- GV gọi HS nêu lại định nghĩa phép đồng dạng , các tính chất và định nghĩa hai hình đồng dạng. - GV gọi hai học sinh đại diện hai nhóm trình bày lời giảibài tập1 và 2 SGKtrang 33... GV[r]
(1)Ngày: 12/08/2011
Tiết PPCT: 01 §1 PHÉP BIẾN HÌNH & §2 PHÉP TỊNH TIẾN
I Mục đích yêu cầu: Qua học HS cần nắm: 1) Về kiến thức:
-Biết định nghĩa phép biến hình, số thuật ngữ ký hiệu liên quan đến phép biến hình
- Nắm định nghĩa phép tịnh tiến Hiểu phép tịnh tiến hoàn toàn xác định biết vectơ tịnh tiến
- Biết biểu thức tọa độ phép tịnh tiến Hiểu tính chất cảu phép tịnh tiến bảo toàn khoảng cách hai điểm
2) Về kỹ năng:
- Dựng ảnh điểm qua phép biến hình cho Vận dụng biểu thức tọa độ để xác định tọa độ ảnh điểm, phương trình đường thẳng ảnh đường thẳng cho trước qua phép tịnh tiến
3) Về tư thái độ:
* Về tư duy: Biết quan sát phán đốn xác, biết quy lạ quen
* Về thái độ: Cẩn thận, xác, tích cực hoạt động, trả lời câu hỏi, bước đầu thấy mối liên hệ vectơ thực tiễn
II Chuẩn bị GV HS:
GV: Phiếu học tập, giáo án, dụng cụ học tập,…
HS: Soạn trả lời câu hỏi hoạt động SGK, chuẩn bị bảng phụ III Phương pháp dạy học:
Gợi mở, vấn đáp kết hợp với điều khiển hoạt đọng nhóm IV Tiến trình học:
*Ổn định lớp, chia lớp thành nhóm *Bài mới:
Hoạt động thầy hoạt động trò Nội dung
HĐ1: (Định nghĩa phép biến hình)
HĐTP1 (Giúp HS nhớ lại phép chiếu vng góc từ dẫn dắt đến định nghĩa phép biến hình)
GV gọi HS nêu nội dung hoạt động SGK gọi HS lên bảng dựng hình chiếu vng góc M’ M lên đường thẳng d GV nhận xét bổ sung (nếu cần) Qua cách dựng vng góc hình chiếu điểm M lên đường thẳng d ta điểm M’
Vậy ta xem cách dựng
HS nêu nội dung hoạt động
HS lên bảng dựng hình theo yêu cầu đề (có nêu cách dựng)
HS ý theo dõi…
Bài PHÉP BIẾN HÌNH Định nghĩa: (SGK)
M
M’ d Quy tắc đặt tương ứng điểm M mặt phẳng với điểm xác định M’ mặt phẳng gọi phép biến hình mặt phẳng
*Ký hiệu phép biến hình F, ta có:
(2)quy tắc qua quy tắc này, việc ta đặt tương ứng điểm M mặt phẳng xác định điểm M’ gọi phép biến hình Vậy phép biến hình gì?
GV nêu định nghĩa phép biến hình phân tích ảnh cảu hình qua phép biến hình F
HĐTP2 (Đưa phản ví dụ để có quy tắc khơng phép biến hình)
GV gọi HS nêu đề ví dụ hoạt động yêu cầu nhóm thảo luận để nêu lời giải
GV gọi HS đại diện nhóm đứng chỗ trả lời kết hoạt động GV ghi lời giải gọi HS nhận xét, bổ sung (nếu cần) GV phân tích nêu lời giải (vì có nhiều điểm M’ để MM’ = a)
HS nêu nội dung hoạt động thảo luận tìm lời giải Cử đại diện báo cáo kết
HS nhận xét bổ sung, ghi chép
HS ý theo dõi …
biến hình F
HĐ2: ( Định nghĩa phép tịnh tiến)
HĐTP1 (Ví dụ để giúp HS rút định nghĩa cảu phép tịnh tiến)
AB
Khi ta dịch chuyển điểm M theo hướng thẳng từ vị trí A đến vị trí B Khi ta nói điểm tịnh tiến theo vectơ (GV nêu ví dụ SGK)
MM 'AB
AB
AB
v
Vậy qua phép biến hình biến điểm M thành điểm M’ cho gọi phép tịnh tiến theo vectơ Nếu ta xem vectơ vectơ ta có
HS ý theo dõi bảng…
Bài PHÉP TỊNH TIẾN. I.Định nghĩa: (SGK)
vTv v
Phép tịnh tiến theo vectơ kí hiệu: , gọi vectơ tịnh tiến
v
M’ M
v T
MM ' v
(3)định nghĩa phép tịnh tiến GV gọi HS nêu định nghĩa
HĐTP ( ): (Củng cố lại định nghĩa phép tịnh tiến)
GV gọi HS xem nội dung hoạt động cho HS thảo luận tìm lời giải cử đại diện báo cáo
GV gọi HS nhận xét bổ sung (nếu cần)
GV nêu lời giải xác
(Qua phép tịnh tiến theo vectơ AB biến ba điểm A, B, E theo thứ tự thành ba điểm B, C, D)
HS nêu định nghĩa phép tịnh tiến SGK
HS thảo luận theo nhóm rút kết cử đại diện báo cáo
HS nhận xét bổ sung, ghi chép
HĐ1: (SGK) E D
A B C
HĐ3: (Tính chất biểu thức tọa độ)
HĐTP1 (Tính chất phép tịnh tiến)
GV vẽ hình (tương tự hình 1.7) nêu tính chất
HĐTP2 (Ví dụ minh họa)
GV yêu cầu HS nhóm xem nội dung hoạt động SGK thảo luận theo nhóm phân cơng, báo cáo
GV ghi lời giải nhóm gọi HS nhận xét, bổ sung (nếu cần) (Lấy hai điểm A B phân biệt d, dụng vectơ AA’ BB’ vectơ v Kẻ đường thẳng qua A’ B’ ta ảnh đường thẳng d qua phép tịnh tiến theo vectơ v)
HĐTP3( ): (Biểu thức tọa độ) GV vẽ hình hướng dẫn hình thành biểu thức tọa độ SGK
GV cho HS xem nội dung hoạt động SGK yêu cầu HS thảo luận tìm lời giải, báo cáo
HS ý thoe dõi bảng …
HS xem nội dung hoạt động thảo luận đưa kết báo cáo
HS nhận xét, bổ sung ghi chép
HS ý theo dõi…
HS ý theo dõi…
II Tính chất: Tính chất 1: (SGK) Tính chất 2: (SGK)
III Biểu thức tọa độ:
v
(4)GV ghi lời giải cảu nhóm nhận xét, bổ sung (nếu cần) nêu lời giải
HS thảo luận thoe nhóm để tìm lời giải báo cáo
HS đại diện lên bảng trình bày lời giải
' '
' '
'
x x a
MM v
y y b
x x a
y y b
v T
Là biểu thức tọa độ cảu phép tịnh tiến
HĐ4.
* Củng cố hướng dẫn học ỏ nhà: - Xem lại học lý thuyết theo SGK - Làm tập đến SGK trang
- -Ngày: 13/08/2011
Tiết PPCT: 02 §3 PHÉP ĐỐI XỨNG TRỤC
I Mục tiêu:
Qua học HS cần nắm: 1) Về kiến thức:
- Định nghĩa phép đối xứng trục;
(5)- Biểu thức toạ độ phép đối xứng trục qua trục tọa độ Ox, Oy; - Trục đối xứng hình, hình có trục đối xứng
2) Về kỹ năng:
- Dựng ảnh điểm, đường thẳng, tam giác qua phép đối xứng trục - Xác định biểu thức tọa độ, trục đối xứng hình
3)Về tư thái độ:
* Về tư duy: Biết quan sát phán đốn xác, biết quy lạ quen
* Về thái độ: Cẩn thận, xác, tích cực hoạt động, trả lời giải câu hỏi II Chuẩn bị GV HS:
GV: Phiếu học tập, giáo án, dụng cụ học tập,…
HS: Soạn trả lời câu hỏi hoạt động SGK, chuẩn bị bảng phụ (nếu cần) III Phương pháp dạy học:
Gợi mở, vấn đáp kết hợp với điều khiển hoạt động nhóm IV Tiến trình học:
*Ổn định lớp, chia lớp thành nhóm *Bài mới:
Hoạt động thầy hoạt động trò Nội dung
HĐ1 ( Định nghĩa phép đối xứng trục) GV gọi HS nêu lại khái niệm đường trung trực đoạn thẳng
Đường thẳng d gọi đường trung trực đoạn thẳng MM’? Với hai điểm M M’ thỏa mãn điều kiện d đường trung trực đoạn thẳng MM’ ta nói rằng: Qua phép đối xứng trục d biến điểm M thành M’
Vậy em hiểu phép đối xứng trục?
GV gọi HS nêu định nghĩa phép đối xứng trục (GV vẽ hình nêu định nghĩa phép đối xứng trục)
GV yêu cầu HS xem hình 1.11 GV nêu tính đối xứng hai hình cách đặt câu hỏi sau:
0
M M ' µ M Mv
-Nếu M’ ảnh điểm M qua phép đối xứng trục d hai vectơ có mối liên hệ với nhau? (Với M0 hình chiếu vng góc M đường thẳng d)
-Nếu M’ ảnh điểm M qua phép đối xứng trục d liệu ta nói M ảnh
HS ý theo dõi…
HS nhắc lại khái niệm đường trung trực đoạn thẳng: đường trung trục đoạn thẳng đường thẳng qua trung điểm đoạn thẳng vng góc với đoạn thẳng Vậy đường thẳng d đường trung trực đoạn thẳng MM’ d qua trung điểm đoạn thẳng MM” vuông góc với đoạn thẳng MM’ HS suy nghĩ trình bày định nghĩa phép đối xứng trục HS nêu định nghĩa phép đối xứng trục dựa vào định nghĩa SGK
HS nêu phép đối xứng trục dựa vào nhận xét (SGK trang 9)
HS :
0
M M ' M M
Nếu M’ ảnh điểm M qua phép đối xứng
I Định nghĩa: (xem SGK)
Đường thẳng d gọi trục phép đối xứng
Phép đối xứng trục d kí hiệu Đd
(6)của điểm M’ qua phép đối xứng trục d hay khơng? Vì sao?
Nếu HS khơng trả lời GV phân tích để rút kết
trục d ;
-Nếu M’ ảnh điểm M qua phép đối xứng trục d M ảnh điểm M’ qua phép đối xứng trục d hay khơng, vì:
0 0 ' ' ' ' d d
M § M M M M M
M M M M M § M
HĐ2 (hình thành biểu thức tọa độ qua các trục tọa độ Ox Oy).
GV vẽ hình nêu câu hỏi:
Nếu điểm M(x;y) điểm đối xứng M’ M qua Ox có tọa độ nào? Tương tự điểm đối xứng M cua trục Oy
GV yêu cầu HS suy nghĩ trả lời câu hỏi hoạt động SGK trang 10
GV gọi HS nhận xét, bổ sung (nếu cần) GV nêu lời giải
Tương tự, gọi HS trình bày lời giải hoạt động SGK trang 10
HS ý suy nghĩ trả lời Nếu điểm M(x;y) điểm đối xứng M’ M qua Ox có tọa độ M’(x; -y) (HS dựa vào hình vẽ để suy ra)
Nếu điểm M(x; y) điểm M’ đối xứng với điểm M qua trục Oy có tọa độ M’(-x; y)
HS thảo luận theo nhóm cử đại diện báo cáo
HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi rút kết quả: A’ ảnh điểm A qua phép đối xứng trục Ox A’ có tọa độ A’(1; -2) B’ ảnh B B’ có tọa độ B’(0;5)
HS suy nghĩ trình bày lời giải hoạt động
II Biểu thức tọa độ:
M(x;y) với M’=ĐOx(M) M’(x’;y’) thì: ' ' x x y y
M(x;y) với M’=ĐOy(M) M”(x”;y”) thì: " " x x y y
Hai biểu thức gọi biểu thức tọa độ phép đối xứng qua trục Ox Oy
HĐ (Tính chất phép đối xứng trục)
GV gọi HS nêu tính chất 2, GV vẽ hình minh họa…
GV yêu cầu HS xem hình 1.15 SGK GV cho HS xem nội dung hoạt động SGK thảo luận suy nghĩ tìm lời giải GV gọi HS đại diện nhóm trình bày lời giải gọi HS nhận xét, bổ sung (nếu cần)
HS nêu tính chất SGK trang 10
HS thảo luận cử đại diện báo cáo kết
HS nhận xét, bổ sung sửa chữa ghi chép
III.Tính chất:
1)Tính chất 1(SGK trang 10) 2)Tính chất 2(SGK trang 10)
HĐ4 (Tục đối xứng hình) GV vào hình vẽ cho biết hình có trục đối xứng, hình khơng có trục
HS ý theo dõi bảng SGK
IV.Trục đối xứng hình:
(7)đối xứng
Vậy hình có trục đối xứng? GV nêu lại định nghĩa trục đối xứng hình
GV vào hình 1.16 cho biết hình có trục đối xứng
GV cho HS suy nghĩ trả lời câu hỏi hoạt động SGK
HS suy nghĩ trả lời:
Hình có trục đối xứng d hình mà qua phép đối xứng trục d biến thành
HS ý theo dõi…
HS suy nghĩ trả lời câu hỏi hoạt động SGK trang 11
HĐ5.
