1. Trang chủ
  2. » Giáo án - Bài giảng

20 chuyen de boi duong toan lop 8

118 35 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 118
Dung lượng 5,31 MB

Nội dung

CHUYÊN ĐỀ - PHẤN TÍCH ĐA THỨC THÀNH NHÂN TỬ A MỤC TIÊU: * Hệ thống lại dạng tốn phương pháp phân tích đa thức thành nhân tử * Giải số tập phân tích đa thức thành nhân tử * Nâng cao trình độ kỹ phân tích đa thức thành nhân tử B CÁC PHƯƠNG PHÁP VÀ BÀI TẬP I TÁCH MỘT HẠNG TỬ THÀNH NHIỀU HẠNG TỬ: Định lí bổ sung: + Đa thức f(x) có nghiệm hữu tỉ có dạng p/q p ước hệ số tự do, q ước dương hệ số cao + Nếu f(x) có tổng hệ số f(x) có nhân tử x – + Nếu f(x) có tổng hệ số hạng tử bậc chẵn tổng hệ số hạng tử bậc lẻ f(x) có nhân tử x + + Nếu a nghiệm nguyên f(x) f(1); f(- 1) khác f(1) f(-1) số nguyên a-1 a+1 Để nhanh chóng loại trừ nghiệm ước hệ số tự Ví dụ 1: 3x2 – 8x + Cách 1: Tách hạng tử thứ 3x2 – 8x + = 3x2 – 6x – 2x + = 3x(x – 2) – 2(x – 2) = (x – 2)(3x – 2) Cách 2: Tách hạng tử thứ nhất: 3x2 – 8x + = (4x2 – 8x + 4) - x2 = (2x – 2)2 – x2 = (2x – + x)(2x – – x) = (x – 2)(3x – 2) Ví dụ 2: x3 – x2 - Ta nhân thấy nghiệm f(x) có x = ±1; ±2; ±4 , có f(2) = nên x = nghiệm f(x) nên f(x) có nhân tử x – Do ta tách f(x) thành nhóm có xuất nhân tử x – Cách 1: 2 2 x3 – x2 – = ( x − x ) + ( x − x ) + ( x − ) = x ( x − ) + x( x − 2) + 2( x − 2) = ( x − ) ( x + x + ) CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 3 2 Cách 2: x − x − = x − − x + = ( x − ) − ( x − ) = ( x − 2)( x + x + 4) − ( x − 2)( x + 2) 2 = ( x − ) ( x + x + ) − ( x + 2)  = ( x − 2)( x + x + 2) Ví dụ 3: f(x) = 3x3 – 7x2 + 17x – Nhận xét: ±1, ±5 không nghiệm f(x), f(x) khơng có nghiệm ngun Nên f(x) có nghiệm nghiệm hữu tỉ Ta nhận thấy x = nghiệm f(x) f(x) có nhân tử 3x – Nên 3 2 2 f(x) = 3x3 – 7x2 + 17x – = 3x − x − x + x + 15 x − = ( 3x − x ) − ( x − x ) + ( 15 x − ) = x (3x − 1) − x(3x − 1) + 5(3x − 1) = (3 x − 1)( x − x + 5) Vì x − x + = ( x − x + 1) + = ( x − 1) + > với x nên khơng phân tích thành nhân tử Ví dụ 4: x3 + 5x2 + 8x + Nhận xét: Tổng hệ số hạng tử bậc chẵn tổng hệ số hạng tử bậc lẻ nên đa thức có nhân tử x + x3 + 5x2 + 8x + = (x3 + x2 ) + (4x2 + 4x) + (4x + 4) = x2(x + 1) + 4x(x + 1) + 4(x + 1) = (x + 1)(x2 + 4x + 4) = (x + 1)(x + 2)2 Ví dụ 5: f(x) = x5 – 2x4 + 3x3 – 4x2 + Tổng hệ số nên đa thức có nhân tử x – 1, chia f(x) cho (x – 1) ta có: x5 – 2x4 + 3x3 – 4x2 + = (x – 1)(x4 - x3 + x2 - x - 2) Vì x4 - x3 + x2 - x - khơng có nghiệm ngun khơng có nghiệm hữu tỉ nên khơng phân tích Ví dụ 6: x4 + 1997x2 + 1996x + 1997 = (x4 + x2 + 1) + (1996x2 + 1996x + 1996) = (x2 + x + 1)(x2 - x + 1) + 1996(x2 + x + 1) = (x2 + x + 1)(x2 - x + + 1996) = (x2 + x + 1)(x2 - x + 1997) Ví dụ 7: x2 - x - 2001.2002 = x2 - x - 2001.(2001 + 1) = x2 - x – 20012 - 2001 = (x2 – 20012) – (x + 2001) = (x + 2001)(x – 2002) II THÊM , BỚT CÙNG MỘT HẠNG TỬ: CHUYÊN ĐỀ BỒI DƯỠNG TOÁN Thêm, bớt số hạng tử để xuất hiệu hai bình phương: Ví dụ 1: 4x4 + 81 = 4x4 + 36x2 + 81 - 36x2 = (2x2 + 9)2 – 36x2 = (2x2 + 9)2 – (6x)2 = (2x2 + + 6x)(2x2 + – 6x) = (2x2 + 6x + )(2x2 – 6x + 9) Ví dụ 2: x8 + 98x4 + = (x8 + 2x4 + ) + 96x4 = (x4 + 1)2 + 16x2(x4 + 1) + 64x4 - 16x2(x4 + 1) + 32x4 = (x4 + + 8x2)2 – 16x2(x4 + – 2x2) = (x4 + 8x2 + 1)2 - 16x2(x2 – 1)2 = (x4 + 8x2 + 1)2 - (4x3 – 4x )2 = (x4 + 4x3 + 8x2 – 4x + 1)(x4 - 4x3 + 8x2 + 4x + 1) Thêm, bớt số hạng tử để xuất nhân