1. Trang chủ
  2. » Giáo án - Bài giảng

KỸ THUẬT cơ bản sử DỤNG CASIO CHIẾN

56 20 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 56
Dung lượng 1,96 MB

Nội dung

KỸ THUẬT SỬ DỤNG MÁY TÍNH CẦM TAY CASIO - VINACAL I MỘT SỐ CHỨC NĂNG CHÍNH MÁY TÍNH CẦM TAY PHỤC VỤ KÌ THI THPTQG Những quy ước mc nh + Cỏc phớm ch mu trng thỡ ỗn trc tip + Cỏc phớm ch mu vng thỡ ỗn sau phím SHIFT + Các phím chą màu đỏ çn sau phím ALPHA Bấm kí tự biến s Bỗm phớm ALPHA kt hp vi phớm cha cỏc biến + Để gán mût sø vào ô nhĉ A gõ: SỐ CẦN GÁN → q → J (STO) → z [A] + truy xuỗt sứ ụ nh A gõ: Qz Biến số A Biến số B Biến số C Biến số M Công cụ CALC để thay số Phím CALC cị tác dĀng thay sø vào mût biểu thăc Ví dụ: Tính giá trð cỵa biu thc log23 5x tọi x  ta thĆc bāĉc theo thă tĆ sau: Bước 1: Nhêp biểu thăc log32 X Bc 2: Bỗm CALC Mỏy húi X? Ta nhêp Page | Bước 3: Nhên kết quâ bỗm dỗu = log32 x 4 Cụng c SOLVE tỡm nghim Bỗm tù hợp phím SHIFT + CALC nhêp giá trð biến muứn tỡm 2 Vớ d: tỡm nghim cỵa phāćng trình: 2x  x  4.2x  x  22 x   ta thĆc theo bāĉc sau: Bước 1: Nhêp vào máy : 2 X  X  4.2 X  X 22 X Bc 2: Bỗm tù hợp phím SHIFT + CALC Máy hói Solve for X cị nghïa bän muốn bắt đầu dđ nghiệm với giá trð X số nào? chỵ cần nhập giá trð thóa mãn điều kiện xác đðnh Chẳng hän ta chọn số bấm nút = Bước 3: Nhên nghiệm: X  Để tìm nghiệm ta chia biểu thăc cho (X - nghiệm trāĉc), nghiệm lẻ lāu biến A, chia cho X  A tiếp tc bỗm SHIFT + CALC cho ta c nghim X Nhỗn nýt ! sau ũ chia cho X-1 nhỗn dỗu = mỏy bỏo Cant Sole vêy phāćng trình chỵ cị hai nghiệm x1  0, x2  Nguyễn Chiến 0973514674 Page | Cơng cụ TABLE – MODE Table cưng cĀ quan trõng để lêp bâng giá trð TĂ bâng giỏ tr ta hỡnh dung hỡnh dỏng c bõn cỵa hm sứ v nghim cỵa a thc Tớnh nng bõng giá trị: w7 f  X   ? Nhêp hàm cỉn lêp bâng giá trð độn a;b  Start? Nhêp giá trð bít đỉu a End? Nhêp giá trð kết thúc b Step? Nhêp bāĉc nhây k: kmin ba 25 tựy vo giỏ tr cỵa oọn a;b  , thöng thāĈng 0,1 hoðc 0,5; Nhąng cho hàm lāợng giác, siêu việt cho Step nhó: k b a ba ba ; k ;k  10 19 25 Kéo dài bâng TALBE: qwR51 để bó g x Vớ d: tỡm nghim cỵa phāćng trình: x  3x  x   ta thĆc theo bāĉc sau: Düng tù hợp phím MODE để vào TABLE Bước 1: Nhêp vào máy tính f  X   X3  3X  X   Sau ũ bỗm = Bc 2: Mn hỡnh hin th Start? Nhờp