* Củng cố: GV gọi HS nhắn lại định nghĩa, tính chất biểu thức tọa độ Hướng dẫn giải tập 1, 2 SGK
* Hướng dẫn học nhà: Soạn trước mới: Phép đối xứng tâm trả lời hoạt động mới.
- -Ngày: 14/08/2011
Tiết PPCT: 03 §4 PHÉP ĐỐI XỨNG TÂM
I Mục tiêu:
Qua học HS cần nắm: 1) Về kiến thức:
- Định nghĩa phép đối xứng tâm;
- Phép đối xứng tâm có tính chất phép dời hình; - Biểu thức toạ độ phép đối xứng tâm qua gốc tọa độ; - Tâm đối xứng hình, hình có tâm đối xứng 2) Về kỹ năng:
- Dựng ảnh điểm, đoạn thẳng, đường thẳng, tam giác qua phép đối xứng tâm - Xác định biểu thức tọa độ, tâm đối xứng hình
3)Về tư thái độ:
* Về tư duy: Biết quan sát phán đốn xác, biết quy lạ quen * Về thái độ: Cẩn thận, xác, tích cực hoạt động, trả lời câu hỏi II Chuẩn bị GV HS:
GV: Phiếu học tập, giáo án, dụng cụ học tập,…
HS: Soạn trả lời câu hỏi hoạt động SGK, chuẩn bị bảng phụ (nếu cần) III Phương pháp dạy học:
Gợi mở, vấn đáp kết hợp với điều khiển hoạt động nhóm IV Tiến trình học:
* Ổn định lớp, chia lớp thành nhóm * Bài mới:
Hoạt động thầy hoạt động trò Nội dung
HĐ1 ( Định nghĩa phép đối xứng tâm)
Với hai điểm M M’ thỏa mãn điều HS ý theo dõi…
I Định nghĩa: (xem SGK)
(8)kiện I trung điểm đoạn thẳng MM’ ta nói rằng: Qua phép đối xứng tâm I biến điểm M thành M’ Vậy em hiểu phép đối xứng tâm?
GV gọi HS nêu định nghĩa phép đối xứng trục (GV vẽ hình nêu định nghĩa phép đối xứng tâm)
GV: Vậy từ định nghĩa ta có:
Nếu M’ ảnh điểm M qua phép đối xứng tâm I ( ĐI) ta có:
' I '
M § M IM IM
GV gọi HS nêu vídụ (SGK) cho HS xem hình vẽ 1.20
GV yêu cầu HS xem hình 1.21 yêu cầu HS thảo luận cử đại diện trình bày lời giải hoạt động SGK trang 13
IM ' µ IMv
-Nếu M’ ảnh điểm M qua phép đối xứng tâm I hai vectơ có mối liên hệ với nhau? (Với I là trung điểm đoạn thẳng MM’)
Vậy M’ ảnh điểm M qua phép đối xứng tâm I ta nói M ảnh điểm M’ qua phép đối xứng tâm I ta có:
' I
M § M M§ MI '
GV vẽ hình theo nội dung hoạt động SGK gọi HS nhóm đứng chỗ nêu vàchỉ cặp điểm hình vẽ đối xứng với qua tâm O
GV gọi HS nhận xét, bổ sung (nếu cần)
HS suy nghĩ trình bày định nghĩa phép đối xứng tâm
HS nêu định nghĩa phép đối xứng tâm dựa vào định nghĩa SGK
HS nêu ví dụ xem hình vẽ 1.20 HS xem hình vẽ 1.21 thảo luận suy nghĩ chứng minh theo yêu cầu hoạt động SGK
HS :
Nếu M’ ảnh điểm M qua phép đối xứng tâm I
' I '
M § M IM IM
IM IM M§ MI '
Vậy M’ ảnh điểm M qua phép đối xứng tâm I M ảnh điểm M’ qua phép đối xứng tâm I
IM ' µ IMv
IM ' IM
IM IM'
Nế u M’ ảnh điểm M qua phép đối xứng tâm I hai vectơ có mối liên hệ là: hay
HS suy nghĩ trình bày lời giải: Các cặp điểm đối xứng với qua O A C; B D, E F
HS nhận xét, bổ sung sửa chữa ghi chép
I gọi tâm đối xứng Phép đối xứng tâm I kí hiệu ĐI
M’ =ĐI(M) I trung điểm đoạn thẳng MM’
HĐ2 (Hình thành biểu thức tọa độ qua tâm O).
GV vẽ hình nêu câu hỏi:
Nếu điểm M(x;y) điểm đối xứng M’ M qua tâm O có tọa độ nào?
GV gọi HS nhận xét, bổ sung (nếu cần)
HS ý suy nghĩ trả lời
Nếu điểm M(x;y) điểm đối xứng M’ M qua tâm O có tọa độ M’(-x; -y) (HS dựa vào hình vẽ để suy ra).
HS thảo luận theo nhóm cử đại diện báo cáo
II Biểu thức tọa độ:
(9)
GV yêu cầu HS suy nghĩ trả lời câu hỏi hoạt động SGK trang 13 13
GV gọi HS nhận xét, bổ sung (nếu cần) GV nêu lời giải
HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi rút kết quả: A’ ảnh điểm A qua phép đối xứng tâm O A’ có tọa độ A’(4; -3)
' '
x x
y y
Biểu thức gọi biểu thức tọa độ phép đối xứng qua tâm O
HĐ (Tính chất phép đối xứng trục)
GV gọi HS nêu tính chất 2, GV vẽ hình minh họa…
GV yêu cầu HS xem hình 1.24 SGK GV phân tích chứng minh tương tự SGK
GV cho HS xem nội dung hoạt động SGK thảo luận suy nghĩ tìm lời giải
GV gọi HS đại diện nhóm trình bày lời giải gọi HS nhận xét, bổ sung (nếu cần)
HS nêu tính chất SGK trang 10
HS ý theo dõi…
HS thảo luận cử đại diện báo cáo kết
HS nhận xét, bổ sung sửa chữa ghi chép
III Tính chất:
1)Tính chất 1(SGK trang 13) 2)Tính chất 2(SGK trang 13)
HĐ4 (Tâm đối xứng hình)
GV vào hình vẽ cho biết hình có tâm đối xứng
Vậy hình có tâm đối xứng? GV nêu lại định nghĩa hình có tâm đối xứng
GV vào hình 1.25 cho biết hình có tâm đối xứng
GV cho HS suy nghĩ trả lời câu hỏi hoạt động SGK
GV gọi HS đứng chỗ nêu số hình tứ giác có tâm đối xứng
HS ý theo dõi bảng SGK
HS suy nghĩ trả lời:
Hình có tâm đối xứng I hình mà qua phép đối xứng tâm I biến thành
HS ý theo dõi…
HS suy nghĩ trả lời câu hỏi hoạt động SGK trang 15 HS suy nghĩ nêu hình tứ giác có tâm đối xứng
IV.Tâm đối xứng hình:
Định nghĩa: (Xem SGK)
HĐ5.
*Củng cố: GV gọi HS nhắn lại định nghĩa, tính chất biểu thức tọa độ Hướng dẫn giải tập 1, SGK
*Hướng dẫn học nhà: Soạn trước mới: Phép quay trả lời hoạt động mới.
Ngày: 15/08/2011
Tiết PPCT: 04 §5 PHÉP QUAY
I Mục tiêu:
(10)- Định nghĩa phép quay;
- Phép quay có tính chất phép dời hình; 2) Về kỹ năng:
- Dựng ảnh điểm, đoạn thẳng, tam giác qua phép quay 3) Về tư thái độ:
* Về tư duy: Biết quan sát phán đốn xác, biết quy lạ quen * Về thái độ: Cẩn thận, xác, tích cực hoạt động, trả lời câu hỏi II Chuẩn bị GV HS:
GV: Phiếu học tập, giáo án, dụng cụ học tập,…
HS: Soạn trả lời câu hỏi hoạt động SGK, chuẩn bị bảng phụ (nếu cần) III Phương pháp dạy học:
Về gợi mở, vấn đáp kết hợp với điều khiển hoạt động nhóm IV Tiến trình học:
* Ổn định lớp, chia lớp thành nhóm * Bài mới:
Hoạt động thầy hoạt động trò Nội dung
Như ta thấy kim đồng hồ dịch chuyển, động tác xòe quạt giấy cho ta hình ảnh phép quay mà ta nghiên cứu học hôm
HĐ1(Định nghĩa phép quay) HĐTP (Định nghĩa ký hiệu phép quay)
GV nêu định nghĩa phép quay vẽ hình ghi tóm tắt lên bảng
GV gọi HS nêu ví dụ 1GSK trang 16
2
(Trong hình 1.28 ta thấy, qua phép quay tâm O điểm A’, B’, O ảnh cá điểm A, B, O với góc quay )
HĐTP2 (Bài tập áp dụng xác định góc quay phép quay)
GV cho HS lớp xem nội dung ví dụ hoạt động SGK trang 16 yêu cầu HS thảo luận theo nhóm cử đại diện báo cáo
GV gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét nêu lời giải xác
HS ý theo dõi…
HS nêu ví dụ SGK ý theo dõi bảng
HS lớp xem nội dung hoạt động thảo luận tìm lời giải
HS đại diện nhóm (đứng chỗ trình bày lời giải )
I Định nghĩa: (Xem SGK) M’
M
Cho điểm O góc lượng giác Phép biến hình biến điểm O thành nó, biến điểm M khác điểm O thành điểm M’ cho OM’ = OM góc lượng giác
(OM;OM’) gọi phép quay tâm O góc quay
Điểm O gọi tâm quay, gọi góc quay phép quay
Phép quay tâm O góc ký hiệu: Q(O,)
* Chiều quay:
(11)HĐTP (Nhận xét để rút chiều quay phép quay đặc biệt) GV gọi HS vẽ hình chiều dương chiều âm đường tròn lượng giác
Tương tự chiều đưòng trịn lượng giác ta có chiều phép quay GV nêu nhận xét SGK trang 16: Chiều dương phép quay chiều dương đường tròn lượng giác nghĩa chiều ngược với chiều quay kim đồng hồ
GV vẽ hình chiều quay SGK trang 16
GV cho HS xem hình 1.31 trả lời câu hỏi hoạt động 2.(GV gọi HS nhóm trình bày lời giải)
GV:
Nếu qua phép quay Q(O,2k ) biến M thành M’, M’ so với M ?
GV qua phép quay Q(O,2k) biến điểm M thành M’ ta có: M trùng với M’, ta nói phép quay Q(O,2k) phép đồng
Vậy qua phép quay Q(O,(2k+1)) biến điểm M thành M’ M’ M với nhau?