tử chung Ví dụ 1: x7 + x2 + = (x7 – x) + (x2 + x + ) = x(x6 – 1) + (x2 + x + ) = x(x3 - 1)(x3 + 1) + (x2 + x + ) = x(x – 1)(x2 + x + ) (x3 + 1) + (x2 + x + 1) = (x2 + x + 1)[x(x – 1)(x3 + 1) + 1] = (x2 + x + 1)(x5 – x4 + x2 - x + 1) Ví dụ 2: x7 + x5 + = (x7 – x ) + (x5 – x2 ) + (x2 + x + 1) = x(x3 – 1)(x3 + 1) + x2(x3 – 1) + (x2 + x + 1) = (x2 + x + 1)(x – 1)(x4 + x) + x2 (x – 1)(x2 + x + 1) + (x2 + x + 1) = (x2 + x + 1)[(x5 – x4 + x2 – x) + (x3 – x2 ) + 1] = (x2 + x + 1)(x5 – x4 + x3 – x + 1) Ghi nhớ: Các đa thức có dạng x3m + + x3n + + như: x7 + x2 + ; x7 + x5 + ; x8 + x4 + ; x5 + x + ; x8 + x + ; … có nhân tử chung x2 + x + III ĐẶT BIẾN PHỤ: Ví dụ 1: x(x + 4)(x + 6)(x + 10) + 128 = [x(x + 10)][(x + 4)(x + 6)] + 128 = (x2 + 10x) + (x2 + 10x + 24) + 128 Đặt x2 + 10x + 12 = y, đa thức có dạng (y – 12)(y + 12) + 128 = y2 – 144 + 128 = y2 – 16 = (y + 4)(y – 4) = ( x2 + 10x + )(x2 + 10x + 16 ) = (x + 2)(x + 8)( x2 + 10x + ) Ví dụ 2: A = x4 + 6x3 + 7x2 – 6x + Giả sử x ≠ ta viết CHUYÊN ĐỀ BỒI DƯỠNG TOÁN x4 + 6x3 + 7x2 – 6x + = x2 ( x2 + 6x + – Đặt x - 1 + ) = x2 [(x2 + ) + 6(x )+7] x x x x 1 = y x2 + = y2 + 2, x x A = x2(y2 + + 6y + 7) = x2(y + 3)2 = (xy + 3x)2 = [x(x - ) + 3x]2 = (x2 + 3x – 1)2 x Chú ý: Ví dụ giải cách áp dụng đẳng thức sau: A = x4 + 6x3 + 7x2 – 6x + = x4 + (6x3 – 2x2 ) + (9x2 – 6x + ) = x4 + 2x2(3x – 1) + (3x – 1)2 = (x2 + 3x – 1)2 Ví dụ 3: A = ( x + y + z )( x + y + z )2 + ( xy + yz +zx)2 2 2 2 = ( x + y + z ) + 2( xy + yz +zx)  ( x + y + z ) + ( xy + yz +zx) Đặt x + y + z = a, xy + yz + zx = b ta có A = a(a + 2b) + b2 = a2 + 2ab + b2 = (a + b)2 = ( x + y + z + xy + yz + zx)2 Ví dụ 4: B = 2( x + y + z ) − ( x + y + z )2 − 2( x + y + z )( x + y + z )2 + ( x + y + z )4 Đặt x4 + y4 + z4 = a, x2 + y2 + z2 = b, x + y + z = c ta có: B = 2a – b2 – 2bc2 + c4 = 2a – 2b2 + b2 - 2bc2 + c4 = 2(a – b2) + (b –c2)2 Ta lại có: a – b2 = - 2( x y + y z + z x ) b –c2 = - 2(xy + yz + zx) Do đó; B = - 4( x y + y z + z x ) + (xy + yz + zx)2 = −4 x y − y z − z x + x y + y z + z x + 8x yz + xy z + xyz = xyz ( x + y + z ) Ví dụ 5: (a + b + c)3 − 4(a + b3 + c3 ) − 12abc Đặt a + b = m, a – b = n 4ab = m2 – n2 a3 + b3 = (a + b)[(a – b)2 + ab] = m(n2 + C = (m + c)3 – m2 - n ) Ta có: m3 + 3mn − 4c3 − 3c(m - n ) = 3( - c3 +mc2 – mn2 + cn2) = 3[c2(m - c) - n2(m - c)] = 3(m - c)(c - n)(c + n) = 3(a + b - c)(c + a - b)(c - a + b) III PHƯƠNG PHÁP HỆ SỐ BẤT ĐỊNH: Ví dụ 1: x4 - 6x3 + 12x2 - 14x + CHUYÊN ĐỀ BỒI DƯỠNG TOÁN Nhận xét: số ± 1, ± không nghiệm đa thức, đa thức khơng có nghiệm ngun củng khơng có nghiệm hữu tỉ Như đa thức phân tích thành nhân tử phải có dạng (x2 + ax + b)(x2 + cx + d) = x4 + (a + c)x3 + (ac + b + d)x2 + (ad + bc)x + bd  a + c = −6  ac + b + d = 12  đồng đa thức với đa thức cho ta có:   ad + bc = −14 bd = Xét bd = với b, d ∈ Z, b ∈ { ±1, ±3} với b = d = hệ điều kiện trở thành  a + c = −6  ac = −8  2c = −  c = −  ⇒ ⇒  a = −2  a + 3c = −14 ac = bd = Vậy: x4 - 6x3 + 12x2 - 14x + = (x2 - 2x + 3)(x2 - 4x + 1) Ví dụ 2: 2x4 - 3x3 - 7x2 + 6x + Nhận xét: đa thức có nghiệm x = nên có thừa số x - ta có: 2x4 - 3x3 - 7x2 + 6x + = (x - 2)(2x3 + ax2 + bx + c)  a − = −3 b − 2a = −7 a =   ⇒ b = −5 = 2x + (a - 4)x + (b - 2a)x + (c - 2b)x - 2c ⇒  c − 2b = c = −4   −2c = Suy ra: 2x4 - 3x3 - 7x2 + 6x + = (x - 2)(2x3 + x2 - 5x - 4) Ta lại có 2x3 + x2 - 5x - đa thức có tổng