Bỗm = Mn hỡnh hin th End? Nhờp Bỗm = Mn hỡnh hin th Step? 0,5 Bỗm = Page | Bước 3: Nhên bâng giá trð  Từ bâng giá trð ta thấy phương trình cị nghiệm x  hàm số đồng biến 1;   Do đị, x  nghiệm phương trình Qua cách nhẩm nghiệm ta biết f x   x  3x  x   hàm số đồng biến  1;   Tính đạo hàm tích phân + Tính đạo hàm điểm: Nhêp tù hợp phím qy sau đị nhêp hàm f x  täi điểm cỉn tính Vi dụ: Tính đäo hàm f x   x  7x täi x  2 Nhêp qy  d X 7X dx x bỗm= Vờy f   2  39 + Tính tích phân : Nhêp phím y sau đị nhêp hàm f x  cên tích phån Ví dụ: Tính tích phân   3x   2x dx Nhêp y   3X   2X dx bỗm = Vờy 3x   2x dx  Các MODE tính tốn Chức MODE Tính tốn chung Tên MODE COMP MODE Tính tốn vĉi sø phăc CMPLX MODE Giâi phāćng trình bêc 2, bêc 3, hệ phng trỡnh bờc nhỗt 2, ốn EQN MODE Nguyễn Chiến 0973514674 Page | Thao tác Lêp bâng sø theo biểu thăc MODE TABLE SHIFT = = Xòa MODE cài đðt II MỘT SỐ KĨ THUẬT SỬ DỤNG MÁY TÍNH Kĩ thuật 1: Tính đạo hàm máy tính Phương pháp: * Tính đạo hàm cấp : qy * Tính đạo hàm cấp :     y ' x  0, 000001  y ' x y '  x 0 x 0, 000001   y '' x  lim * Dự đốn cơng thức đạo hàm bậc n : + Bāĉc : Tính ọo hm cỗp 1, ọo hm cỗp 2, ọo hm cỗp + Bc : Tỡm quy luờt v dỗu, v h sứ, v sứ bin, v sứ m r÷i rýt cưng thăc tùng qt Quy trình bấm máy tính đạo hàm cấp 1: Bước 1: Ấn qy Bước 2: Nhêp biểu thức    d f X dx X x ấn = Quy trình bấm máy tính đạo hàm cấp 2: Bước 1: Tính ọo hm cỗp tọi im x x0 Bc 2: Tớnh ọo hm cỗp tọi im Bc 3: Nhêp vào máy tính x  x0  0,000001 Ans - PreAns ấn = X Ví dụ 1: Hệ sø gũc tip tuyn cỵa ữ th hm sứ C : y  x2 x2  täi điểm cò hoành đû x  A B C D 2 Lời giâi Hệ sø gòc tiếp tuyến k  y1 Nhêp vào máy tính Phép tính d  X2    dx  X  X 1 Quy trỡnh bỗm mỏy qyaQ)+2R sQ)d+3$$ $1= Page | d dx  X 2     X  X 1 Màn hình hiển thð d  X 2  Vậy k  y1    0,125   Chọn C  dx  X  X 1 Ví dụ 2: ọo hm cỗp cỵa hm sứ y x4  x täi điểm cị hồnh đû x0  gổn sứ giỏ tr no nhỗt cỏc giỏ tr sau: A B 19    Màn hình hiển thð X 2 !!