Vậy phép quayQ(O,(2k+1)) phép đối xứng tâm O
HĐTP4 (Bài tập củng cố kiến thức) GV yêu cầu HS nhóm xem nội dung hoạt động SGK thảo luận suy nghĩ trả lời theo yêu cầu hoạt động
GV gọi HS đại diện nhóm có kết nhanh
HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi rút kết quả:
4
3
-Qua phép quay tâm O điểm A biến thành điểm B góc quay có số đo 450(hay ), điểm C biến thành điểm D góc quay 600 (hay )
HS lên bảng vẽ hình chiều dương, âm đường tròn lượng giác
(Chiều dương ngược chiều quay với chiều kim đồng hồ, chiều âm chiều với chiều quay kim đồng hồ)
HS ý theo dõi bảng…
HS xem hình trả lời câu hỏi Khi bánh xe A quay theo chiều dương bánh xe B quay theo chiều âm
Quy phép quay Q(O,2k ) biến điểm M thành M’ M’ trùng với điểm M
HS ý theo dõi…
HS suy nghĩ trả lời
Qua phép quay Q(O,(2k+1)) biến
* Nhận xét:
Phép quay Q(O,2k) phép đồng
(12)GV gọi HS nhận xét, bổ sung (nếu cần)
GV nêu lời giải
HĐ2(Tính chất phép quay) GV yêu cầu HS lớp xem hình 1.35 trả lời câu hỏi:
Qua phép quay tâm O biến biếm điểm A thành A’ biến đểm B thành B’ khoảng cách A’B’ so với AB?
Vậy thơng qua hình vẽ ta có tính chất
GV gọi HS nêu nội dung tính chất
Tương tự GV cho HS xem hình 1.36 trả lời câu hỏi sau:
Hãy cho biết, qua phép quay tâm O biến đường thẳng, biến đoạn thẳng, biến tam giác, biến tam giác biến đường trịn thành gì?
GV: Đây nội dung tính chất SGk trang 18
GV yêu cầu HS xem hình 1.37 GV phân tích nêu nhận xét
điểm M thành M’ M’ M đối xứng với qua O (hay O trung điểm đoạn thẳng MM’)
HS xem hoạt động thỏa luận tìm lời giải
HS trình bày lời giải
2
Từ 12 đến 15 kim quay góc -900 (hay)cịn kim phút quay góc -3600.3=-10800 (hay
-6).
HS lớp xem hình 1.35 suy nghĩ trả lời:
Ta có A’B’=AB
HS ý theo dõi
HS xem hình 1.36 suy nghĩ trả lời…
HS trả lời dựa vào nội dung tính chất
HS ý theo dõi để nắm
II Tính chất:
1)Tính chất 1: Phép quay bảo tồn khoảng cách hai điểm
(Xem hình 1.35)
2)Tính chất 2: Phép quay biến đường thẳng thành đường thẳng, biến đoạn thẳng thành đoạn thẳng nó, biến tam giác thành tam giác nó, biến đường trịn thành đường trịn có bán kính
(Xem hình 1.36)
( íi 0v 2)
(13)kiến thức HĐ3.
* Củng cố:
- Gọi HS nhắc lại khái niệm phép quay tính chất - GV hướng dẫn giải tập SGK trang 19 * Hướng dẫn học nhà:
- Xem lại học lý thuyết theo SGK
- Soạn trước 6: Khái niệm phép dời hình hai hình
- -Ngày: 20/08/2011
Tiết PPCT: 05 LUYỆN TẬP
( Tiết: Từ §1 đến §5) I MỤC TIÊU
Qua học HS cần: 1 Về kiến thức:
- Củng cố cho học sinh kiến thức phép biến phép tịnh tiến, phép đối xứng trục, phép đối xứng tâm phép quay
(14)- Dùng phép biến hình để chứng minh số tính chất hình học, dựng hình, tìm tập điểm 3 Về tư thái độ:
- Về tư duy: Biết quan sát phán đốn xác, biết quy lạ quen - Về thái độ: Cẩn thận, xác, tích cực hoạt động, trả lời câu hỏi II CHẨN BỊ CỦA GV VÀ HS
GV: Phiếu học tập, giáo án, dụng cụ học tập
HS: Chuẩn bị tập phép đối xứng tâm phép quay SGK SBT, chuẩn bị bảng phụ (nếu cần)
III PHƯƠNG PHÁP DẠY HỌC
Về gợi mở, vấn đáp kết hợp với điều khiển hoạt động nhóm IV TIẾN TRÌNH BÀI HỌC
1 Ổn định tổ chức: - Kiểm tra sĩ số.
- Chia lớp thành nhóm 2 Kiểm tra cũ:
Câu hỏi: Các phép biến hình học có tính chất chung ? 3 Bài mới:
HĐ 1: CHỨNG MINH MỘT SỐ TÍNH CHẤT HÌNH HỌC.
Bài 1: ( 1.18_SBT ) Cho tam giác ABC Dựng phía ngồi tam giác hình vng BCIJ, ACMN, ABEF O, P, Q tâm đối xứng chúng
a Gọi D trung điểm AB Chứng minh DOP tam giác vuông cân đỉnh D b Chứng minh AO vng góc với PQ AO = PQ
Hoạt động GV Hoạt động HS Ghi bảng – Trình chiếu - GV yêu cầu HS nhóm
xem nội dung Bài tập thảo luận tìm lời giải tốn - GV gọi HS đại diện nhóm có kết nhanh
- GV gọi HS nhận xét, bổ sung (nếu cần)
- GV nêu lời giải Câu hỏi gợi ý:
a
0
0
(C,90 ) (C,90 ) (C,90 )
Q (M) ?, Q (B) ?
Q (MB) ?
Chú ý: Góc quay 900 nên (MB, AI) = 900.
- HS vẽ hình thảo luận theo nhóm đưa lời giải tốn
- HS cử đại diện nhóm trình bày lời giải câu a HS nhận xét, sủa sai, bổ sung(nếu cần)
Giải. a Ta có:
0 0 (C,90 ) (C,90 ) (C,90 )
Q (M) A (1) Q (B) I (2) Q (MB) AI (3)
(15)b
0
0
(D,90 ) (D,90 ) (D,90 )
Q (O) ?, Q (A) ?
Q (OA) ?
- HS cử đại diện nhóm trình bày lời giải câu b - HS nhận xét, sửa sai, bổ sung (nếu cần)
1
DP BM
2
DP // BM (6) Xét tam giác ABI ta có:
1
DO AI
2
DO // AI (7) Từ (4), (5), (6) (7) suy ra:
DODP DP = DO
Hay tam giác DOP tam giác vng cân b Ta có:
0 0 (D,90 ) (D,90 ) (D,90 )
Q (O) P (1) Q (A) Q (2) Q (OA) PQ (3)
Từ (1) (2) suy ra: OA = PQ Từ (3) suy (OA, PQ) = 900 HĐ 2: DÙNG PHÉP BIẾN HÌNH ĐỂ GIẢI BÀI TỐN DỰNG HÌNH.
Bài 2: Cho hai đường thẳng d d' cắt A điểm M khơng nằm hai đường thẳng Dựng đường thẳng qua M cắt hai đường thẳng cho điểm B, C cho MB = MC
Hoạt động GV Hoạt động HS Ghi bảng – Trình chiếu - GV yêu cầu HS nhóm
xem nội dung Bài tập thảo luận tìm lời giải tốn - GV gọi HS đại diện nhóm có kết nhanh
- GV gọi HS nhận xét, bổ sung (nếu cần)
- GV nêu lời giải
- Gợi ý:
+ Dùng phép đối xứng tâm M + Giả sử tốn dựng đó:
ĐM(B)= ?; ĐM(A)= ?; ĐM(d)= ? gọi d1 ảnh d qua ĐM em có nhận xét gi ?
- HS thảo luận theo nhóm tìm lời giải tốn - HS cử đại diện nhóm trình bày lời giải
- HS nhận xét, sủa sai, bổ sung(nếu cần)
Giải.
Phân tích: Giả sử toán dựng thỏa mãn yêu cầu đề Khi đó: ĐM(B) = C; ĐM(A) = A'; ĐM(d) = d1 d1 qua C, A' d1 // d
Cách dựng:
- Dựng A' đối xứng với A qua M - Dựng d1 qua A' d1 // d - Dựng C giao điểm d1 d' - Dựng M giao MC với d Khi MC đường thẳng cần dựng Chứng minh:
Theo cách dựng ta có:
d1 qua A' song song với d
d cắt d' A suy d1 cắt d' C, nên C thuộc d'
(16)(vì ĐM(C) = B ) Mặt khác:
ĐM(A) = A', ĐM(C) = B suy A'B = AC A'B // AC nên tứ giác ABA'C hình bình hành Suy MB = MC
Biện luận:
Bài tốn ln có nghiệm hình HĐ 3: DÙNG PHÉP BIẾN HÌNH ĐỂ GIẢI BÀI TỐN TÌM TẬP HỢP ĐIỂM.
ADABAC
Bài 3: Cho đoạn thẳng BC cố định số k > Với điểm A ta xác định điểm D ssao cho Tìm tập hợp D, Khi A thay đổi thỏa mãn điều kiện AB2 + AC2 = k.
Hoạt động GV Hoạt động HS Ghi bảng – Trình chiếu - GV yêu cầu HS nhóm
xem nội dung Bài tập thảo luận tìm lời giải tốn - GV gọi HS đại diện nhóm có kết nhanh
- GV gọi HS nhận xét, bổ sung (nếu cần)
- GV nêu lời giải
- Gợi ý:
Nhắc lại tập hợp điểm A ?
- HS thảo luận theo nhóm tìm lời giải tốn - HS cử đại diện nhóm trình bày lời giải câu a - HS nhận xét, sủa sai, bổ sung(nếu cần)
- HS: Tập hợp điểm A thỏa mãn điều kiện cho đường tròn điểm tập rỗng
Giải.
Gọi I trung điểm BC, đó: 2AIABACAD
suy I trung điểm AD Do ĐI(A) = D
Ta biết tập hợp điểm A thỏa mãn điều kiện cho đường tròn điểm tập rỗng Vì tập hợp D đường trịn điểm tập rỗng
V CỦNG CỐ HƯỚNG DẪN HỌC BÀI Ở NHÀ VÀ RA BÀI TẬP VỀ NHÀ 1 Củng cố:
Gọi HS nêu dạng tập giải phương pháp giải 2 Hướng dẫn học nhà:
- Xem lại học lý thuyết theo SGK
- Xem lại dạng tập phép biến hình
- Xem trước bài: KHÁI NIỆM VỀ PHÉP DỜI HÌNH VÀ HAI HÌNH BẰNG NHAU 3 Bài tập nhà:
Xem lại dạng tập từ §2 đến §4 SGK SBT.
- -D
I B
C
(17)Ngày: 21/08/2011
Tiết PPCT: 06 §6 KHÁI NIỆM VỀ PHÉP DỜI HÌNH
I MỤC TIÊU
Qua học HS cần: 1 Về kiến thức:
- Biết khái niệm phép dời hình
- Biết phép tịnh tiến, đối xứng trục, đối xứng tâm, phép quay, phép địng phép dời hình - Biết thực liên tiếp hai phép dời hình ta phép dời hình
- Biết tính chất phép dời hình - Biết khái niệm hai hình
2 Về kỹ năng:
- Bước đầu vận dụng phép dời hình số tập đơn giản 3 Về tư thái độ:
- Về tư duy: Biết quan sát phán đốn xác, biết quy lạ quen - Về thái độ: Cẩn thận, xác, tích cực hoạt động, trả lời câu hỏi II CHẨN BỊ CỦA GV VÀ HS
GV: Phiếu học tập, giáo án, dụng cụ học tập, máy chiếu, bảng phụ cần
HS: Nghiên cứu trước §6 trả lời câu hỏi hoạt động SGK, bảng phụ theo yêu cầu giáo viên
III PHƯƠNG PHÁP DẠY HỌC
Về gợi mở, vấn đáp kết hợp với điều khiển hoạt động nhóm IV TIẾN TRÌNH BÀI HỌC
1 Ổn định tổ chức: - Kiểm tra sĩ số.
(18)Câu hỏi: Các phép biến hình học có tính chất chung ? 3 Bài mới:
HĐ 1: KHÁI NIỆM VỀ PHÉP DỜI HÌNH. HĐTP 1: Hình thành khái niệm.
Hoạt động GV Hoạt động HS Ghi bảng – Trình chiếu - GV: Thơng qua học
phép tịnh tiến, đối xứng trục, đối xứng tâm phép quay phép có tính chất chung ? Người ta dùng tính chất bảo toàn khoảng cách hai điểm để định nghĩa phép dời hình
- GV gọi HS trả lời
- GV yêu cầu HS xem định nghĩa gọi HS nêu định nghĩa
- GV nêu câu hỏi: Nếu phép dời hình F có:
F(M) = M', F(N) = N' em có nhận xét M'N' MN ? -GV Vậy phép dời hình ln bảo tồn khoảng cách hai điểm
- GV Cho học sinh lấy ví dụ phép biến hình phép dời hình phép biến hình khơng phải phép dời hình ? Vì ?