hệ số hạng tử bậc lẻ bậc chẵn nahu nên có nhân tử x + nên 2x3 + x2 - 5x - = (x + 1)(2x2 - x - 4) Vậy: 2x4 - 3x3 - 7x2 + 6x + = (x - 2)(x + 1)(2x2 - x - 4) Ví dụ 3: 12x2 + 5x - 12y2 + 12y - 10xy - = (a x + by + 3)(cx + dy - 1) = acx2 + (3c - a)x + bdy2 + (3d - b)y + (bc + ad)xy – CHUYÊN ĐỀ BỒI DƯỠNG TOÁN  ac = 12 bc + ad = −10 a =   c = ⇒ 3c − a = ⇒ bd = −12 b = −6  d = 3d − b = 12 ⇒ 12x2 + 5x - 12y2 + 12y - 10xy - = (4 x - 6y + 3)(3x + 2y - 1) BÀI TẬP: Phân tích đa thức sau thành nhân tử: x3 -4 7x 10)1)64x + y+4 + 16 11)2)a6x+ -a9x + a+2b6x + b4 - b6 6x2 +- xy3+- 30 12)3)x3x+-3xy - x + 5x 2+ 13)4)4x2x + 4x + 5x + 2x + 5) 27x - 27x2 + 18x - 14) x + x + 6) x82 + 2xy4 + y2 - x - y - 12 15) x + 3x + 7) (x + 2)(x +3)(x + 4)(x + 5) - 24 16) 3x24 + 22xy + 11x + 37y + 7y2 +10 8) 4x - 32x + 17)9)x43(x - 8x + 63 + x2 + 1) - (x2 + x + 1)2 CHUYấN ĐỀ - SƠ LƯỢC VỀ CHỈNH HỢP, CHUYÊN ĐỀ BỒI DƯỠNG TOÁN CHUYÊN ĐỀ 2: HOÁN VỊ, TỔ HỢP A MỤC TIÊU: * Bước đầu HS hiểu chỉnh hợp, hoán vị tổ hợp * Vận dụng kiến thức vào ssó toán cụ thể thực tế * Tạo hứng thú nâng cao kỹ giải toán cho HS B KIẾN THỨC: I Chỉnh hợp: định nghĩa: Cho tập hợp X gồm n phần tử Mỗi cách xếp k phần tử tập hợp X ( ≤ k ≤ n) theo thứ tự định gọi chỉnh hợp chập k n phần tử A Số tất chỉnh hợp chập k n phần tử kí hiệu k n Tính số chỉnh chập k n phần tử A k n = n(n - 1)(n - 2)…[n - (k - 1)] II Hoán vị: Định nghĩa: Cho tập hợp X gồm n phần tử Mỗi cách xếp n phần tử tập hợp X theo thứ tự định gọi hoán vị n phần tử Số tất hốn vị n phần tử kí hiệu Pn Tính số hốn vị n phần tử Pn = ( n! : n giai thừa) A n n = n(n - 1)(n - 2) …2 = n! III Tổ hợp: Định nghĩa: Cho tập hợp X gồm n phần tử Mỗi tập X gồm k phần tử n phần tử tập hợp X ( ≤ k ≤ n) gọi tổ hợp chập k n phần tử Số tất tổ hợp chập k n phần tử kí hiệu C k n Tính số tổ hợp chập k n phần tử C k n = A n n : k! = n(n - 1)(n - 2) [n - (k - 1)] k! C Ví dụ: CHUN ĐỀ BỒI DƯỠNG TỐN Ví dụ 1: Cho chữ số: 1, 2, 3, 4, a) có số tự nhiên có ba chữ số, chữ số khác nhau, lập ba chữ số b) Có số tự nhiên có chữ số, chữ số khác nhau, lập chữ số c)Có cách chọn ba chữ số chữ số Giải: a) số tự nhiên có ba chữ số, chữ số khác nhau, lập ba chữ số chỉnh hợp chập phần tử: A = 5.(5 - 1).(5 - 2) = = 60 số b) số tự nhiên có chữ số, chữ số khác nhau, lập chữ số hoán vị cua phần tử (chỉnh hợp chập phần tử): A 5 = 5.(5 - 1).(5 - 2).(5 - 3).(5 - 4) = = 120 số c) cách chọn ba chữ số chữ số tổ hợp chập phần tử: C = 5.(5 - 1).(5 - 2) 5.4.3 60 = = = 10 nhóm 3! 3.(3 - 1)(3 - 2) Ví dụ 2: Cho chữ số 1, 2, 3, 4, Dùng chữ số này: a) Lập số tự nhiên có chữ số khơng có chữ số lặp lại? Tính tổng số lập b) lập số chẵn có chữ số khác nhau? c) Lập số tự nhiên có chữ số, hai chữ số kề phải khác d) Lập số tự nhiên có chữ số, chữ số khác nhau, có hai chữ số lẻ, hai chữ số chẵn Giải a) số tự nhiên có chữ số, chữ số khác nhau, lập chữ số chỉnh hợp chập phần tử: A = 5.(5 - 1).(5 - 2).