+0.000 001= x0   0,000001 d X4  X dx D 48 Lời giâi Quy trỡnh bỗm mỏy qyQ)^4$ psQ)$$2= Phộp tớnh Tọi x  d X4  X dx C 25  X 2  0,000001 Tính y '' 2      y '  0.000001  y ' 0.000001 nhĈ Ans - PreAns X aMpQMR0 000001= Vậy y    48  Chọn D Vớ d 3: Tớnh ọo hm cỵa hm sứ y  A y '  C y '     x  ln 22x  x  ln   2x x 1 4x B y'  D y '    x  1 ln 22 x   x  1 ln 2x Lời giâi Ta chõn tính ọo hm tọi im bỗt kỡ vớ d chừn x 0,5 rữi tớnh ọo hm cỵa hm sứ tọi X  0,5 Nhêp vào máy tính Nguyễn Chiến 0973514674 Page | d  X  1   dx  4X X 0,5 Phép tính d  X 1 dx  4X X 0,5 Lāu kết quâ va tỡm c vo bin A Quy trỡnh bỗm mỏy qyaQ)+1R 4^Q)$$$0 5= Mn hỡnh hin th qJz Lỗy A trĂ kết quâ tính giá trð biểu thăc Ċ đáp án chõn đáp án đò pa1p2(Q) đáp án A +1)h2)R2^ 2Q)r0.5= Sø 8, 562.1012  Nếu chưa kết quâ thay đáp án cđn läi chọn  Chọn A Ví dụ 4: Cho hàm sø y  e x sin x , đðt F  y '' 2y ' khỵng đðnh sau đåy khỵng đðnh đýng ? A F  2 y B F  y C F  y D F  y Lời giâi Phép tính Tính   y '  0, 001 Lāu kết q vĂa tìm đāợc vào biến A Tính y'  Quy trỡnh bỗm mỏy qw4qyQK ^pQ)$jQ) )$2+0.000 001=qJz qJz E!!ooooo oooo=qJx Page | Màn hình hiển thð Lāu kết quâ vĂa tìm đāợc vào qJx biến B Thay vào công thăc f '' x       C f ' x  x  f ' x x aQzpQxR0 000001= qJc Tính F  y '' y '  C  2B  0.2461  2 y  Chọn A Kĩ thuật 2: Kĩ thuật giâi nhanh MTCT toán đồng biến, nghịch biến Phương pháp: + Cách : SĄ dĀng chăc nëng lêp bâng giỏ tr MODE cỵa mỏy tớnh Casio Quan sát bâng kết quâ nhên đāợc, khoâng làm cho hàm sø ln tëng không đ÷ng biến, không làm cho hàm sø ln giâm không nghðch bin + Cỏch 2: Tớnh ọo hm, thit lờp bỗt phāćng trình đäo hàm, cư lêp m đāa däng m  f x  hoðc m  f x Tỡm Min, Max cỵa hm f  x  r÷i kết ln + Cách 3: Tính ọo hm, thit lờp bỗt phng trỡnh ọo hm S dng tớnh nởng giõi bỗt phng trỡnh INEQ cỵa mỏy tớnh Casio (ứi vi bỗt phng trỡnh bờc hai, bờc ba) Vớ d 1: Vi giỏ tr no cỵa tham sø m hàm sø y  nghðch biến tĂng khoâng xác đðnh? A 2  m  B 2  m  C  m  D Đáp án khác Nguyễn Chiến 0973514674 Page | mx  m  x m Têp xác đðnh D  Nhêp biểu thăc   Lời giâi \ m d  mX  m     dx  X  m x X Gán X  , không gán Y  x  m nên X  Y (hoðc nhąng giá trð X, Y tāćng ăng) Gán Y  2 , đāợc kết quâ  , Loäi B Gán Y  2 , đāợc kết quâ  Loäi C Gán Y  1 , đāợc kết quõ Vờy ỏp ỏn A Vớ d 2: Tỡm tỗt cõ cỏc giỏ tr thc cỵa tham sứ m cho hàm sø y   tan x  đ÷ng biến không  0;  ? tan x  m  4 A m   1  m  B m  C  m  D m  Lời giâi Đðt tan x  t Đùi biến phâi tỡm giỏ tr cỵa bin mi lm iu ta sĄ dĀng chăc nëng MODE cho hàm f x   tan x Phép tính Tìm điều kiện cho f  x   tan x Quy trỡnh bỗm mỏy Mn hỡnh hin th qw4w7lQ ))==0=qK P4=(qKP4 )P19= Ta thỗy tan x vờy t   0;1 Bài tốn trĊ thành tìm m để hàm sø y  t 2 đ÷ng biến khoâng 0;1 t m   Page | Tính : y '  t  m   t  2   m t  m  t  m  2 y'   2m t  m    m  (1) Kết hợp điều kiện xác đðnh t  m   m  t  m   0;1 (2) m  TĂ (1) (2) ta đāợc  1  m   Chọn A Kĩ thuật 3: Tìm cực trị hàm số tốn tìm tham số để hàm số đạt cực trị điểm cho trước Phương pháp : DĆa vào quy tíc tìm cĆc tri Đøi vĉi däng tốn tìm m để hàm sø bêc đät cĆc trð täi x  f ' x    f ' x   0 CĆc đäi täi x0  CĆc tiểu täi x0       f '' x   f '' x  SĄ dĀng chăc nëng tính liên tiếp giỏ tr biu thc Dỗu :Qy Tớnh c f ' x  : f '' x  tĂ đị chõn đāợc đáp án Ví dụ 1: Tìm tỗt cỏc cỏc giỏ tr thc cỵa m hm sø y  x  3mx  m  1 x  3m  đät cĆc đäi täi x  A m   m  B m  C m  D m  Lời giâi Cách 1: Kiểm tra m  hàm sø cị đät cĆc đäi täi x  hay khơng ? Phép tính Täi x  Täi x   0,1 Täi x   0,1 Quy trỡnh bỗm mỏy Mn hỡnh hin th qyQ)^3$p 3Q)+5$1= !!p0.1= !!oooo+0 1= Vờy y ' ựi dỗu t ồm sang dāćng qua giá trð x   m  loäi  Đáp án A hoðc D sai Nguyễn Chin 0973514674 Page | 10 Quy trỡnh bỗm mỏy Mn hỡnh hin th w2a1R1p(0.5+ Qxb)= Vờy phổn thc cỵa z  Chọn A Kĩ thuật 18: Tìm bậc hai số phức Phương pháp Cách 1: Để máy Ċ chế đû w2 Bình phāćng đáp án xem đáp án trüng vĉi sø phăc đề cho Cách 2: Để máy Ċ chế đû w2 + Nhêp sø phăc z bìng để lāu vào Ans + Viết lờn mn hỡnh: sqcM$$qz21M)a2 + Nhỗn = c mỷt hai cởn bờc hai cỵa sứ phc z cởn bờc hai củn lọi ta õo dỗu cõ phổn thc v phæn âo Cách 3: Để chế đû w1 + Ấn q+ s xuỗt hin v nhờp Pol( phổn thc, phổn õo) v sau ũ ỗn = Lu ý dỗu , l q) Y +n tip qp s xuỗt hin v nhờp Rec X , sau ũ ỗn 2  = đāợc lỉn lāợt phỉn thĆc, phỉn õo cỵa cởn bờc hai sứ phc Vớ d : Tỡm mỷt cởn bờc hai cỵa sứ phc 2i  z  4i   2i   A  2i B  2i C  2i Lời giải Để chế đû w2 thu gõn sø phăc Nguyễn Chiến 0973514674 Page | 42 D 2i Quy trỡnh bỗm mỏy Mn hình hiển thð Ca4bp2p(2b+9) R1p2b= Sau đị rýt gõn z däng tøi giân z  3  4i Cách 1: Bình phāćng đáp án ta đāợc đáp án B Cách 2: Bật chế độ w2 Quy trình bỗm mỏy Mn hỡnh hin th sqcM$$qzaq21 M)R2= Vy s phức cò bậc hai z   2i  Chọn B Cách 3: Bêt läi chế ỷ w1 Bỗm Pol 3, bỗm = tip tc bỗm Rec X , Y : bỗm = Quy trỡnh bỗm mỏy Mn hỡnh hin thð q+p3q)p4)= qpsQ)$q)QnP2 )= Vậy số phức cò bậc hai z   2i  Chọn B Kĩ thuật 19: Chuyển số phức dạng lượng