- HS suy nghĩ trả lời: Các phép có tính chất chung ln bảo toàn khoảng cách hai điểm
- HS ý theo dõi - HS xem nêu định nghĩa phép dời hình
- HS suy nghĩ trả lời: F(M) = M', F(N) = N' M'N' = MN
- HS:
+) Phép đồng nhất, tịnh tiến, đối xứng trục, đối xứng tâm phép quay có phải phép dời hình ln bảo tồn khoảng cách hai điểm +) Phép lấy hình chiếu vng góc điểm đường thẳng phép dời hình khơng phải phép dời hình Vì khơng bảo tồn khoảng cách hai điểm
I KHÁI NIỆM VỀ PHÉP DỜI HÌNH.
Định nghĩa: Phép dời hình phép biến hình bảo tồn khoảng cách hai điểm
(19)v
T v
T ; O
Q QO;
- GV: Nếu qua phép tịnh tiến (M) = M’, (N) = N' qua phép quay (M') = M'', (N') =N'' Khi khoảng cách hai điểm M'' N'' so với khoảng cách hai điểm M N ?
- GV tổng quát: Tương tự đối với hai phép biến hình khác Vậy phép dời hình có cách thực liên tiếp hai phép dời hình phép dời hình
- HS suy nghĩ trả lời: M''N'' = MN (HS giải thích vấn đề trên).
Nhận xét: (xem SGK)
HĐTP 2: Ví dụ.
Hoạt động GV Hoạt động HS Ghi bảng – Trình chiếu - GV gọi HS nêu ví dụ (SGK
trang 19)
GV yêu cầu HS xem hình 1.39 cho biết:
a) Qua phép dời hình để biến tam giác ABC thành tam giác A”B”C”?
b) Qua phép dời hình để biến ngũ giác M’N’P’Q’R’ thành ngũ giác MNPQR ?
- HS nêu nội dung ví dụ - HS xem hình 1.39 suy nghĩ trả lời:
a) Qua phép đối xứng trục d biến tam giác A’B’C’ ảnh tam giác ABC qua phép quay tâm A’ góc quay C’A’C” biến tam giác A’B”C”thành tam giác A’B’C’.
b) Qua phép đối xứng trục d biến ngũ giác MNPQR thành ngũ giác
M’N’P’Q’R’.
Hình 1.40 d
H×n h 1.39 a)
B ''
C '' C '
B ' A ' A
B
C
d
H×nh 1.39 b)
R' Q' P'
N' M' M
N
(20)c) Tương tự hình 1.40 qua phép dời hình biến hình H’ thành hình H
HĐTP 3: Áp dụng.
Hoạt động GV Hoạt động HS Ghi bảng – Trình chiếu - GV yêu cầu HS xem hình 1.41
và gọi HS đọc đề HĐ (GV vẽ hình lên bảng )
- GV yêu cầu HS nhóm thảo luận cử đại diện báo cáo
- GV gọi HS nhận xét, bổ sung (nếu cần)
- GV nhận xét lời giải (Nếu HS khơng trình bày khơng đúng)
- GV u cầu HS lớp xem hình 1.42 cho biết qua phép dời hình để biến để tam giác DEF ảnh tam giác ABC ?
- GV gọi HS đại diện nhóm trình bày kết nhóm gọi HS nhóm khác nhận xét, bổ sung (nếu cần) Vậy cách thực liên tiếp hai phép dời hình:
B;900 Q
- Phép quay biến tam giác A’B’C’ ảnh tam giác ABC;
'
' íi C F(2; 4)
C F T v
- Và qua phép tịnh tiến biến tam giác DEF ảnh tam giác A’B’C’.
Thì tam giác DEF tam giác ABC.
- HS nhóm xem đề thảo luận suy nghĩ tìm lời giải…
- HS báo cáo kết nhóm
- HS nhận xét, bổ sung sửa sai chữa, ghi chép - HS trao đổi cho kết quả:
Qua phép quay tâm O góc quay 900 biến điểm A
thành D, B thành A, O thành O
Qua phép đối xứng trục BD biến A thành C, D thành D, O thành nó.
- HS ý theo dõi ví dụ (SGK trang 20) thảo luận suy nghĩ tìm lời giải
- HS đại diện nhóm trình bày kết nhóm - HS nhóm khác nhận xét, bổ sung sưar chữa, ghi chép
- HS ý theo dõi bảng
Hình 1.42
HĐ2: TÍNH CHẤT CỦA PHÉP DỜI HÌNH.
(21)HĐTP 1: Tính chất.
Hoạt động GV Hoạt động HS Ghi bảng – Trình chiếu - GV gọi HS nêu tính chất
phép dời hình (SGK trang 21)
- GV yêu cầu HS nhóm xem nội dung hoạt động (chứng minh tính chất 1) - GV gọi HS nhóm trình bày lời giải nhóm
- GV gọi HS nhận xét, bổ sung (nếu cần) vàcho điểm
- GV phân tích nêu lời giải
- GV yêu cầu hướng dẫn tương tự hoạt động - GV nêu tính chất cịn lại u cầu HS xem ví dụ (GV phân tích kết SGK)
HĐTP 2( ): (Bài tập áp dụng) GV yêu cầu HS lớp xem hình 1.46 gọi HS đọc nội dung hoạt động
GV cho HS cá nhóm thảo luận để tìm lời giải gọi đại diện nhóm cho kết
GV ghi lại lời giải nhóm gọi HS nhận xét, bổ sung (nếu cần)
GV nêu số phép dời hình biến tam giác AEI thành tam giác FCH
- HS nêu tính chất phép dời hình SGK trang 21
- HS xem nội dung hoạt động thảo luận suy nghĩ tìm lời giải
- HS cử đại diện báo cáo - HS nhận xét, bổ sung sửa sai, ghi chép
- HS ý theo dõi bảng
- HS suy nghĩ thảo luận tìm lời giải báo cáo nhận xét
HS lớp xem hình 1.46 thảo luận tìm lời giải cử đại diện báo cáo kết
HS nhận xét, bổ sung sửa chữa, ghi chép
HS trao đổi rút kết quả:
AE
Qua phép tịnh tiến theo vectơ biến tam giác AEI thành tam giác EBH, qua phép đối xứng trục HI biến tam giác EBH thành tam giác FCH
II TÍNH CHẤT.
(Xem SGK trang 21) A, B, C thẳng hàng;
F: Phép biến hình;
F(A) = A’; F(B) = B’; F(C) = C’ Thì A’, B’, C’ thẳng hàng ln bảo tồn thứ tự điểm
A D
E I F
B H C
HĐTP 2: Bài tập áp dụng.
Hoạt động GV Hoạt động HS Ghi bảng – Trình chiếu - GV yêu cầu HS lớp xem
hình 1.46 gọi HS đọc nội dung hoạt động
- GV cho HS cá nhóm thảo luận để tìm lời giải gọi đại diện
- HS lớp xem hình 1.46 thảo luận tìm lời giải cử đại diện báo cáo kết
(22)các nhóm cho kết - GV ghi lại lời giải nhóm gọi HS nhận xét, bổ sung (nếu cần)
- GV nêu số phép dời hình biến tam giác AEI thành tam giác FCH
sửa sai, ghi chép
- HS trao đổi rút kết quả:
AE
Qua phép tịnh tiến theo vectơ biến tam giác AEI thành tam giác EBH, qua phép đối xứng trục HI biến tam giác EBH thành tam giác FCH
Hình 1.46 HĐ Khái niệm hai gình nhau.
Hoạt động GV Hoạt động HS Ghi bảng – Trình chiếu HĐTP 1: (Hình thành khái
niệm hai hình nhau) GV yêu cầu HS lớp xem hình 1.47 cho biết hai hình H H’ sao? GV: Người ta chứng minh được rằng, hai tam giác ln có phép dời hình biến tam giác thành tam giác kia.
Vậy hai tam giác khi nào?
Người ta dùng tiêu chuẩn hai tam giác chỉ có phép dời hình biến tam giác tam giác để định nghĩa hai hình nhau.
GV gọi HS nêu nội dung định nghĩa hai hình
HĐTP 2: (Ví dụ tập áp dụng)
GV yêu cầu HS lớp xem nội dung ví dụ xem hình 1.48 1.49 để suy hình cách đặt câu hỏi: Hai hình cho nhau? Vì sao?
GV cho xem nội dung hoạt động SGK cho HS nhóm thảo luận, suy nghĩ
HS suy nghĩ trả lời…
HS ý suy nghĩ trả lời:
Hai hình có phép dời hình biến hình thành hình
HS nêu định nghĩa SGK
HS xem ví dụ suy nghĩ trả lời
HS nhận xét, bổ sung
III.Khái niệm hai hình nhau: Định nghĩa: (Xem SGK)
Hai hình gọi có một phép dời hình biến hình thành hình kia.
' Ðp dêi h×nh F,
F '
H H ph
H H
(23)tìm lời giải
GV gọi HS đại diện nhóm trình bày lời giải
Gọi HS nhận xét, bổ sung (nếu cần)
GV nêu lời giải
sửa chữa, ghi chép
HS nhóm thỏa luận tìm lời giải
HS ý theo dõi bảng…
HĐ4 (Củng cố hướng dẫn học nhà) * Củng cố
Hướng dẫn giải tập 1, 23 SGK trang 23 24 * Hướng dẫn học nhà:
- Xem học lý thuyết theo SGK
- Đọc soạn trước mới: Phép vị tự trả lời hoạt động
- -Ngày: 05/09/2011
Tiết PPCT: 07 §7 PHÉP VỊ TỰ
I Mục tiêu:
Qua học HS cần: 1) Về kiến thức:
(24)' ' ' '
M N kMN
M N k MN
-Ảnh tam giác, đường tròn qua phép vị tự 2) Về kỹ năng:
- Dựng ảnh điểm, đoạn thẳng, đường tròn, …qua phép vị tự - Bước đầu vận dụng tính chất phép vị tự để giải tập
3) Về tư thái độ:
* Về tư duy: Biết quan sát phán đốn xác, biết quy lạ quen * Về thái độ: Cẩn thận, xác, tích cực hoạt động, trả lời câu hỏi II Chuẩn bị GV HS:
GV: Phiếu học tập (nếu cần), giáo án, dụng cụ học tập,…
HS: Soạn trả lời câu hỏi hoạt động SGK, chuẩn bị bảng phụ (nếu cần) III Phương pháp dạy học:
Về gợi mở, vấn đáp kết hợp với điều khiển hoạt động nhóm IV Tiến trình học:
* Ổn định lớp, chia lớp thành nhóm * Bài mới:
Hoạt động thầy Hoạt động trò Nội dung
HĐ1(Định nghĩa phép vị tự) HĐTP1 (Hình thành định nghĩa phép vị tự)
'
OM k OM GV ta cho
trước điểm O, ta vẽ hai điểm M M’ cho: với k ≠ Khi ta có phép vị tự biến điểm M thành M’, O tâm vị tự k gọi tỉ số vị tự
Vậy phép vị tự? GV gọi HS nêu định nghĩa (GV vẽ hinh minh họa lên bảng) HĐTP2( ):(Ví dụ áp dụng ) GV yêu cầu HS lớp xem hình 1.51 SGK để thấy qua phép vị tự tâm O tỉ số k = -2 biến điểm A, B, O thành điểm A’, B’, O biến hình thành hình
GV yêu cầu HS nhóm (Như phân cơng) xem nội dung tập hoạt động (SGK trang 25) cho HS nhóm thảo luận khoản phút gọi đại diện nhóm trình bày lời giải nhóm (GV
HS theo dõi suy nghĩ trả lời
HS nêu định nghĩa phép vị tự
HS thảo luận theo nhóm cử đại diện báo cáo
HS nhận xét, bổ sung sửa chữa ghi chép
I Định nghĩa:
(Xem SGK)
M’
M N’ N
O
(25)vẽ hình lên bảng)
GV gọi HS nhóm khác nhận xét, bổ sung (nếu cần)
GV nhận xét nêu lời giải xác (Nếu HS trình bày chưa đúng)
HĐTP3( ): (Rút nhận xét từ định nghĩa)
GV nêu câu hỏi sau gọi HS nhóm trả lời:
-Qua phép vị tự tâm O tỉ số k (với k ≠ 0) biến điểm O thành điểm nào? Vì sao?