(5 - 3) = = 120 số Trong hang (Nghìn, trăm, chục, đơn vị), chữ số có mặt: 120 : = 24 lần CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 8 Tổng chữ số hang: (1 + + + + 5) 24 = 15 24 = 360 Tổng số lập: 360 + 3600 + 36000 + 360000 = 399960 b) chữ số tận có cách chọn (là 4) bốn chữ số trước hốn vị của chữ số cịn lại có P4 = 4! = = 24 cách chọn Tất có 24 = 48 cách chọn c) Các số phải lập có dạng abcde , : a có cách chọn, b có cách chọn (khác a), c có cách chọn (khác b), d có cách chọn (khác c), e có cách chọn (khác d) Tất có: = 1280 số d) Chọn chữ số chẵn, có cách chọn chọn chữ số lẻ, có cách chọn Các chữ số hốn vị, có: 4! =1 = 72 số · Bài 3: Cho xAy ≠ 1800 Trên Ax lấy điểm khác A, Ay lấy điểm khác A 12 điểm nói (kể điểm A), hai điểm củng nối với đoạn thẳng Có tam giác mà đỉnh 12 điểm Giải Cách 1: Tam giác phải đếm gồm ba loại: + Loại 1: tam giác có đỉnh A, đỉnh thứ thuộc Ax (có cách chọn), đỉnh thứ thuộc Ay (có cách A B1 B2 B3 A1 A chọn), gồm có: = 30 tam giác + Loại 2: Các tam giác có đỉnh điểm B1, B2, A3 B4 A4 B5 y A5 A x B3, B4, B5 (có cách chọn), hai đỉnh điểm A1, A2, A3, A4, A5, A6 ( Có C = 6.5 30 = = 15 cách chọn) 2! Gồm 15 = 75 tam giác + Loại 3: Các tam giác có đỉnh điểm A1, A2, A3, A4, A5, A6 hai đỉnh điểm B1, B2, B3, B4, B5 gồm có: C = 5.4 20 = = 60 tam giác 2! CHUYÊN ĐỀ BỒI DƯỠNG TỐN Tất có: 30 + 75 + 60 = 165 tam giác Cách 2: số tam giác chọn 12 điểm C 12 = 12.11.10 1320 1320 = = = 220 3! 3.2 Số ba điểm thẳng hang điểm thuộc tia Ax là: C Số ba điểm thẳng hang điểm thuộc tia Ay là: C = 7.6.5 210 210 = = = 35 3! 3.2 = 6.5.4 120 120 = = = 20 3! 3.2 Số tam giác tạo thành: 220 - ( 35 + 20) = 165 tam giác D BÀI TẬP: Bài 1: cho số: 0, 1, 2, 3, từ chữ số lập số tự nhiên: a) Có chữ số gồm chữ số ấy? b) Có chữ số, có chữ số khác nhau? c) có chữ số, chữ số khác nhau? d) có chữ số, chữ số giống nhau? Bài 2: Có số tự nhiên có chữ số lập chữ số 1, 2, biết số chia hết cho Bài 3: Trên trang có đường kẻ thẳng đứng đường kẻ nằm ngang đôi cắt Hỏi trang có hình chữ nhật CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 10 = x2 + y2 + z2 + 2(xy + yz + xz) ≥ xy+ yz + zx + 2(xy + yz + xz) = 3(xy+ yz + zx) ⇒ xy+ yz + zx ≤ ⇒ max B = ⇔ x = y = z = 3) Ví dụ 3: Tìm giá trị lớn S = xyz.(x+y).(y+z).(z+x) với x,y,z > x + y + z = 1 Vì x,y,z > ,áp dụng BĐT Cơsi ta có: x+ y + z ≥ 3 xyz ⇒ xyz ≤ ⇒ xyz ≤ 27 áp dụng bất đẳng thức Côsi cho x+y ; y+z ; x+z ta có ( x + y ) ( y + z ) ( z + x ) ≥ 3 ( x + y ) ( y + z ) ( x + z ) Dấu xảy x = y = z = Vậy S có giá trị lớn ⇒ ≥ 3 ( x + y ) ( y + z ) ( z + x ) 8 ⇒ S ≤ = 27 27 729 x = y = z = 729 4) Ví dụ 4: Cho xy + yz + zx = Tìm giá trị nhỏ x4 + y + z Áp dụng BĐT Bunhiacốpski cho số (x,y,z) ;(x,y,z) Ta có ( xy + yz + zx ) ≤ ( x + y + z ) ⇒ ≤ ( x + y + z ) 2 (1) áp dụng BĐT Bunhiacốpski cho ( x , y , z ) (1,1,1) Ta có ( x + y + z ) ≤ (12 + 12 + 12 )( x + y + z ) ⇒ ( x + y + z ) ≤ 3( x + y + z ) Từ (1) (2) ⇒ ≤ 3( x + y + z ) ⇒ x + y + z ≤ 3 x= y = z = ± 3 Vậy x + y + z có giá trị nhỏ D Một số ý: 1) Khi tìm GTNN, GTLN ta đổi biến Ví dụ : Khi tìm GTNN A =(x – 1)2 + (x – 3)2 , ta đặt x – = y A = (y + 1)2 + (y – 1)2 = 2y2 + ≥ 2… 2) Khi tìm cực trị biểu thức, ta thay đk biểu thức đạt cực trị đk tương đương biểu thức khác đạt cực trị: +) -A lớn ⇔ A nhỏ ; +) lớn ⇔ B nhỏ (với B > 0) B +) C lớn ⇔ C2 lớn CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 104 Ví dụ: Tìm cực trị A = x4 + (x + 1) a) Ta có A > nên A nhỏ lớn nhất, ta có A 1 ( x + 1) 2x = = 1+ ≥ ⇒ A = ⇔ x = ⇒ max A = ⇔ x = A x +1 x +1 b) Ta có (x2 – 1)2 ≥ ⇔ x4 - 2x2 + ≥ ⇒ x4 + ≥ 2x2 (Dấu xẩy x2 = 1) Vì x4 + > ⇒ ⇒ A = 2x 2x ⇒ ≤ + ≤ + = ⇒ max = ⇔ x2 = 4 A x +1 x +1 ⇔ x= ±1 3) Nhiều ta tìm cực trị biểu thức khoảng biến, sau so sámh cực trị để để tìm GTNN, GTLN tồn tập xác định biến y Ví dụ: Tìm GTLN B = - (x + y) a) xét