giác Phương pháp: Bật chế độ w2 Nhập số phức vào hình ấn q23 r  Trong r mơđun,  góc lượng giác Ngược lại, bấm r  bấm q24 Ví dụ: Cho sø phăc z   3i Tìm gúc lng giỏc cỵa sứ phc z? A B  C  D  Lời giâi Bêt chế đû w2 sau đò nhêp sø phăc vo mn hỡnh v bỗm q23 chuyn sang Radian bỗm qw4 Quy trỡnh bỗm mỏy Page | 43 Mn hình hiển thð w21+s3$bq23= qw4  Chọn C Kĩ thuật 20: Biểu diễn hình học số phức Tìm quỹ tích điểm biểu diễn số phức Phương pháp Đðt z  x  yi , biểu diễn sø phăc theo u cỉu đề bài, tĂ đị khĄ i thu mût hệ thăc mĉi : + Nếu hệ thăc có däng Ax  By  C  têp hợp điểm đāĈng thỵng 2 + Nếu hệ thăc có däng x  a   y  b   R2 têp hợp điểm đāĈng trịn tâm I a;b  bán kính R + Nếu hệ thăc có däng x y2   têp hợp điểm có däng a b2 mût Elip + Nếu hệ thăc có däng x y2   têp hợp điểm mût a b2 Hyperbol + Nếu hệ thăc có däng y  Ax  Bx  C têp hợp điểm mût Parabol + Tìm điểm đäi diện thủc quỹ tích cho Ċ đáp án r÷i ngāợc vào đề bài, thóa mãn đýng Đường thẳng thay điểm, đường cong thay điểm Ví dụ 1: Cho sø phăc z thóa mãn 1  i  z   i Hói điểm biểu diễn sø phăc z điểm điểm M, N , P,Q A.điểm P B.điểm Q C.điểm M D.điểm N Lời giâi Nguyễn Chiến 0973514674 Page | 44 SĄ dĀng máy tính Casio mưi trāĈng CMPLX để tỡm z Quy trỡnh bỗm mỏy Mn hỡnh hin th w2a3pbR1+b=  z   2i điểm biểu diễn z hệ trĀc thĆc âo có tõa đû 1; 2 Điểm có thĆc dāćng âo âm nìm Ċ góc phỉn tā thă IV  Điểm phâi tìm Q  Chọn B Ví dụ : Têp hợp điểm biểu diễn sø phăc z thóa mãn z   i  z  2i A 4x  2y   B 4x  2y   C 4x  2y   D 4x  6y   Lời giâi Gõi sø phăc z có däng z  a  bi Ta hiểu : điểm M biểu diễn sø phăc z M có tõa đû M a;b  Giâ sĄ đáp án A đýng M thủc đāĈng thỵng 4x  2y   4a  2b   Chõn a  b   z   2.5i Sø phăc z thóa mãn z   i  z  2i z   i  z  2i Quy trỡnh bỗm mỏy Mn hỡnh hin th qc1+2.5bp2pb $pqc1p2.5b+2 b= Ta thỗy mỷt kt quõ khác Loäi A Tāćng tĆ vĉi đáp sø B chõn a  b  1.5 z 1.5i Quy trỡnh bỗm mỏy Mn hỡnh hiển thð qc1+1.5bp2pb $pqc1p1.5b+2 b= Page | 45 Kết quâ vêy z   i  z  2i   Chọn B Ví dụ 3: Cho sø phăc z thóa mãn z  Biết rìng têp hợp điểm biểu diễn sø phăc w    4i  z  i mût đāĈng trđn Tính bán kính r cỵa ng trủn ũ A r B r  C r  20 D r  22 Lời giâi Để tìm đāĈng trịn ta cỉn im biu din cỵa w , vỡ z s sinh w nên đæu tiên ta chõn giá tr ọi din cỵa z thúa z + Chõn z   0i (thóa