-Phép vị tự tâm O tỉ số k =1 biến điểm M thành điểm M’ so với M? Vì sao?
-Phép vị tự phép đối xứng tâm nào? Vì sao?
GV gọi HS nhận xét, bổ sung (nếu cần) GV nhận xét nêu lời giải xác (nếu HS khơng trình bày đúng)
GV yêu cầu HS nhóm xem nội dung nhận xét SGK trang 24
GV yêu cầu HS nhóm chứng minh theo yêu cầu nhận xét 4)
GV gọi HS nhóm nhận xét, bổ sung (nếu cần) cho điểm
HS trao đổi rút kết quả:
AB = 2.AE ã:
AC = 2.AF
Ta c
Vậy qua phép vị tự tâm A tỉ số biến điểm B C thành điểm E F
HS nhóm thảo luận cử đại diện báo cáo
HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi rút kết quả: -Qua phép vị tự tâm O tỉ số k (với k ≠ 0) biến điểm O thành Vì ta có:
, ( ) OO=k.OO
O k
V O O
-Phép vị tự tâm O tỉ số k = biến điểm M thành điểm M’ M’ trùng với điểm M Vì:
OM'=OM M' M
-Phép vị tự tâm O tỉ số k = -1 phép đối xứng qua tâm vị tự Vì …
HS nhóm thảo luận tìm lời giải
HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi rút kết quả:
'
OM k OMM’=V(O;k)(M)
O
O
(Tương tự hình 1.51)
1 Cho tam giác ABC Gọi E F tương ứng trung điểm AB AC Tìm phép vị tự biến B C thành E F
(26) ; ' ' O k
OM OM M V M
k
* Nhận xét: (xem SGK)
1
;
'
O k
M V M
4)M’=V(O;k)(M) HĐ2(Tính chất phép vị tự)
HĐTP1 (Hình thành tính chất 1)
GV có phép vị tự tỉ số k biến hai điểm A B tùy ý thành hai điểm A’ B’ ta có suy được:
' ' µ A'B'= ?
A B k AB v k AB Đ
ây nội dung tính chất GV gọi HS đại diện nhóm trình bày chứng minh tính chất GV gọi HS nhóm khác nhận xét, bổ sung (nếu cần)
GV ghi tóm tắt tính chất lên bảng
HĐTP2 (Ví dụ áp dụng tính chất 1)
GV yêu cầu HS lớp xem ví dụ SGK suy nghĩ chứng minh:
Nếu A’, B’, C’ the o thứ tự ảnh A,B,C qua phépvị tự tỉ số k ta có:
, ' '
AB t AC t A B t AB
GV gọi HS nhận xét, bổ sung (nếu cần)
GV yêu cầu HS xem lời giải ví dụ SGK (nếu HS chứng minh không đúng)
GV yêu cầu HS lớp xem nội dung hoạt động SGK cho HS nhóm thảo luận khoản phút gọi HS đại diện nhóm lên bảng trình bày lời giải
HS ý theo dõi xem nội dung tính chất (SGK trang 25) HS nhóm thảo luận chứng minh tính chất cử đại diện lên bảng trình bày lời giải HS nhóm khác nhận xét, bổ sung sửa chữa ghi chép HS trao đổi rút kết dựa vào chứng minh tính chất SGK
HS lớp xem ví dụ thảo luận suy nghĩ chứng minh…
HS nhận xét, bổ sung …
HS xem lời giải ví dụ SGK
HS nhóm xem nội dung ví dụ hoạt động thảo luận suy nghĩ tìm lời giải
HS nhận xét, bổ sung sửa chữa ghi chép…
II.Tính chất:
Tính chất ( xem SGK) A’
A
O B B’ ; ; ' ' ' . ' ' ' o k o k
A V A A B k AB
A B k AB
(27)GV gọi HS nhận xét, bổ sung (nếu cần)
GV nêu lời giải xác
HĐTP (Hình thành tính chất 2)
GV với định nghĩa phép vị tự dựa vào ví dụ hoạt động ta có nội dung tính chất sau (GV nêu nội dung tính chất SGK) GV yêu cầu HS lớp xem hình 1.53, 1.54 1.55
HĐTP4 (Bài tập tìm ảnh của một tam giác qua phép vị tự)
GV u cầu HS nhóm xem ví dụ hoạt động suy nghĩ tìm lời giải
GV gọi HS đại diện nhóm trình bày lời giải giải nhóm
Gọi HS nhóm nhận xét, bổ sung (nếu cần)
GV nhận xét nêu lời giải xác
GV yêu cầu HS lớp xem ví dụ SGK để thấy ảnh đường tròn qua phép vị tự
HS ý theo dõi …
HS xem nội dung tính chất hình SGK…
HS nhóm thảo luận suy nghĩ tìm lời giải
HS đại diện nhóm báo cáo kết
HS nhận xét, bổ sung sửa chữa ghi chép
HS ý theo dõi bảng
Tính chất 2: (xem SGK)
4(SGK) A
C’ G B’
B A’ C
1 ;
2
1 '
2
' ' '
G
GA GA
(28)HĐ3 (Tâm vị tự hai đường tròn)
GV gọi mọt HS nêu định lí SGK trang 27
GV nêu cách tìm tâm vị tự hai đường tròn SGK GV yêu cầu HS xem lại cách tìm tâm vị tự hai đường trịn SGK
GV phân tích hướng dẫn giải nhanh ví dụ (như SGK)
HS nêu định lí SGK
HS ý theo dõi SGK bảng
III.Tâm vị tự hai đường trịn. Định lí (xem SGK)
Cách tìm tâm vị tự hai đường trịn: (xem SGK)
HĐ4 ( Củng cố hướng dẫn học nhà) * Củng cố:
- GV gọi HS đại diện hai nhóm lên bảng trình bày lời giải tập SGK - GV gọi HS nhận xét, bổ sung (nếu cần) GV nêu lời giải xác
* Hướng dẫn họ nhà:
- Xem lại học lí thuyết theo SGK - Xem lại cá ví dụ tập giải - Soạn trước 8: Phép đồng dạng
- -R'
R M'
M M"I O
M
I' M'
O2 I'
M'2 I
M
O1
(29)Ngày: 07/09/2011
Tiết PPCT: 08 LUYỆN TẬP §7
A.Mục tiêu:
Kiến thức: Nắm định nghĩa phép vị tự, tâm vị tự, tỉ số vị tự tính chất phép vị tự.
Kỹ năng: Biết dựng ảnh số hình đơn giản qua phép vị tự, đặc biệt ảnh đường tròn Biết xác định tâm vị tự hai đường tròn cho trước
Tư duy: từ định nghĩa tính chất phép vị tự kiểm tra phép đối xứng tâm, đối xứng trục, phép đồng nhất, phép tịnh tiến có phải phép vị tự hay khơng
Thái độ: tích cực, chủ động hoạt động. B Chuẩn bị thầy, trò:
-Chuẩn bị thầy: tập phép vị tự
-Chuẩn bị trò: Nắm kiến thức cũ: định nghĩa tính chất phép đối xứng trục, đối xứng tâm, phép tịnh tiến, phép đồng nhất, tập phép vị tự
C Phương pháp giảng dạy: đặt vấn đề, gợi mở, vấn đáp. D Tiến trình tiết dạy:
Hoạt động GV Hoạt động HS HĐ1.Cũng c v phộp v t
H1 Định nghĩa phép vị tự?
+ Phép vị tự đợc xác định nào? + Tính chất hệ vị tự? H2 Các dạng tập:
+xác định ảnh điểm , đờng thẳng , đờng tròn qua phép vị tự?
+ Một số toán lên quan đến phép vị tự PP: Dùng định nghĩa, tớnh chất phép vị tự Gọi hai HS lên bảng
+ xác định ảnh điểm , đờng thẳng qua phép vị tự ?
+ xác định ảnh đờng tròn qua phép vị tự? Bài Trong mp Oxy Cho M(2;5), I(1;3), N(3; -2)
a ,Tìm toạ độ điểm M’ ảnh ca M qua phộp v
HS lên bảng tr lời câu hỏi v ẽ hình
Bµi Trong mp Oxy Cho M(2;5), I(1;3), N(3; -2)
(0;3)( ) ' '
V M M OM OM
(30)tự tâm O tỉ số k=3
a ,Tìm toạ độ điểm N’ ảnh N qua phép vị tự tõm I tỉ số k=2
+Hai HS lên bảng giải HS1 giaỉ câu a, HS1 giaỉ câu b,
Bài Trong mp Oxy Cho ), I(1;2) Đờng th¼ng d: 2x+3y-6 =0
Viết PT đờng thẳng d’ l ảnh đờng thẳng d qua phép vị tự tõm I tỉ số k=-2
Bµi 3: Trong mp Oxy cho đường tròn (C) : I(1; 2) (x-3)2 + (y +1)2 = 9.
Vieỏt pt (C’) l ảnh đờng troứn (C) qua phép vị tự tõm I tỉ số k=-2
HS lên bảng giải
H1.Tìm ảnh đường trịn qua phÐp vị tự tâm I tỉ số k=-2 n o ?à
HS nhắc lại phÐp vị tự tâm I tỉ số k=-2 Gv hướng dẫn tìm tâm tỉ số
Gv hướng dẫn v b i tà ập nhà
M’(6;15)
( ;2)I ( ) ' '
V N N ON ON
b , N’(5;-7)
Bµi Trong mp Oxy Cho ), I(1;2) Đờng thẳng d: 2x+3y-6 =0
B i gi ải: Do d’ song song trùng với d nên PT có dạng l 2x+3y+c =0à
( ; 2) ' I
Md Goi M V
Lấy : M’(3;0) Suy PT d’ l : 2x+3y-9 =0à
Bµi 3: Trong mp Oxy cho đường tròn (C) : I(1; 2) (x-3)2 + (y +1)2 = 9.
Đáp số :
pt (C’) (x+3)2 + (y -8)2 = 36
* Củng cố : Cần nắm định nghĩa, tính chất phép vị tự, biết cách xác định tâm vị tự hai đường tròn
Bài tập nhà : - Trong mp Oxy cho hai đờng troứn cú PT
(x-1)2 + (y -3)2 = (x-4)2 + (y -3)2 = 1 - Xác định toạ độ tâm vị tự hai đường trịn
RÚT KINH NGHIỆM VÀ BỔ SUNG
- -Ngày: 10/09/2011
Tiết PPCT: 09 §8 PHÉP ĐỒNG DẠNG
I Mục tiêu:
(31)1) Về kiến thức:
- Biết khái niệm phép đồng dạng; tỉ số đồng dạng
- Biết phép đồng dạng biến ba điểm thẳng hàng thành ba điểm thẳng hàng bảo toàn thứ tự điểm; biến đường thẳng thành đường thẳng; biến tam giác thành tam giác đồng dạng với nó; biến đường trịn có bán kính R thành đường trịn có bán kính k.R
- Biết khái niệm hai hình đồng dạng 2) Về kỹ năng:
- Bước đầu vận dụng phép đồng dạng để giải tập
- Xác định phép đồng dạng biến hai đường tròn cho trước thành đường tròn lại 3) Về tư thái độ:
* Về tư duy: Biết quan sát phán đốn xác, biết quy lạ quen * Về thái độ: Cẩn thận, xác, tích cực hoạt động, trả lời câu hỏi II Chuẩn bị GV HS:
GV: Phiếu học tập (nếu cần), giáo án, dụng cụ học tập,…
HS: Soạn trả lời câu hỏi hoạt động SGK, chuẩn bị bảng phụ (nếu cần) III Phương pháp dạy học:
Về gợi mở, vấn đáp kết hợp với điều khiển hoạt động nhóm IV Tiến trình học:
* Ổn định lớp, chia lớp thành nhóm * Bài mới:
Hoạt động thầy Hoạt động trò Nội dung
HĐ1(Định nghĩa phép đồng dạng) HĐTP1(Hình thành định nghĩa phép đồng dạng)
GV: Khi ta đứng trước đèn chiếu ta thấy bón ta tường, cách điều chỉnh đèn chiếu vị trí đứng thích hợp ta tạo bóng tường giống hệt có kích thước to nhỏ khác Những hình có tính chất gọi hình đồng dạng (xem hình 1.36 SGK)
Vậy hai hình đồng dạng với nhau?
