàm F x( ) hàm số f x( ) sin xcosx thỏa mãn
2 F
. A F x( ) cos x sinx3 B F x( ) cosxsinx3
C F x( )cosxsinx D F x( ) cosxsinx1 Câu 14 F x( ) nguyên hàm hàm số y=sin4xcosx
( )
F x hàm số sau đây?
A. ( )
5
cos
x
F x = +C
B ( )
4 cos
4 x F x = +C
C ( )
4 sin
4 x F x = +C
D ( )
5 sin
5 x F x = +C
Câu 15 Kết d
x
I =òxe x là: A I =ex+xex+C B
2
x
x
I = e +C
C I =xex- ex+C D
2
x x
x
I = e + +e C
Câu 16.Cho ( ) (F x x 1)ex nguyên hàm hàm số f x e Tìm nguyên hàm hàm số( ) 2x
( ) x
f x e . A
2
( ) xd (4 ) x
f x e x x e C
B
2 ( ) d
2
x x x
f x e x e C
C
2
( ) xd (2 ) x
f x e x x e C
D f x e( ) 2xdx(x 2)ex C
Câu 17 Cho
1 ( )
2 F x
x
nguyên hàm hàm số ( ) f x
x Tìm nguyên hàm hàm số f x( ) lnx
A 2
ln
( ) ln
2 x
f x xdx C
x x
B 2
ln ( ) ln x
f x xdx C
x x
C 2
ln
( ) ln x
f x xdx C
x x
D 2
ln
( ) ln
2 x
f x xdx C
x x
Câu 18: Tìm nguyên hàm F(x) hàm số
3
2
x 3x 3x
f (x)
x 2x
biết
1 F(1)
(3)A
2
F(x) x x
x
B
2 13
F(x) x x
x
C
2
x 13
F(x) x
2 x
D
2
x
F(x) x
2 x
Câu 19 Tìm I=(6 x2+1)ln xdx , được
A I=(2 x
3+x )ln x−2
3x
3
−x+C
B I=(2 x
3
+x )ln x−(1 2x
4
+1 2x
2
)ln x +C C I=(2 x
3
+x )ln x−2 3x
3
+x +C
D I=(2 x
3+x )ln x+2
3 x
3
+x+C
Câu 20 Kết tích phân
0
2 d
1
x x
x
-ổ ửữ ỗ + + ữ
ỗ ữ
ỗố - ứ ò
được viết dạng a b+ ln2 vi a bẻ Ô, Khi ú a b+ bng:
A
3
2. B
- C
5
2. D
-
Câu 21: Biết
2
cos
2 sin
x
dx a b
x
Tính S a b .
A S 1 B S 2 C S 0 D S 2
Câu 22: Tính:
2
1 cos nsin
L x xdx
A
1 L
n
B
1 L
n
C L n
D
1 L
n
Câu 23: Biết
1
ln ln
3 1dx a b
x x
Tính S a2ab3b2.
A S 0 B S 2 C S 5 D S 4
Câu 24 Kết tích phân ( )
ln d ln
e
x
I x
x x
=
+ ị
có dạng I =aln2+b vi a bẻ Ô, Khng nh no sau đúng?
A 2a b+ =1 B a2+b2=4 C a b- =1 D ab=2
Câu 25 Nếu
6
1 sin cos d
64
n
I x x x
p
=ị =
n bằng:
(4)Câu 26 Tích phân I =
2
1 a
dx
x x b
, tổng a+b là: A
B 10 C 12 D 11 Câu 27 Cho
2
0
( )
f x dx
Tính
2
0
( ) 2sin
I f x x dx
A I B 7 I
C I 3 D I 5
Câu 28 Cho
0
( ) 12 f x dx
Tính
0 (3 ) I f x dx
A I 6 B I 36 C I 2 D I 4
Câu 29 Kết tích phân ( )
1
2 dx
I =ò x+ e x
được viết dạng I = +ae b với a bẻ Ô, Khng nh no sau õy l ỳng?
A a b- =2 B a3+b3=28 C ab=3 D a+2b=1
Câu 30 Kết tích phân ( )
2
2x sin dx x
p
-ò
được viết dng
1 1
a b p pổỗ -ỗỗố ửữữữứ
- Khng nh no sau õy l sai?