mãn z  ) Tính w1    4i  0i i Quy trỡnh bỗm mỏy Màn hình hiển thð (3+4b)O4+b= Ta cị điểm biểu diễn cỵa z l M 12;17 + Chừn z  4i (thóa mãn z  ) Tính w2    4i  4i   i Quy trỡnh bỗm mỏy Mn hỡnh hin th (3+4b)O4b+b= Ta cũ im biu din cỵa z l N 16;13  Chõn z  4i (thóa mãn z  ) Tính w3    4i  4i i Quy trỡnh bỗm mỏy Mn hỡnh hin th (3+4b)(p4b) +b= Ta cũ im biu din cỵa z P 16; 11 Vêy ta cò điểm M , N , P thủc đāĈng trịn biểu diễn sø phăc w Nguyễn Chiến 0973514674 Page | 46 ĐāĈng trịn có däng tùng qt x  y  ax  by  c  Để tìm a,b, c ta sĄ dĀng máy tính Casio vĉi chăc nëng MODE Quy trình bỗm mỏy Mn hỡnh hin th w5212=17=1=p 12dp17d=p16= 13=1=p16dp13 d=16=p11=1=p 16dp11d== Phāćng trình đāĈng trịn : x  y  2y  399   x  y  1  202 Bán kính đāĈng tròn têp hợp điểm biểu diễn sø phăc w 20  Chọn C Kĩ thuật 21: Tìm số phức, giâi phương trình số phức Kĩ thuật CALC CALC: 100+ 0,01i Phương pháp + Nếu phāćng trình cho sïn nghiệm thay tĂng đáp án + Nếu phāćng trình bêc 2,3 chỵ chăa z vĉi hệ sø thĆc, ta giâi nhā phāćng trình sø thĆc (nhên câ nghiệm phăc) + Nếu phāćng trình chăa câ z ; z ; z düng kï thuêt CALC vĉi X  100;Y  0, 01 sau đị phån tích kết q Ví dụ 1: Phāćng trình z    i  z   i  cò nghiệm là: A z   i; z  3  i B z   3i; z  1  3i C z   2i; z   i D z   i; z i Quy trỡnh bỗm mỏy Page | 47 Màn hình hiển thð w2Q)dp(5pb)Q )+8pbr3+b= Kết q khác lội A, nhìn sang đáp án B thay z   3i p1+3b= Kết quâ khác loäi B, thay đáp án C thay z   2i r3p2b= Kết quâ bìng thay tiếp z   i r2+b=  Chọn C Ví dụ : Gõi z1, z hai nghim phc cỵa phng trỡnh z z Giỏ tr cỵa z1 z bìng A B C D Li giõi Tớnh nghim cỵa phng trỡnh bờc hai z  z   bìng chăc nởng MODE Quy trỡnh bỗm mỏy Mn hỡnh hiển thð w531=p1=1== Vêy ta đāợc hai nghiệm z1  3  i z   i Tính tùng 2 2 Mưđun cỵa hai sứ phc trờn ta lọi dỹng chc nởng SHIFT HYP Nguyễn Chiến 0973514674 Page | 48 Quy trình bỗm mỏy Mn hỡnh hin th w2qca1R2$+as 3R2$b$+qca1R 2$pas3R2$b= z1  z   Chọn B Ví dụ 3: Cho sø phăc thóa mãn: 1  i  z  2  i  z  11  i Tính z ? A B C 10 D 2 Lời giâi Nhêp phāćng trình vĉi z  X  Yi; z  X  Yi CALC X  100;Y  0, 01 Quy trỡnh bỗm mỏy Mn hỡnh hin th w2(1+b)(Q)+Q nb)+(2pb)(Q) pQnb)r100=0 01= n Ta có kết quâ vế trái 299,98  0,01i Phân tích 299,98  300  0, 02  3x 2y v 0, 01i yi ững nhỗt vế trái vế phâi cho phæn