x + y ≤ - Nếu ≤ y ≤ A ≤ - Nếu x = A = - Nếu y = x = A = b) xét x + y ≥ A ≤ So sánh giá trị A, ta thấy max A = ⇔ x = 0; y = 4) Sử dụng bất đẳng thức Ví dụ: Tìm GTLN A = 2x + 3y biết x2 + y2 = 52 Aùp dụng Bđt Bunhiacốpxki: (a x + by)2 ≤ (a2 + b2)(x2 + y2) cho số 2, x , 3, y ta có: (2x + 3y)2 ≤ (22 + 32)(x2 + y2) = (4 + 9).52 = 262 ⇒ 2x + 3y ≤ 26 Max A = 26 ⇔ x y 3x 3x ⇒y = ⇒ x2 + y2 = x2 +  ÷ = 52 ⇔ 13x2 = 52.4 ⇔ x = ± =   Vậy: Ma x A = 26 ⇔ x = 4; y = x = - 4; y = - 5) Hai số có tổng khơng đổi tích chúng lớn chúng Hai số có tích khơng đổi tổng chúng lớn chúng CHUN ĐỀ BỒI DƯỠNG TỐN 105 a)Ví dụ 1: Tìm GTLN A = (x2 – 3x + 1)(21 + 3x – x2) Vì (x2 – 3x + 1) + (21 + 3x – x2) = 22 không đổi nên tích (x2 – 3x + 1)(21 + 3x – x2) lớn x2 – 3x + = 21 + 3x – x2 ⇔ x2 – 3x – 10 = ⇔ x = x = - Khi A = 11 11 = 121 ⇒ Max A = 121 ⇔ x = x = - b) Ví dụ 2: Tìm GTNN B = Ta có: B = (x + 4)(x + 9) x + 13x + 36 36 = =x+ + 13 x x x Vì số x ⇒ A= x+ (x + 4)(x + 9) x 36 36 36 36 ⇔ x=6 có tích x = 36 khơng đổi nên x + nhỏ ⇔ x = x x x x 36 + 13 nhỏ A = 25 ⇔ x = x 6)Trong tìm cực trị cần tồn giá trị biến để xẩy đẳng thức không cần giá trị để xẩy đẳng thức m n Ví dụ: Tìm GTNN A = 11 − Ta thấy 11m tận 1, 5n tận Nếu 11m > 5n A tận 6, 11m < 5n A tận m = 2; n = thÌ A = 121 − 124 = ⇒ A = 4, chẳng hạn m = 2, n = CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 106 CHUYÊN ĐỀ 20 – PHƯƠNG TRÌNH NGHIỆM NGUYÊN  - PHƯƠNG PHÁP 1: Phương pháp đưa dạng tổng  Phương pháp: Phương pháp thường sử dụng với phương trình có biểu thức chứa ẩn viết dạng tổng bình phương - Biến đổi phương trình dạng vế tổng bình phương biểu thức chứa ẩn; vế lại tổng bình phương số nguyên (số số hạng hai vế nhau) Các ví dụ minh hoạ: - Ví dụ 1: Tìm x; y ∈ Z thoả mãn: x − xy + y = 169 (1) ( x − y ) + x = 144 + 25 (1) ⇔ x − xy + y + x = 144 + 25 = 169 + ⇔  2 ( x − y ) + x = 169 + 2 (II) Từ (I) ta có: Tương tự từ (II) ta có:  ( x − y ) = 122  x = ±5  x = ±5  ⇒ ;   x = 52  y = m2  y = m22   ( x − y ) = 52  x = ±12  x = ±12 ⇒ ;  2 y = m 19   y = m29 x = 12    ( x − y ) = 132 x =  ⇒   x =  y = ±13   ( x − y ) =  x = ±13 ⇒  2  y = ±26 x = 13   ( 5; −2 ) ; ( 5; −22 ) ; ( −5; ) ; ( −5; 22 ) ; ( 12; −19 ) ; ( 12; −29 )   ( −12;19 ) ; ( −12; 29 ) ; ( 0;13) ; ( 0; −13 ) ; ( 13; 26 ) ; ( −13; −26 )  Vậy ( x, y ) ∈  Ví dụ 2: Tìm x; y ∈ Z thoả mãn: x + y − x − y = (2) (2) ⇔ x − x + y − y = 32 ⇔ x − x + + y − y + = 34 ⇔ ( x − 1) + ( y − 1) = 52 + 32 2  ( x − 1) = 32  x = 2; x = −1   ⇒  ( y − 1) = 52  y = 3; y = −2   ⇒  ( x − 1) = 52  x = 3; x = −2   ⇒   ( y − 1) = 32  y = 2; y = −1  Vậy ( x; y ) ∈ { ( 2;3) ; ( 2; −2 ) ; ( −1;3) ; ( −1; −2 ) ; ( 3; ) ; ( 3; −1) ; ( −2; ) ; ( −2; −1) } Ví dụ 3: Tìm x; y ∈ Z thoả mãn: x3 − y = 91 (1) CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 107 2 2 (1) ⇔ ( x − y ) ( x + xy + y ) = 91.1 = 13.7 (Vì ( x + xy + y ) > ) ( x − y ) ( x + xy + y )   x − y =  x =  x = −5 ⇒ ;  2  ( x + xy + y ) = 91  y =  y = −6 = 91.1 ⇒    x − y = 91 ⇒ VN  2  ( x + xy + y ) = Ví dụ 4: Tìm x; y ∈ Z thoả mãn: x + x − y = (2) x + x − y = ⇒ x + x − y = ⇒ ( x + 1) − ( y ) = ⇒ ( x + y + 1) ( x − xy + 1) = 2  2 x + y + =  x = ⇒  x − y + =  y = ⇒  2 x + y + = −1  x = −1  ⇒  2 x − y + = −1  y = Vậy: ( x; y ) ∈ { ( 0;0 ) ; ( −1;0 ) }  - PHƯƠNG PHÁP 2: Phương pháp cực hạn  Phương pháp: Phương pháp thường sử dụng với phương trình đối