A a+2b=8 B a b+ =5 C 2a- 3b=2 D a b- =2 Câu 31 Cho
2
1
( )
f x dx
1
( )
g x dx
Tính
2
1
2 ( ) ( ) I x f x g x dx
A I
B I
C 17
2 I
D 11
2 I
Câu 32 Cho
0
d e
ln
ex
x
a b
, với a , b số hữu tỉ Tính S a3b3.
A S 2 B S 2 C S D 0 S 1 Câu 33.Giả sử
0
1
3
2
x x
I dx
x
ln2
3
a b
với a Z b Q , Khi giá trị a2b bằng A 60 B 50 C 40 D 30
Câu 34.Cho tích phân
2
1
3ln
ln ln
e
x
I dx a b
x x
Giá trị a2b2 bằng
A 45 B 25 C 52 D.61
Câu 35 Tính
4
2 2
(2 1) cosx
4
m n k
x dx
Khi m-n+k =?
(5)Câu 36.Biết
1
3
ln ln ln 20
x
dx a b c
x x
, với a, b, c số nguyên.Tính S a b c A S 17 B. S 25 C S 12 D S 19
Câu 37:Tính tích phân sau
0
s inx
x x dx a b
Giá trị a+b=? A.
2
B.
3 C.
1
3 D.
Câu 38 Cho
e
2
2xlnx x ad e b.ec
với a , b , c số hữu tỉ Mệnh đề đúng? A a b c B a b c C a b c D a b c Câu 39: Cho vectơ a2;3; , b 0; 3; ,c 1; 2;3
Tọa độ vectơ n 3a 2b c là: A n5;5; 10
B n5;1; 10
C n7;1; 4
D n5; 5; 10
Câu 40 Cho a = (2; –1; 2) Tìm y, z cho c = (–2; y; z) phương với a
A y = –1; z = B y = 2; z = –1 C y = 1; z = –2 D y = –2; z = Câu 41 Tính góc hai vector a = (–2; –1; 2) b
= (0; 1; –1)
A 135° B 90° C 60° D 45°
Câu 42: Cho vectơ a1; m; , b 2;1;3
ab
khi:
A m1 B m 1 C m 2 D m2
Câu 43: Cho điểm M 2; 3;5 , N 4;7; 9 , P 3; 2;1 , Q 1; 8;12 Bộ điểm sau thẳng hàng:
A N, P,Q B M, N, P C M, P,Q D M, N,Q
Câu 44: Trong không gian với hệ tọa độ Oxyz cho điểm M 2;3; 1 , N 1;1;1 , P 1;m 1;2 Với giá trị m tam giác MNP vng N ?
A m 3 B m 2 C m 1 D m 0
Câu 45 Cho điểm M(1; 2; 3) Tìm tọa độ hình chiếu vng góc M lên mặt phẳng Oxy. A (1; 2; 0) B (1; 0; 3) C (0; 2; 3) D (0; 0; 3)
Câu 46 Cho điểm M(1; 1; 2) Tìm tọa độ điểm M’ đối xứng với M qua trục Oy.
A (–1; –1; 2) B (1; –1; 2) C (–1; 1; –2) D (1; –1; –2)
Câu 47 Cho điểm A(1; 0; 0), B(0; 0; 1), C(2; 2; 1) Tìm điểm D cho ABCD hình bình hành. A (2; 2; 0) B (3; 2; 0) C (–1; –2; 0) D (1; 2; 0)
Câu 48: Trong không gian với hệ trục Oxyz, cho hai điểm A(2;-2;1), B(3;-2;1) Tọa độ điểm C đối xứng với A qua B là:
A C(1; 2;1) B D(1; 2; 1) C D( 1;2; 1) D C(4; 2;1) Câu 49: Cho A 1;0;0 , B 0;0;1 , C 3;1;1 Để ABCD hình bình hành tọa điểm D là::
(6)Câu 50: Trong không gian Oxyz, cho điểm B(1;2;-3) C(7;4;-2) Nếu E điểm thỏa mãn đẳng thức CE 2EB
tọa độ điểm E A
8
3; ;
3
B
8
;3;
3
C
8 3;3;
3
D
1 1; 2;
3
Câu 51: Cho tam giác ABC với A 3; 2; ;B 2;2; ; C 3;6; 2 Điểm sau trọng tâm tam giác ABC