thĆc phæn âo bìng  3x  2y  11   y  1    x   z   i  z  10  Chọn C  y  1   Cách : Xem công thăc giâi nhanh sø phăc Cho sø phăc z thóa mãn: az  bz  c : z  ca  cb a b  Chọn C Kĩ thuật 22: Giâi phương trình số phức dùng phương pháp lặp New tơn Phương phỏp + Nhờp sứ bỗt kỡ sau ũ bỗm = máy tính cho kết q đị Ans Page | 49 + Sau đò nhêp Ans    f ' Ans f Ans bỗm dỗu = liên tiếp kết quâ khöng thay đùi ta đāợc nghiệm + Tìm nghiệm cđn läi ta dĆa vào Vi-et: x1.x  c a Ví dụ: Cho sø phăc z thóa mãn : z  2  3i  z   18i  Tính giá trð z1  z ? 2 A B 34 C 54 D 27 Li giõi Nhờp sứ bỗt kỡ vớ d nhêp = Sau đò nhêp Ans    f ' Ans f Ans bỗm dỗu = liên tiếp đến kết quâ khöng thay đùi tỡm c nghim Quy trỡnh bỗm mỏy Mn hỡnh hin thð w21=paMd+(2+ 3b)Mp4+18bR2M +2+3b = = = = = Nguyễn Chin 0973514674 Page | 50 = = Bỗm = liờn tiếp vén đāợc kết quâ z   4i Vêy phāćng trình cị nghiệm z1   4i Tìm nghiệm thă Theo vi-et z1z  Quy trỡnh bỗm mỏy c c z : z1 a a Màn hình hiển thð ap4+18bR2p4b= 2 Vậy z1   4i; z  4  i  z1  z  54  Chọn C Kĩ thuật 23: Tính tích vơ hướng có hướng véc tơ Phương pháp + Lệnh đëng nhêp mưi trāĈng vecto MODE + Nhêp thơng sø vecto MODE 1 + Tớnh tớch vử hng cỵa vecto : vectoA SHIFT vectoB + Tính tớch cũ hng cỵa hai vecto : vectoA vectoB + Lệnh giá trð tuyệt đøi SHIFT HYP Lệnh tính đû lĉn mût vecto SHIFT HYP * Chức w8 (VECTOR) Khi ũ mn hỡnh mỏy tớnh s xuỗt hin nh sau: Nhêp dą liệu cho tĂng vectć: Chõn để nhêp cho Vectć A Chõn để chõn hệ trĀc tõa đû Oxyz Ví dụ a  1; 2;  , b   3; 2;1 ; c   4; 5;  Page | 51 Nhêp a 1;2; thỡ bỗm 1=2=3= nhờp tip d liu cho vectoB thỡ bỗm w8213=2=1= Tớnh tớch cú hướng vecto A B bấm sau: Cq53q54= Tính tích vơ hướng hai vecto A B bấm sau: Cq53q57q54= Để tính tích hỗn tạp ba vecto nhập thêm liệu cho vectoC Cq51314=5=6= C(q53Oq54)q57q55= Để tính độ dài vecto A, bấm qcq53= Ví dụ 1: Trong khưng gian vĉi hệ tõa đû Oxyz cho A 1;2;  ,     B 3; 1;1 , C 1;1;1 Tính diện tớch S cỵa tam giỏc ABC ? A S B S  C S  Lời giâi Nhêp vecto AB , AC vào máy tính Casio Nguyễn Chiến 0973514674 Page | 52 D S Quy trỡnh bỗm mỏy Mn hỡnh hiển thð w8112=p3=1=w 8210=p1=1= Diện tích tam giác ABC : SABC  1 AB, AC    Quy trỡnh bỗm mỏy Mn hỡnh hin th Wqcq53Oq54 )P2= SABC  1.732050808   Chọn A Ví dụ : Cho A 2; 1;6  , B  3; 1; 4  , C  5; 1; 0 , D 1;2;1 Thể tích tă diện ABCD bìng A 30 B 40 C 50 D 60 Lời giâi Thể tích tă diện ABCD : V  AB AC ; AD    Quy trình bỗm mỏy Mn hỡnh hin th w811p5=0=p10 =w8213=0=p6= w831p1=3=p5= Wqcq53q57(q 54Oq55))P6= V  AB AC ; AD   30  Chọn A   Ví dụ Tính gịc giąa đāĈng thỵng  : phỵng P  : x  2y  z   A 300 B 450 x  y 1 z 3   mðt 1 C 600 Page | 53 D 900 Lời giâi ĐāĈng thỵng  có vecto chỵ phāćng u 2;1;1 mðt phỵng  P  có vecto pháp tuyến n 1;2; 1 Gõi  góc giąa giąa vectć u, n Ta cú cos Quy trỡnh bỗm máy u.n u n Màn hình hiển thð w8112=1=1=w8 211=2=p1=Wqc q53q57q54)P( qcq53)Oqcq5 4))= qjM)= Gõi  góc giąa đāĈng thỵng  mðt phỵng P   sin   cos   0.5    300  Chọn A Ví dụ 4: Trong khưng gian vĉi hệ tõa đû Oxyz , cho đāĈng thỵng d: x 1 y 2 z 2 Tính không cách tĂ điểm M 2;1; 1 tĉi d   2  A B 2 C  D Lời giâi Khoâng cách tĂ M đến d tính theo cơng thăc : d M ;d   MN , u    u Nhêp hai vecto MN , ud vào máy tính Quy trỡnh bỗm mỏy Nguyn Chin 0973514674 Mn hỡnh hin thð Page | 54 w8111p(p2)=2 p1=p2pp1=w82 11=2=p2= Tính d M ;d   MN , u    u Quy trỡnh bỗm mỏy Mn hỡnh hin th Wqcq53Oq54)P qcq54)=    d M ;d  2.357022604   Chọn D Ví dụ : Tính không cách giąa hai đāĈng thỵng: x  t  x 1 y 2 z  d ' : y   2t d:   1 1 z   3t  42 A B 46 C 46 D 42 Lời giâi M 1; 2;   d d có vecto chỵ phāćng ud 1;1; 1    M ' 0;1;6  d ' d ' có vecto chỵ phāćng u ' 1;2;  Ta có M1M2   1; 3; 3 Hai đāĈng thỵng chéo MM ' u, u '     Không cách cỉn tìm d d ; d '  u, u '   Quy trỡnh bỗm mỏy Page | 55 Màn hình hiển thð w811p1=3=3=w 8211=1=p1=w8 311=2=3=Wqcq 53q57(q54q55 ))Pqcq54q55 )= MM ' u, u '    d d;d '   2,160246899  u, u '      Nguyễn Chiến 0973514674 42  Chọn D Page | 56 ... nhỗt 2, èn EQN MODE Nguyễn Chiến 0973514674 Page | Thao tác Lêp bâng sø theo biểu thăc MODE TABLE SHIFT = = Xòa MODE cài đðt II MỘT SỐ KĨ THUẬT SỬ DỤNG MÁY TÍNH Kĩ thuật 1: Tính đạo hàm máy tính... tìm GTNN 2=4=0.2= RRRR Quan sát bảng giá trị tìm kết gần với đáp án để kết luận  Chọn A Kĩ thuật 7: Kĩ thuật giâi nhanh bài tốn tìm giá trị lớn – nhỏ hàm số Sử dụng tính SOLVE Phương pháp : Để... cị tiệm cên ngang y  0.6819943402  Chọn D Kĩ thuật 6: Kĩ thuật giâi nhanh bài tốn tìm giá trị lớn – nhỏ hàm số đoạn a;b  Sử dụng tính bâng giá trị TABLE Phương pháp : Nhấn w7 f  X  

Ngày đăng: 28/12/2020, 21:51

w