xứng - Vì phương trình đối xứng nên x; y; z có vai trị bình đẳng Do đó; ta giả thiết x ≤ y ≤ z ; tìm điều kiện nghiệm; loại trừ dần ẩn để có phương trình đơn giản Giải phương trình; dùng phép hốn vị để suy nghiệm  Ta thường giả thiết ≤ x ≤ y ≤ z ≤ Các ví dụ minh hoạ: Ví dụ 1: Tìm x; y; z ∈ Z + thoả mãn: x + y + z = x y.z (1)  Nhận xét – Tìm hướng giải: Ta thấy phương trình đối xứng Giả sử ≤ x ≤ y ≤ z Khi đó: (1) ⇒ x y.z = x + y + z ≤ 3z ⇒ x y ≤ (Vì x; y; z ∈ Z + ) ⇒ x y ∈ { 1; 2;3} * Nếu: x y = ⇒ x = y = ⇒ + z = z (vơ lí) * Nếu: x y = ⇒ x = 1; y = 2; z = * Nếu: x y = ⇒ x = 1; y = ⇒ z = < y (vơ lí) Vậy: x; y; z hoán vị ( 1; 2;3) CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 108 1 Ví dụ 2: Tìm x; y; z ∈ Z + thoả mãn: x + y + z = (2)  Nhận xét – Tìm hướng giải: Đây phương trình đối xứng Giả sử ≤ x ≤ y ≤ z Khi đó: 1 3 (2) ⇒ = x + y + z ≤ x ⇒ x ≤ ⇒ x = 1 Với: x = ⇒ = y + z ≤ y ⇒ y ≤ ⇒ y ∈ { 1; 2} z .Nếu: y = ⇒ = (vơ lí) .Nếu: y = ⇒ z = Vậy: x; y; z hoán vị ( 1; 2; )  - PHƯƠNG PHÁP 3: Phương pháp sử dụng tính chất chia hết Các ví dụ minh hoạ: x2 + x Ví dụ 1: Tìm x; y ∈ Z để: A = x + x +1 nhận giá trị nguyên x2 + x x2 + x + − 1 = = 1+ Ta có: A = Khi đó: x + x +1 x + x +1 x + x +1 Để A nhận giá trị nguyên nhận giá trị nguyên x + x +1 ⇒ 1M( x + x + 1) ⇒ ( x + x + 1) ∈ U ( 1) = { −1;1} x =  x = −1 2 Vì : ( x + x + 1) > 0; ∀x ∈ ¢ ⇒ x + x + = ⇒  Vậy để A nhận giá trị nguyên thì: x = x = −1 Ví dụ 2: Tìm x; y ∈ Z thoả mãn: y x + x + y + = x + y + x y (2) ⇒ y ( x − 1) − x ( x − 1) − y ( x − 1) + = ( *) Với: x = 1; ( *) ⇒ = ⇒ x = khơng phải ngiệm phương trình Nên: y2 − x − y + = ( **) x −1 CHUYÊN ĐỀ BỒI DƯỠNG TỐN 109 Phương trình có nghiệm ngun ⇔ x = ∈ ¢ ⇔ ( x − 1) ∈ U (1) = { 1; −1} ⇒  x −1 x = Ví dụ 3: Tìm x; y ∈ Z + thoả mãn: 3x + = ( y + 1) (3) Ta có: (3) ⇒ 3x = ( y − 1) − = y ( y + ) 3x số lẻ ⇒ y; ( y + ) hai số lẻ liên tiếp ⇒ ( y; y + ) = ⇒ y; y + luỹ thừa 3, nên:  y = 3m ( *) ( m + n = x ) ⇒ 3m + = 3n ⇒ m < n  n  y + = ( **)  Với: m = 0; ⇒ n = ⇒ y = 1; x =  y M3 ⇒ ( y; ( y + ) ) ≠ ( vơ lí) ( y + ) M3   Với: m ≥ 1; ⇒ n > Từ ( *) ; ( **) ⇒  x = y =1 Phương trình có nghiệm ngun:   - PHƯƠNG PHÁP 4: Phương pháp sử dụng bất đẳng thức  Phương pháp: Phương pháp thường sử dụng với phương trình mà hai vế đa thức có tính biến thiên khác - Áp dụng bất đẳng thức thường gặp: *Bất đẳng thức Cô – si: Cho n số không âm: a1 ; a2 ; a3 ; ; an Khi đó: a1 + a2 + a3 + + an n ≥ a1.a2 a3 .an Dấu “=” xảy ⇔ a1 = a2 = a3 = = an n * Bất đẳng thức Bunhiacôpxki: Cho 2n số thực: a1 ; a2 ; a3 ; ; an b1 ; b2 ; b3 ; ; bn Khi đó: ( a1.b1 + a2 b2 + a3 b3 + + an bn ) ≤ ( a1 + a2 + a3 + + an ) ( b1 + b2 + b3 + + bn ) Dấu “=” xảy ⇔ = kbi ( i = 1; n ) *Bất đẳng thứcgiá trị tuyết đối: CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 110  a + b ⇔ a.b ≥ a + b =  a − b ⇔ a.b < Các ví dụ minh hoạ: x y y.z z x Ví dụ 1: Tìm x; y ∈ Z + thoả: z + x + y = (1) Áp dụng BĐT Cơ – si Ta có: = x y y.z z.x x y y.z z.x + + ≥ 3 = 3 x y.z z x y z x y ⇒ x y.z ≤ ⇔ x y.z ≤ ⇒ x = y = z = Vậy nghiệm phương trình là: x = y = z = Ví dụ 2: Tìm nghiệm nguyên phương trình: ( x + y + 1) = ( x + y + 1) (2) (Tốn Tuổi thơ 2) Theo Bunhiacơpxki,ta có: ( x + y + 1) ≤ ( 12 + 12 + 12 ) ( x + y + 1) = ( x + y + 1) x Dấu “=” xảy ⇔ = y = ⇒ x = y =1 1 Vậy nghiệm phương trình là: x = y = Ví dụ 3: Tìm tất số nguyên x thoả mãn: x − + x − 10 + x + 101 + x + 990 + x + 1000 = 2004 (3)  Nhận xét – Tìm hướng giải: Ta nhận thấy: 2104 = + 10 + 101 + 990 + 1000 =101 + 2003 a = −a Ta có:(3) ⇒ − x + 10 − x + x + 101 + x + 990 + x + 1000 = 2004 3− x ≥ 3− x   10 − x ≥ 10 − x  Mà a ≥ a ⇒  x + 101 ≥ x + 101 ⇒ 2004 ≥ x + 101 + 2003 ⇒ x + 101 ≤   x + 990 ≥ x + 990  x + 1000 ≥ x + 1000  Do đó: −1 ≤ ( x + 101) ≤ ⇒ ( x + 101) ∈ { −1;0;1} ⇒ x ∈ { −102; −101; −100} Với x = −101 ⇒ 2004 = 2003 (vơ lí) Vậy nghiệm phương trình là: x ∈ { −102; −100} CHUYÊN ĐỀ BỒI DƯỠNG TỐN 111 1) Tìm số ngun x,y,z thoả mãn: x + y + z ≤ xy + y + z − Vì x,y,z số nguyên nên x + y + z ≤ xy + y + z −   y2   3y2 ⇔ x + y + z − xy − y − z + ≤ ⇔  x − xy + ÷+  − y + ÷+ z − z + ≤     2 ( 2 y  y  ⇔  x − ÷ +  − 1÷ + ( z − 1) ≤ 2  2  2 )     (*) Mà  x − ÷ +  − 1÷ + ( z − 1) ≥ 2  2  y y y  x − =  x =1  2 y   y y     ⇒  x − ÷ +  − 1÷ + ( z − 1) = ⇔  − = ⇔  y = 2  2  2  z =1   z −1 =   ∀x, y ∈ R  x =1  Các số x,y,z phải tìm  y =  z =1  PHƯƠNG PHÁP 5: Phương pháp lựa chọn Phương pháp: Phương pháp sử dụng với phương trình mà ta nhẩm (phát dể dàng) vài giá trị nghiệm - Trên sở giá trị nghiệm biết Áp dụng tính chất chia hết; số dư; số phương; chữ số tận … ta chứng tỏ với giá trị khác phương trình vơ nghiệm Các ví dụ minh hoạ: Ví dụ 1: Tìm x; y ∈ Z + thoả mãn: x + 3x + = y  Nhận xét – Tìm hướng giải: Ta thấy với x = 0; y = ±1 phương trình nghiệm Ta cần chứng minh phương trình vô nghiệm với x ≠ + Với x = 0; y = ±1 phương trình nghiệm + Với x > Khi đó: x + x + < x + 3x + < x + x + ⇒ ( x + 1) < y < ( x + ) (*) 2 3 Vì ( x + 1) ; ( x + ) hai số nguyên liên tiếp nên khơng có giá trị y thoả (*) Vậy x = 0; y = ±1 nghiệm phương trình CHUN ĐỀ BỒI DƯỠNG TỐN 112 Ví dụ 2: Tìm x; y ∈ Z + thoả: x + x − = 32 y +1 (2) (Tạp chí Tốn học tuổi trẻ ) Gọi b chữ số tận x ( Với b ∈ { 0;1; 2; ;9} Khi đó: ( x + x − 1) có chữ số tận là: 1, (*) Mặt khác: 32 y+1 luỹ thừa bậc lẻ nên có tận (**) Từ (*) (**) suy phương trình vơ nghiệm Ví dụ 3: Tìm x; y ∈ Z + thoả mãn: x − xy + 13 y = 100 (3)  y ≤5  (3) ⇒ ( x − 3) = ( 25 − y ) ⇒  ( 25 − y ) = n ( n∈¥ ) Do đó: y ∈ { −5; −4; −3;0;3; 4;5} ⇒ x ∈ { 3;9;11;13} Phương trình có nghiệm nguyên: ( x; y ) ∈ { ( −5;3) ; ( −4;9 ) ; ( −3;11) ; ( 0;13) ; ( 3;11) ; ( 4;9 ) ; ( 5;3 ) } PHƯƠNG PHÁP 6: Phương pháp lùi vô hạn (xuống thang) Phương pháp: Phương pháp thường sử dụng với phương trình có (n – 1) ẩn mà hệ số có ước chung khác - Dựa vào tính chất chia hết ta biểu diễn ẩn theo ẩn phụ nhằm “hạ” (giảm bớt) số tự do, để có phương trình đơn giản - Sử dụng linh hoạt phương pháp để giải phương trình Các ví dụ minh hoạ: Ví dụ 1: Giải phương trình: x3 − y − z = (1)  Nhận xét – Tìm hướng giải: 3 3 3 3 Ta thấy x − y − z = ⇒ ( x − y − z ) M3 mà ( −3 y − z ) M3 nên x3 M3 3 3 Ta có: (1) ⇒ ( x − y − z ) M3 ⇒ x M3 ⇒ x M3 ⇒ x = 3x1 3 3 3 Khi đó: (1) ⇒ ( 27 x1 − y − z ) M3 ⇒ ( x1 − y − 3z ) M3 ⇒ y M3 ⇒ y M3 ⇒ y = y1 ⇒ ( x13 − 27 y13 − z ) M3 ⇒ z M3 ⇒ z M3 ⇒ y = z1 * Tiếp tục biểu diễn gọi x0 ; y0 ; z0 nghiệm (1) ∈ U ( x ; y ; z ) 0 0 ≤ x0 ; y0 ; z0 ≤ Thực thử chọn ta được: x0 = y0 = z0 = CHUYÊN ĐỀ BỒI DƯỠNG TỐN 113 Vậy nghiệm phương trình là: x0 = y0 = z0 = CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 114 CÁC BÀI TẬP KHÁC 1/Dùng định nghĩa 1) Cho abc = a > 36 Chứng minh a2 + b2+c2> ab+bc+ac Giải Ta có hiệu: a2 a2 a2 2 + b +c - ab- bc – ac = + + b2+c2- ab- bc – ac 12 = ( a a2 a2 a − 36abc + b2+c2- ab– ac+ 2bc) + − 3bc =( -b- c)2 + 12 12a a =( -b- c)2 + a − 36abc >0 (vì abc=1 a3 > 36 nên 12a a >0 ) a2 Vậy : + b2+c2> ab+bc+ac Điều phải chứng minh 2) Chứng minh a) x + y + z + ≥ x.