A G 4;10; 12 B
4 10
G ; ;4
3
C G 4; 10;12 D
4 10
G ; ;
3
Câu 52.Trong kg Oxyz, cho điểm Tìm m, n để điểm A,B,M thẳng hàng
A. B C D
Câu 53.Trong không gian Oxyz cho điểm A(1;0;1), B( 2;1;3) C(1;4;0) Tọa độ trực tâm H tam giác ABC
A B C D
Câu 54.Trong không gian Oxyz cho tứ diện ABCD với , điểm D thuộc Oy thể tích tứ diện ABCD Tọa độ điểm D là:
A B
C D
Câu 55.Trong không gian Oxyz cho tứ diện ABCD với Tính độ dài đường cao tứ diện ABCD kẻ từ D
A.3 B C D
Câu 56.Trong không gian Oxyz cho mặt cầu (S): Tìm tọa độ tâm I bán kính R (S)
A , B , C , D ,
Câu 57.Trong không gian Oxyz cho mặt cầu (S): Tìm tọa độ tâm I bán kính R (S)
A , B , C , D ,
Câu 58: Trong kg Oxyz , cho hai điểm A(2;4;1), ( 2;2; 3)B Phương trình mặt cầu đường kính AB là:
A (S):
2
2 3 ( 1)2 9
x y z
B.(S):
2
2 3 ( 1)2 9
x y z
C (S):
2
2 3 ( 1)2 3
x y z
D.(S):
2
2 3 ( 1)2 9
x y z
Câu 59: Trong kg Oxyz , mặt cầu (S) có tâm I ( 1;4;2), tích V 972 Phương trình mặt cầu
2; 1;3 , ( 10;5;3), (2 1;2; 2)
A B M m n
3 1;
2
m n 3;
2
m n 1;
2
m n 2;
3
m n
8 15 ; ; 13 13 13
8 15 ; ; 13 13 13
8 15 ; ; 13 13 13
8 15
; ; 13 13 13
(2;1; 1), (3;0;1), (2; 1;3)
A B C
(0; 7;0)
D D(0;8;0)
(0;8;0)
D D(0; 7;0) D(0; 8;0) D(0;7;0)
( 1; 2;4), ( 4; 2;0), (3; 1;2), (1;1;1)
A B C D
1
x12y 22z12 9 ( 1;2;1)
I R 3 I(1; 2; 1) R 3 I ( 1;2;1) R 9 I(1; 2; 1) R 9
2 2 2 4 6 2 0
x y z x y z ( 1;2; 3)
(7)A (S):
2
(x1) y (z 2) 81
B.(S):
2
2
(x1) y (z 2) 9
C (S):
2
2
(x1) y4 (z 2) 9
D.(S):
2
2
(x1) y4 (z2) 81
Câu 60: Trong kg Oxyz , mặt cầu (S) có tâm I(2;1; 1) vả tiếp xúc với mp(Oyz).Phương trình mặt cầu (S) là:
A (S):
2
2
(x2) y1 (z1) 4
B.(S):
2
2
(x 2) y1 (z1) 1
C (S):
2
2
(x 2) y1 (z1) 4
D.(S):
2
2
(x2) y1 (z1) 2
Câu 61: Trong kg Oxyz , cho điểm A(2;0;0), (0;4;0), (0;0;4)B C Viết phương trình mặt cầu ngoại tiếp tứ diện OABC
A (S):x2y2z2 2x4y 4z B.(S):(x1)2(y 2)2(z 2)2 C (S):(x 2)2(y 4)2(z 4)2 20 D.(S):x2y2z22x 4y4z
Câu 62: Trong không gian Oxyz, cho điểm A(1;2;-1); B(2;3;4) C(3;5;-2) Tìm tọa độ tâm I đường tròn ngoại tiếp tam giác ABC
A
4 2; ; I
B 37
7 ; ; I
C.
27 15 2 ; ; I
D
7
2
2
; ; I
Câu 63.Trong kg Oxyz , cho mặt cầu (S): điểm Tìm tọa độ điểm B thuộc (S) cho tam giác OAB
A B C D
2 2 4 4 4 0
x y z x y z A(4;4;0) (0; 4;4)
(4;0;4) B
B
(0;4; 4) (4;0;4) B
B
(0; 4; 4) (4;0;4) B
B
(0;4;4) (4;0;4) B