Để tìm hiểu cách xác khái niệm hai hình đồng dạng ta cần đến phép biến hình sau GV gọi HS nêu nội dung định nghĩa SGK trang 30 GV vẽ hình viết tóm tắc lên bảng
HĐTP2(Nhận xét ví dụ minh họa)
HS ý theo dõi…
HS suy nghĩ trả lời …
HS nêu nội dung định nghĩa
HS suy nghĩ trả lời…
Nếu chuyển tam giác từ vị
I.Định nghĩa: (xem SGK) F phép biến hình gọi phép đồng dạng tỉ số k >0 nếu:
F(M) M '
M ' N ' k.MN F(N) N '
A
M A’ M’
B N C B’ N’ C’
(32)Nếu phép dời hình ta chuyển tam giác từ vị trí đến ví trí thì hình dạng kích thước cạnh có thay đổi khơng? Khi cho biết phép dời hình có phép đồng dạng khơng (nếu có) cho biết tỉ số đồng dạng? Phép vị tự tỉ số k có phép đồng dạng khơng? Nếu phép đồng dạng cho biết tỉ số đồng dạng? GV yêu cầu HS nhóm thảo luận để chứng minh nhận xét gọi HS đại diện nhóm có kết nhanh lên bảng trình bày lời giải GV gọi HS nhận xét, bổ sung (nếu cần)
GV phân tích nêu lời giải (nếu HS khơng trình bày đúng) *GV u cầu HS nhóm xem nhận xét thảo luận tìm lời giải GV gọi HS đại diện nhóm có kết nhanh trình bày lời giải Gọi HS nhận xét, bổ sung (nếu cần) cho điểm
GV nêu lời giải xác (nếu HS khơng trình bày đúng)
GV gọi HS nêu ví dụ SGK yêu cầu HS lớp xem nội dung ví dụ
trí đến vị trí phép dời hình hình dạng kích thước cạnh khơng thay đổi Phép dời hình phép đồng dạng tỉ số Phép vị tự tỉ số k phép đồng dạng tỉ số |k|
HS nhóm thảo luận cử đại diện nêu lời giải
HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi rút kết quả: Gọi F F’ phép đồng dạng tỉ số k phép đồng dạng tỉ số p ta có:
F(M) M '
M ' N ' k.MN (1) F(N) N '
F '(M ') M ''
M " N " p.M ' N ' (2) F '(N ') N "
Thay (1) vào (2) ta được: M”N”=p.k.MN (3)
(3) chứng tỏ có phép đồng dạng F1 tỉ số pk (hay kp) biến M,N thành M”, N”
Vậy…
1) Phép dời hình phép đồng dạng tỉ số
2) Phép vị tự tỉ số k phép đồng dạng tỉ số |k|
3) Nếu thực liên tiếp phép đồng dạng tỉ số k phép đồng dạng tỉ số p ta phép đồng dạng tỉ số kp
O
(33)HĐ2(Tính chất phép đồng
dạng)
HĐTP1(Tính chất )
GV gọi HS nêu nội dung tính chất phép đồng dạng
HĐTP2( Chưng minh tính chất a) GV cho HS nhóm suy nghĩ thảo luận theo nhóm để chứng minh tính chất a)
GV gọi HS đại diện nhóm có kết nhanh trình bày lời giải Gọi HS nhóm khác nhận xét, bổ sung (nếu cần)
GV nhận xét nêu lời giải (nếu HS khơng trình bày đúng)
HS nêu nội dung tính chất SGK
HS nhóm thảo luận suy nghĩ trình bày lời giải chứng minh tính chất a)
HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi rút kết quả: A, B, C thẳng hàng B nằm A C ta có:
AC = AB + BC (1)
F phép đồng dạng tỉ số k ta có:
F(A) A ' A ' C ' k.AC
F(B) B ' A ' B ' k.AB F(C) C ' B ' C ' k.BC
1 AC A ' C '
k AB A ' B '
k BC B ' C '
k
Từ (1) ta có:
1 1
A ' C ' A ' B ' B ' C '
k k k
A ' C ' A ' B ' B ' C '
Vậy A’, B’, C’ thẳng hàng B’
II Tính chất: (xem SGK)
Phép đồng dạng tỉ số k: a) Biến ba điểm thẳng hàng thành ba điểm thẳng hàng bảo toàn thứ tự điểm
b) Biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng
c) Biến tam giác thành tam giác đồng dạng với nó, biến góc thành góc
(34)nằm A’ C’ HĐ3(Khái niệm hai hình đồng
dạng)
HĐTP1(Hình thành định nghĩa về hai hình đồng dạng)
GV gọi HS nhắc lại hai tam giác đồng dạng (học lớp 8) GV: Người ta chứng minh cho hai tam giác đồng dạng với ln có phép đồng dạng biến tam giác thành tam giác
Vậy hai tam giác đồng dạngvới nào?
GV gọi HS nêu nội dung định nghĩa hai hình đồng dạng HĐTP2(Ví dụ áp dụng hai hình đồng dạng)
GV gọi HS nêu ví dụ (SGK trang 32) yêu cầu HS lớp xem hình 1.67
GV nêu câu hỏi:
Hai hình trịn, hai hình vng, hai hình chữ nhật có đồng dạng với khơng? Vì sao?
GV gọi HS trả lời
HS nhớ nhắc lại hai tam giác đồng dạng trường hợp đồng dạng hai tam giác HS ý theo dõi…
HS suy nghĩ trả lời: Hai tam giác đồng dạng với có phép đồng dạng biến tam giác thành tam giác
HS nêu đề ví dụ (SGK trang 32) HS lớp xem hình 1.67
HS suy nghĩ trả lời…
HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi rút kết quả:
Hai hình trịn, hai hình vng ln đồng dạng với nhau, bán kính cạnh tương ứng tỉ lệ Hai hình chữ nhật khơng thể đồng dạng với nhau, chẳng hạn hình vng hình chữ có hai kích thước khác
HĐ ( Củng cố hướng dẫn học nhà) * Củng cố:
- GV gọi HS nêu lại định nghĩa phép đồng dạng , tính chất định nghĩa hai hình đồng dạng - GV gọi hai học sinh đại diện hai nhóm trình bày lời giảibài tập1 SGKtrang 33
GV gọi HS nhận xét bổ sung GV nêu lời giải * Hướng dẫn học nhà:
- Xem lại học lý thuyết theo SGK - Làm tập SGK trang 33
- Xem làm trước phần tập trong: Câu hỏi ôn tập chương I tập ôn tập chương I
- -Ngày: 12/09/2011
Tiết PPCT: 10 ÔN TẬP CHƯƠNG I
I Mục tiêu:
(35)- Củng cố ôn tập lại kiến thức chương I: Phép biến hình, phép dời hình, phép vị tự phép đồng dạng
2) Về kỹ năng:
- Vận dụng kiến thức học vào giải tập phần ôn tập chương I 3) Về tư thái độ:
* Về tư duy: Biết quan sát phán đốn xác, biết quy lạ quen * Về thái độ: Cẩn thận, xác, tích cực hoạt động, trả lời câu hỏi II Chuẩn bị GV HS:
GV: Phiếu học tập (nếu cần), giáo án, dụng cụ học tập,…
HS: Soạn làm tập trước đến lớp, chuẩn bị bảng phụ (nếu cần) III Phương pháp dạy học:
Về gợi mở, vấn đáp kết hợp với điều khiển hoạt động nhóm IV Tiến trình học:
* Ổn định lớp, chia lớp thành nhóm
Kiểm tra cũ: Kết hợp đan xen hoạt động nhóm. * Bài mới:
Hoạt động thầy Hoạt động trị Nội dung
HĐ1( Ơn tập lại kiến thức chương)
HĐTP1:
GV gọi HS đứng chỗ nhắc lại định nghĩa :
Phép tịnh tiến, phép đối xứng trục, phép đối xứng tâm; phép quay, khái niệm phép dời hình hai hình nhau, phép vị tự, phép đồng dạng
HDTP2:
GV cho HS nhóm thảo luận tìm lời giải tập từ đến SGK phần câu hỏi ôn tập chương I GV gọi HS nhóm trả lời tập 1, 2, 3, 4, 5, phần câu hỏi ôn tập chương I GV gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét nêu lời giải
HS suy nghĩ nhắc lại định nghĩa học…
HS thảo luận cử đại diện báo cáo…
HS nhận xét, bổ sung sửa chữa ghi chép
HS ý theo dõi bảng…
I Câu hỏi ôn tập chương I:
Các tập: - SGK trang 33
HĐ2(Giải tập phần ơn tập chương I)
HĐTP1: (Tìm ảnh hình qua phép dời hình)
GV gọi HS nêu đề tập SGK u cầu HS nhóm thảo luận tìm lời giải
HS nhóm thảo luận để tìm lời giải ghi vào bảng phụ, cử đại diện lên bảng trình bày lời giải
HS nhận xét, bổ sung, sửa chữa ghi chép
(36)GV gọi HS đại diện nhóm trình bày lời giải (có giải thích)
GV nhận xét nêu lời giải (Nếu HS nhóm khơng trình bày lời giải)
HĐTP2: (Bài tập tìm ảnh điểm, đường thẳng qua phép tịnh tiến, phép đối xứng trục, phép đối xứng tâm phép quay)
GV gọi HS đứng chỗ nêu đề bập SGK
GV cho HS nhóm thảo luận để tìm lời giải cử đại diện báo cáo
GV gọi HS đại diện nhóm lên bảng trình bày lời giải (có giải thích)
GV gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét nêu lời giải (nếu HS khơng trình bày lời giải theo yêu cầu)
HĐTP3: (Bài tập viết phương trình đường trịn ảnh đuờng trịn qua phép dời hình) GV u cầu HS xem nội dung tập SGK HS nhóm thảo luận theo câu hỏi phân cơng Gọi HS đại diện nhóm lên bảng trình bày lời giải
Gọi HS nhận xét, bổ sung (nếu cần) GV nhận xét nêu lời giải (nếu HS khơng trình bày đúng)
HS trao đổi rút kết quả: a)Tam giác BCO;
b)Tam giác DOC; c)Tam giác EOD
HS nhóm thảo luận tìm lời giải phân cơng ghi lời giải vào bảng phụ
HS đại diện nhóm lên bảng trình bày lời giải nhóm HS nhận xét, bổ sung, sửa chữa ghi chép
HS trao đổi rút kết quả: Gọi A’ d’ theo thứ tự ảnh A d qua phép biến hình
a)A’(1;3), d’ có phương trình: 3x + y – =0
b)A B(0;-1) thuộc d Ảnh A B qua phép đối xứng trục Oy tương ứng A’(1;2) B’(0;-1) Vậy d’ đường thẳng A’B’ có phương trình:
1 3 1 0
1
x y x y
c)A’(1;-2), d’ có phương trình: 3x + y -1 =0
1 3 0
3
x y x y
d)Qu
a phép quay tâm O góc 900, A biến thành A’(-2;-1), B biến thành B’(1;0) Vậy d’ đường thẳng A’B’ có phương trình: HS nhóm thảo luận ghi lời giải vào bảng phụ, cử đại diện lên bảng trình bày lời giải HS đại diện lên bảng trình bày lời giải (có giải thích)
HS nhận xét, bổ sung, sửa chữa ghi chép
HS trao đổi rút kết quả: a)(x-3)2+(y+2)2=9
( ) '(1; 1) v
T I I
b), phương trình đường trịn ảnh:
Bài tập (xem SGK trang 34)
(37)(x-1)2+(y+1)2=9
c)ĐOx(I)=I’(3;2), phương trình đường trịn ảnh:
(x-3)2+(y-2)2=9
d)ĐO(I)=I’(-3;2), phương trình đường trịn ảnh:
(x+3)2+(y-2)2=9. HĐ ( Củng cố hướng dẫn học nhà)
* Củng cố:
- GV gọi HS nêu lại định nghĩa phép dời hình phép vị tự, đồng dạng , tính chất định nghĩa phép
* Hướng dẫn học nhà: - Xem lại tập giải
- Làm tập 4, 5, SGK trang 34 - 35 `
RÚT KINH NGHIỆM VÀ BỔ SUNG Ngày: 14/09/2011
Tiết PPCT: 11 Ô TẬP CHƯƠNG I
I Mục tiêu:
Qua học HS cần: 1) Về kiến thức:
- Củng cố ôn tập lại kiến thức chương I: Phép biến hình, phép dời hình, phép vị tự phép đồng dạng
2) Về kỹ năng:
- Vận dụng kiến thức học vào giải tập phần ôn tập chương I 3) Về tư thái độ:
* Về tư duy: Biết quan sát phán đốn xác, biết quy lạ quen * Về thái độ: Cẩn thận, xác, tích cực hoạt động, trả lời câu hỏi II Chuẩn bị GV HS:
GV: Phiếu học tập (nếu cần), giáo án, dụng cụ học tập,…
HS: Soạn làm tập trước đến lớp, chuẩn bị bảng phụ (nếu cần) III Phương pháp dạy học:
Về gợi mở, vấn đáp kết hợp với điều khiển hoạt động nhóm IV Tiến trình học:
* Ổn định lớp, chia lớp thành nhóm
Kiểm tra cũ: Kết hợp đan xen hoạt động nhóm. * Bài mới:
Hoạt động thầy Hoạt động trò Nội dung
HĐ1(Bài tập chứng minh cách sử dụng phép tịnh tiến)
GV gọi HS nêu đề tập cho
HS thảo luận ghi lời giải vào phụ sau cử đại diện lên bảng trình bày lời giải (có giải thích)
(38)Hs nhóm thảo luận tìm lời giải GV gọi HS đại diện nhóm trình bày lời giải bảng
Gọi HS nhận xét, bổ sung (nếu cần) GV nhận xét nêu lời giải xác (nếu HS khơng trình bày lời giải )
HS nhận xét, bổ sung, sửa chữa ghi chép
HS thảo luận cho kết quả: Lấy M tùy ý Gọi Đd(M’)=M”, Đd’(M’)=M”.Ta có:
0 1
" ' ' "
2 ' '
1
2
MM MM M M
M M M M M M
v v
( ) v
T M
Vậy M” =là kết việc thưc jhiện liên tiếp phép đối xứng qua đường thẳng d d’ HĐ2(Bài tập viết phương trình
ảnh đường trịn qua phép dời hình phép biến hình) GV gọi HS nêu đề tập SGK cho HS nhóm thảo luận tìm lời giải
GV gọi HS đại diện nhóm lên bảng trình bày lời giải (có giải thích)
Gọi HS nhận xét, bổ sung (nếu cần) GV nhận xét nêu lời giải (nếu HS khơng trình bày lời giải)
HS đọc đề, thảo luận tìm lời giải, ghi lời giải vào bảng phụ
HS đại diện lên bảng trình bày lời giải
HS nhận xét bổ sung, sửa chữa ghi chép
HS trao đổi rút kết quả: I’=V(O,3)(I)=(3;9),
I”=ĐOx(I’)=(3;9)
Vậy đường trịn phải tìm có phương trình:
(x-3)2+ (y-9)2 = 36
Bài tập (xem SGK trang 35)
HĐ3 (củng cố hướng dẫn học nhà) * Củng cố:
- GV gọi HS nêu câu hỏi trắc nghiệm SGK (có giải thích) * Đáp án câu hỏi trắc nghiệm:
1,(A); 2.(B); 3.(C); 4.(C); 5.(A); 6.(B); 7.(B); 8.(C); 9.(C); 10.(D) * Hướng dẫn học nhà:
- Xem lại lời giải tập giải
- Ơn tập lại lí thuyết chương, làm thêm tập lại
RÚT KINH NGHIỆM VÀ BỔ SUNG
(39)- -Ngày: 27/09/2011
Tiết PPCT: 12 KIỂM TRA CHƯƠNG I
(40)Qua học HS cần nắm: 1) Về kiến thức:
- Củng cố lại kiến thức chương I:
+ Phép biến hình, phép tịnh tiến, phép đối xứng trục, phép đối xứng tâm, phép quay + Phép dời hình hai hình nhau;
+ Phép vị tự phép đồng dạng 2) Về kỹ năng:
- Làm tập đề kiểm tra - Vận dụng linh hoạt lý thuyết vào giải tập 3) Về tư thái độ:
Phát triển tư trừu tượng, khái quát hóa, tư lơgic,…
Học sinh có thái độ nghiêm túc, tập trung suy nghĩ để tìm lời giải, biết quy lạ quen II Chuẩn bị GV HS:
GV: Đề kiểm tra
HS: Ôn tập kỹ kiến thức chương I, chuẩn bị giấy kiểm tra IV Tiến trình kiểm tra:
* Ổn định lớp. * Phát kiểm tra:
I Ma trận nhận thức:
Chủ đề mạch kiến thức, kĩ
Tầm quan trọng
Trọng số Trọng số Tổng điểm
(Mức trọng tâm KTKN)
(Mức độ nhận thức chuẩn KTKN)
Theo ma trận
Thang 10
Phép tịnh tiến 17 51 2.0
Phép quyay 33 66 2.5
Phép vị tự 17 68 3.0
Phép dời hình, phép đồng dạng 33 66 2.5
Tổng 100% 251 10.0
KHUNG MA TRẬN ĐỀ KIỂM TRA
Cấp độ Tên chủ đề
(nội dung, chương )
Nhận biết Thông hiểu
Vận dụng
Cộng Cấp độ thấp Cấp độ cao
Phép tịnh tiến Cho đường tìm
ảnh đường qua phép tịnh tiến
1 2,0
1
2,0
Phép quay Vẽ hình biểu diễn
(41)góc quay
1.0
1
1.5
2
2,5
Phép vị tự Cho hình a tìm ảnh a qua phép vị tự đặc biệt
Cho hình a tìm tâm vị tự a thành b
1
2,0
1
1,0
2
3,0
Phép dời hình phép đồng dạnh
cho đường tìm ảnh qua hai phép dời hình
1
2,5
1
2,5
Tổng
2
3.0
4.0
3.0
(42)Ngày: 01/10/2011 CHƯƠNG II ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN QUAN HỆ SONG SONG
Tiết PPCT: 13 §1 ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG
I Mục tiêu:
Qua học học sinh cần: Về kiến thức:
-Biết tính chất thừa nhận:
+Có mặt phẳng qua ba điểm không thẳng hàng cho trước;
+Nếu đường thẳng mặt phẳng có hai điểm chung phân biệt điểm đường thẳng thuộc mặt phẳng;
+ Có bốn điểm khơng thuộc mặt phẳng;
+ Nếu hai mặt phẳng phân biệt có điểm chung chúng có điểm chung khác nữa; + Trên mp kết biết hình học phẳng
- HS biết ba cách xác định mp (qua ba điểm không thẳng hàng; qua đường thẳng điểm khơng thuộc đường thẳng đó; qua hai đường thẳng cắt nhau)
- Biết khái niệm hình chóp, hình tứ diện Về kỹ năng:
- Vẽ hình biểu diễn số hình khơng gian đơn giản
- Xác định giao tuyến hai mp; giao điểm đường thẳng mp
- Biết xác định giao tuyến hai mặt phẳng để chứng minh ba điểm thẳng hàng không gian - Xác định đỉnh, cạnh bên, cạnh đáy, mặt bên, mặt đáy hình chóp
3 Về tư thái độ:
(43)II Chuẩn bị GV HS:
GV: Phiếu học tập (nếu cần), giáo án, dụng cụ học tập,…
HS: Soạn làm tập trước đến lớp, chuẩn bị bảng phụ (nếu cần) III Phương pháp dạy học:
Về gợi mở, vấn đáp kết hợp với điều khiển hoạt động nhóm IV Tiến trình học:
* Ổn định lớp, chia lớp thành nhóm
Kiểm tra cũ: Kết hợp đan xen hoạt động nhóm.
* Bài mới:
2 Kiểm tra cũ: Không kiểm tra. 3 Bài mới: Đặt vấn đề vào mới:
" cấp THCS, sơ lợc làm quen với HHKG Nhằm nghiên cứu sâu hơn, kỹ môn HHKG chơng cần nghiên cứu đối tợng HHKG: điểm, đờng thẳng mặt phẳng với quan hệ song song tiết đề cập đến đờng thẳng, mặt phẳng bớc đầu vẽ đ-ợc số hình KG đơn giản."
I Khái niệm mở đầu:
Hot ng ca hc sinh Hoạt động thầy
- Cho vÝ dô hình ảnh phần mặt phẳng
- Hiểu đợc mặt phẳng khơng có bề dày khụng cú gii hn
- Nhớ lại phát biểu:
+ Để biểu diễn mặt phẳng ta thờng dùng hình bình hành hay miền góc ghi tên mặt phẳng vào góc hình biĨu diƠn
HS cho vÝ dơ:
α mp(P) mp () - Nêu đợc vị trí điểm A, B
α mp () - Kh:
α A mp () α hay A () α B ()
?1 "HÃy cho vài hình ảnh phần của
mặt phẳng."
Gợi ý: HS xem số hình ảnh SGK
?2 "HÃy nhắc lại cách ký hiệu biểu diễn mặt
phẳng."
- Lu ý HS dựng ch Latinh in hoa hay chữ Hy Lạp đặt dấu ngoặc ( )
?3 "H·y nªu quan hƯ điểm mặt
phẳng?"
- Gọi HS nêu lại khái niệm tập hợp tập hợp Phần tử tập hợp
- Cho HS thấy đợc điểm A phần tử tập hợp điểm mp ()
α Cho HS phát biểu tơng đơng A ()
p
(44)* Hoạt động 1: Thực hành vẽ hình biểu diễn hình khơng gian.
Khi nghiên cứu hình khơng gian ta thờng vẽ hình khơng gian lên bảng, lên giấy: cỏc hỡnh biu din
GV: Dùng mô hình hình chóp hình hộp chữ nhật hớng dẫn học sinh vẽ lên giấy. + Phát phiếu cho nhóm
HS: Nhận phiếu nhóm thảo luận thực hành vẽ (với lu ý đờng không thấy dùng nét -). GV: Dùng máy chiếu phóng to hình vẽ lên gọi HS nhận xét.
HS: Nhận xét hình vẽ rõ ràng hình vẽ Ýt nÐt khuÊt nhÊt.
(Thực tế có số nhóm khơng dùng nét khuất để vẽ đờng khơng thấy dẫn đến hình vẽ khơng rõ ràng)
GV: Chuẩn bị hình biểu diễn em đặt câu hỏi để HS trả lời:
" Quan sát mơ hình KG hình biểu diễn, nhận xét đờng thẳng đoạn thẳng hình thực hình biễu diễn chúng song song ? "
" Quan hệ thuộc đờng thẳng mặt phẳng? " HS: Nhận xét phát biểu.
GV: Tổng kết hoạt động 1, nêu quy tắc biểu hình khơng gian (trang 45 SGK 11). II Các tính chất thừa nhận:
Hoạt động học sinh Hoạt động ca thy
HS quan sát hình vẽ SGK, mô hình chuẩn bị trớc
Rút kết luËn:
TC1: Có đờng thẳng đi qua hai điểm phân biệt.
TC2: Có mặt phẳng đi qua điểm không thẳng hàng.
TC3: Nu mt ng thẳng có hai điểm phân biệt thuộc mặt phẳng mọi điểm đờng thẳng thuộc mặt phẳng đó.
Từ quan sát thực tiễn kinh nghiệm rút số tính chất tha nhn (H tiờn )
?4 Có lần cắm trại HS nữ thờng dùng viên gạch
để nấu nớng, sao?
Tỉng kÕt c¸c tính chất thừa nhận mà HS vừa nêu
* Hoạt động 2: Các nhóm trao đổi thảo luận: Tại ngời thợ mộc kiểm tra độ phẳng mặt bàn bằng cách rê thớc thẳng mặt bàn?
HS: Phát biểu nhận xét mình. (Thực chất TC3)
α α GV: Lu ý ký hiÖu: d () hay () d.
* Hoạt động 3: Cho tam giác ABC, M điểm thuộc phần kéo dài đoạn BC Hãy cho biết M có thuộc mp(ABC) hay khơng, đờng thẳng AM có nằm mp(ABC) hay khơng?
HS: Th¶o ln, vËn dơng TC3.
- M BC mµ BC (ABC) suy M (ABC). - A (ABC) , M (ABC) suy AM (ABC).