( xy − x + z + 1) b) với số thực a , b, c ta có : a + 5b − 4ab + 2a − 6b + > c) a + 2b − 2ab + 2a − 4b + ≥ Giải : a) Xét hiệu : H = x + y + z + − x y + x − xz − x = ( x − y ) + ( x − z ) + ( x − 1) H ≥ ta có điều phải chứng minh b) Vế trái viết H = ( a − 2b + 1) + ( b − 1) + ⇒ H > ta có điều phải chứng minh c) vế trái viết H = ( a − b + 1) + ( b − 1) ⇒ H ≥ ta có điều phải chứng minh CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 115 Ii / Dùng biến đổi tương đương (x ) + y2 ≥8 1) Cho x > y xy =1 Chứng minh : ( x − y) 2 Giải : x + y = ( x − y ) + xy = ( x − y ) + 2 Ta có (x ⇒ + y2 ) = ( x − y) (vì xy = 1) + 4.( x − y ) + Do BĐT cần chứng minh tương đương với ( x − y ) + 4( x − y ) + ≥ 8.( x − y ) ⇔ ( x − y ) − 4( x − y ) + ≥ ⇔ ( x − y ) − 2 ≥ BĐT cuối nên ta có điều phải chứng minh 1 2) Cho xy ≥ Chứng minh : + x + + y ≥ + xy Giải : 1  1   1  + ≥ +  ≥ ⇔  − − 2 2   1+ x 1+ y + xy  + x + y   + y + xy  Ta có ⇔ ⇔ xy − x xy − y + ≥0 ⇔ + x (1 + xy ) + y (1 + xy ) ( ) ( ) x ( y − x) y( x − y) + ≥0 + x (1 + xy ) + y (1 + xy ) ( ) ( ) ( y − x ) ( xy − 1) ≥ (1 + x ).(1 + y ).(1 + xy ) BĐT cuối xy > Vậy ta có điều phải chứng minh Iii / dùng bất đẳng thức phụ 1) Cho a , b, c số thực a + b +c =1 Chứng minh a + b + c ≥ Giải : áp dụng BĐT BunhiaCôpski cho số (1,1,1) (a,b,c) (1.a + 1.b + 1.c ) ≤ (1 + + 1).( a + b + c ) Ta có ⇔ ( a + b + c ) ≤ 3.( a + b + c ) CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 116 ⇔ a2 + b2 + c2 ≥ (vì a+b+c =1 ) (đpcm) 2) Cho a,b,c số dương 1 1 Chứng minh ( a + b + c ). + +  ≥ a c b (1) Giải :       (1) ⇔ + + + + + + + + ≥ ⇔ +  +  +  +  +  +  ≥ a b a c b a b c x c a a b c a y áp dụng BĐT phụ y + x ≥ b a a c c b a c c b Với x,y > Ta có BĐT cuối ln 1 1 Vậy ( a + b + c ). + +  ≥ a b (đpcm) c Iv / dùng phương pháp bắc cầu 1) Cho < a, b,c a + b3 Vậy a + b < + a b Tương tự ta có : b3 + c3 < + b 2c a3 + c3 < + c 2a ⇒ 2a + 2b + 2c < + a 2b + b c + c a (đpcm) 2) So sánh 31 11 17 14 Giải : Ta thấy 3111 < 3211 = ( 25 ) = 255 < 256 11 Mặt khác 256 = 4.14 = ( 24 ) = 1614 < 1714 14 Vởy 31 11 < 17 14 (đpcm) CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 117 V/ dùng tính chất tỉ số ví dụ 4: Cho số a,b,c,d bất kỳ, chứng minh rằng: (a + c) + (b + d ) ≤ a + b + c + d Giải: Dùng bất đẳng thức Bunhiacopski ta có ac + bd ≤ a2 + b2 c2 + d mà ( a + c ) + ( b + d ) = a + b + 2( ac + bd ) + c + d ≤ ( a + b ) + a + b c + d + c + d ⇒ (a + c) + (b + d ) ≤ a + b + c + d CHUYÊN ĐỀ BỒI DƯỠNG TOÁN 118 ... khác Hay CE DC - DE DC AD CE AE - DE DC AD = = −1 = − (Vì AD = DC) ⇒ = = −1 = −1 DE DE DE DE DE DE DE DE CE AE - DE AE AB AE AB = −1 = −2= − (vì = : Do DF // AB) DE DE DE DF DE DF Suy CE AK +... x2 – x + b) C = 8x9 – 9x8 + = 8x9 – - 9x8 + = 8( x9 – 1) – 9(x8 – 1) = 8( x – 1)(x8 + x7 + + 1) – 9(x – 1)(x7 + x6 + + 1) = (x – 1)(8x8 – x7 – x6 – x5 – x4 – x3 – x2 – x – 1) (8x8 – x7 – x6 – x5... giá trị A = x3 + 3x2 – x = 201 0 Ta có sơ đồ: CHUN ĐỀ BỒI DƯỠNG TỐN 48 1 a = 201 0 201 0.1+3 = 201 3 201 0 .201 3 + = 4046130 -4 201 0.4046130 – = 81 32721296 Vậy: A (201 0) = 81 32721296 C Chưngs minh đa

Ngày đăng: 28/12/2020, 11:15

w