Hoạt động học sinh Hoạt động thầy
Vẽ hình chóp đáy tam giác Đố vui: Có que diêm, xếp cho đợc tam giác có cạnh que diêm
(45)
Tơng tự trên: HS quan sát nhận xét * Hoạt động 4:
GV: Phát phiếu cho HS.
HS: Nhận phiếu th¶o ln cïng tỉ.
GV: Giíi thiƯu SI giao tuyến mặt phẳng.
A
B
C
(46)
* Hoạt động 5: Hình sau hay sai? HS: Hiểu thấy đợc
ML MK giao tuyến mặt phẳng (ABC) (P) P
I S
B C
A
D Điểm I AC I BD
(47)
TC6: Trên mặt phẳng, kết biết hình học phẳng đúng. E Củng cố toàn bài:
Qua học em cần nắm đợc 1 Kiến thức:
- N¾m TC thõa nhËn cđa HHKG
- Nắm đợc hình biểu diễn hình chóp, tứ diện 2 Kỹ năng:
- Thực hành vẽ đợc số hình KG đơn giản - Xác định đợc giao tuyến mặt phẳng 3 Bài tập nh:
Bài 1: Cho tứ giác ABCD (AB không song song với CD), S điểm nằm mặt phẳng chứa tứ giác. Tìm giao tuyến mặt phẳng (SAB) (SCD)
Bài 2: Cho hình chóp SABC, lÊy A', B', C' theo thø tù thuéc SA, SB, SC cho A'B' cắt AB I, B'C' cắt BC J, C'A' cắt CA K Chứng minh điểm I, J, K thẳng hàng
- -Ngày: 02/10/2011
Tiết PPCT: 14 §1 ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG
P
C A
M
L
(48)A Mục tiêu :
1.Về kiến thức : Các cách xác định mặt phẳng , tìm giao tuyến hai mặt phẳng , tìm giao điểm đường thẳng mặt phẳng , cách chứng minh ba điểm thẳng hàng
2 Về kĩ : Rèn luyện cho học sinh cách xác định mặt phẳng , tìm giao tuyến hai mặt phẳng tìm giao điểm đường thẳng mặt phẳng , cách chứng minh ba điểm thẳng hàng
3.Về tư , thái độ : Tích cực hoạt động , tư lơgich chặc chẻ , xác khoa học B Chuẩn bị giáo viên học sinh :
+ Giáo viên : Phiếu học tập , bảng phụ , máy chiếu + Học sinh : Chuẩn bị cũ , tham khảo học nhà
C Phương pháp dạy học : phương pháp vấn đáp , gợi mở , đan xen hoạt động nhóm D Tiến trình dạy học :
ổn định lớp học :
Kiểm tra cũ : - HS : vẽ hình biễu diễn hình lập phương , hình chóp tứ giác - HS : nêu tính chát thừa nhận hình học không gian Bài :
Hoạt động học sinh Hoạt động giáo viên nội dung
+ Qua ba điểm không thẳng hàng ta xác định mặt phẳng + HS thảo luận nhóm trả lời Cách : Cho điểm A không nằm Trên đường thẳng d , d lấy Hai điểmB,C.Suy có mặt phẳng qua ba điểm A,B,C mặt phẳng qua A chứa Đường thẳng d
Cách : Tương tự qua hai đường thẳng cắt ta xác định mặt phẳng
+ Muốn tìm giao tuyến hai Mặt phẳng , ta tìm hai điểm chung hai mặt phẳng Đường thẳng qua hai điểm giao tuyến cần tìm
+ Qua hoạt động nhóm HS trả
DMN ACD DN Lời :
DMN ABD DM
DMN ABC MN
DMN BCD DE
+ nhóm thảo luận toán
Hoạt động :
+HS nhắc lại tính chất 2,suy
Cách xác định mặt phẳng + từ tính chất 2, suy
Cách xác định mặt phẳng nữa?
+ GV:cho HS nắm kí hiệu
Cách xác định mặt phẳng
Hoạt động ( ví dụ ) + Cho HS tìm hiểu tốn + Cách tìm giao tuyến hai Mặt phẳng ?
+ Cho HS hoạt động theo nhóm
III/ Cách xác định MP 1/ Ba cách xác định mặt phẳng a / Mặt phẳng ( ABC )
b / Mặt phẳng ( A,d )
c / Mặt phẳng ( a,b )
2/ Một số ví dụ
Ví dụ : ( Sgk ) Tìm giao tuyến Của hai mặt phẳng
A
B C
d
A
(49)+ Đại diện nhóm lên trình bày giải
J MKBD nên J điểm chung hai mp (BCD) (MNK)
Tương tự điểm I H Vậy
Vậy ba điểm I , J , H thẳng Hàng
+ Ta tìm điểm vừa thuộc GK Và thuộc ( BCD )
+ HS thảo luận theo nhóm Ta có GK cắt JD L Nên
( )
( )
L JD
L BCD
JD BCD
Suy L giao điểm JD Và mp ( BCD )
+ HS trả lời
Hoạt động 3:Ví dụ 2( Sgk) +ChoHS tìm hiểu tốn Theo nhóm
+ Hãy nêu cách chứng minh ba điểm thẳng hàng ? + Các nhóm trao đổi cách Giải
+ Cuối HS thống Bài giải
+ Hoạt động :( ví dụ ) Cách tìm giao điểm GK mp ( BCD ) ? + GV cho học sinh hoạt động nhóm
+ Qua giải , cho biết cách tìm giao điểm Của đường thẳng mặt Phẳng
Ví dụ 2: (Sgk) Chứng minh ba điểm Thẳng hàng
Ví dụ 3( Sgk) Tìm giao điểm đường Thẳng mặt phẳng
Củng cố dặn dò :
E M
A
B
C
D
N
J
H I
A
B
C
D M
K
N
L
G
J
K
B D
A
(50)+ GV cho học sinh nêu cách xác định mặt phẳng
+ Cách giảicác dạng tốn : Tìm giao tuyến hai mặt phẳng , Cách chứng minh ba điểm thẳng hàng , Cách tìm giao điểm đường thẳng mặt phẳng
+ GV cho HS thực hành tập ( sgk ) thơng qua hoạt động nhóm + Bài tập nhà : tập 3,4,5,7 sgk
- -Ngày: 04/10/2011
Tiết PPCT: 15 §1 ĐẠI CƯƠNG VỀ ĐƯỜNG THẲNG VÀ MẶT PHẲNG
I/ Mục tiêu:
Qua học HS cần:
1)Về kiến thức: Khái niệm hình chóp, hình tứ diện yếu tố nó. Khái niệm thiết diện thơng qua ví dụ
2)Về kỹ năng: Nhận biết yếu tố hình chóp, hình tứ diện Tìm thiết diện hình chóp mặt phẳng
3)Về tư thái độ: cẩn thận xác. II/ Chuẩn bị:
Học sinh: Xem lại khái niệm hình chóp học THCS Phưong pháp tìm giao tuyến hai mặt phẳng
Phưong pháp tìm giao điểm mặt phẳng đường thẳng Giáo viên: Giáo án, bảng phụ, phiếu học tập
Máy chiếu, thước thẳng, giấy A0, bút lơng, máy vi tính Phương tiện: Phấn bảng
III/ Phương pháp: Gợi mở , vấn đáp, hoạt động nhóm. IV/ Tiến trình học:
1 Kiểm tra cũ: Nên cách xác định mặt phẳng? Đặt vấn đề: Kim tự tháp Ai Cập có hình dạng nào?
2 Nội dung mới:
Hoạt động 1: Khái niệm hình chóp
Hoạt động học sinh Hoạt động giáo viên Nội dung
Học sinh trình bày nội dung + Điểm S gọi đỉnh hình chóp + A1A2A3…An: mặt đáy
+SA1, SA2, SA3,…, SAn : cạnh bên +SA1A2,SA2A3,…,SAnA1:mặt bên +A1A2,A2A3,A3A4,…,AnA1: cạnh đáy
Giới thiệu khái niệm hình chóp thơng qua mơ hình giúp học sinh hiểu rõ
Nêu khái niệm hình chóp? Nêu yếu tố hình chóp?
Sử dụng máy chiếu, chiếu hình 2.24 (SGK)
IV Hình chóp hình tứ diện. Định nghĩa: Trong mp () cho đa giác A1A2 An Lấy điểm S nằm () Lần lượt nối S với đỉnh A1,A2, An Hình gồm n tam giác SA1A2,SA2A3, , SAnA1 đa giác A1A2 An gọi hình chóp,
(51)S
A
B C
D E
Dựa vào số cạnh đa giác đáy
Học sinh hoạt động nhóm ghi kết giấy A0 Cử đại diện lên trình bày
Gọi tên hình chóp dựa vào yếu tố nào?
Phân nhóm cho h/s hoạt động gọi đại diện nhóm trình bày
Hoạt động 6: Kể tên mặt bên, cạnh bên, cạnh đáy,của hình chóp hình 2.24(SGK)
Hoạt động 2:Khái niệm hình tứ diện.
Hoạt động học sinh Hoạt động giáo viên Phần ghi bảng Các mặt bên hình tam giác
Các điểm A, B, C, D gọi đỉnh tứ diện
Các đoạn thẳng AB, AC, AD, BC, BD, CD gọi cạnh hình tứ diện
Các cạnh hình tứ diện
Hình chóp tam giác có mặt bên hình gì?
Các cạnh hình tứ diện có khơng?
Chú ý: Cho bốn điểm A, B, C, D không đồng phẳng Hình gồm bốn tam giác ABC, ABD, ACD, BCD gọi hình tứ diện
Kí hiệu: ABCD
Hình tứ diện có bốn mặt tam giác gọi hình tứ diện
Hoạt động 3: Khái niệm thiết diện cúa hình chóp cắt mặt phẳng.
Hoạt động học sinh Hoạt động giáo viên Phần ghi bảng Học sinh đọc hiểu ví dụ (SGK)
Tìm mặt cắt hình chóp S.ABCD mp(MNP)
Mục đích tốn gì?
Ngũ giác MNEFP thiết diện hình chóp S.ABCD cắt mp(MNP)
Ví dụ Cho hình chóp
S.ABCD đáy hình bình hành ABCD Gọi M, N, P trung điểm AB, AD, SC Tìm giao điểm mặt phẳng (MNP) với cạnh hình chóp giao tuyến mặt phẳng (MNP) với mặt hình chóp
Chú ý: Thiết diện (hay mặt cắt) hình H cắt mặt phẳng (α) phần chung H (α)
F
E P
M
N A S
C L
K
D
B
A
B
D
(52)Có điểm N chung
MP BD nằm mp Từ giả thiết suy MP BD cắt E, E điểm chung thứ hai
NE cắt BC Q Thiết diện MQNP
Tìm giao điểm cạnh hình chóp mp (P)
Tìm giao tuyến mặt hình chóp mp (P)
Hai mp (MNP) (BCD) có điểm chung?
Tìm thêm điểm chung thứ hai ntn?
Tìm giao điểm mp (MNP) với cạnh tứ diện ntn?
P2 tìm thiết diện hình chóp mặt phẳng (P)?
Ví dụ: Cho tứ diện ABCD Gọi M N trung điểm cạnh AB CD, cạnh AD lấy điểm P không trùng với trung điểm AD
a) Gọi E giao điểm đường thẳng MP đường thẳng BD Tìm giao tuyến hai mặt phẳng (MNP) (BCD)
b) Tìm thiết diện hình chóp cắt mp (MNP)
V/ Cũng cố dặn dò:
- Khái niệm hình chóp yếu tố
- Khái niệm hình tứ diện yếu tố nó, tứ diện
- Thiết diện hình chóp cắt mp(P) phương pháp tìm thiết diện
- Ơn tập kiến thức làm tập
- -Q
E N
M D
A
C
(53)Ngày: 05/10/2011
Tiết PPCT: 16 LUYỆN TẬP §1
I/ Mục tiêu day: Qua học HS cần:
1)Về kiến thức : Nắm khái niệm điểm đường thẳng & mặt phẳng khơng gian Các tính chất thừa nhận Các cách xác định mặt phẳng để vận dụng vào tập
2)Về kĩ : Biết cách tìm giao điểm đường thẳng với mặt phẳng Tìm giao tuyến hai mặt phẳng Chứng minh điểm thẳng hàng Tìm thiết diện hình chóp cắt mặt phẳng
3)Về tư & thái độ : Tích cực hoạt động , quan sát & phán đốn xác II/ Chuẩn bị:
Giáo viên: Giáo án , Sách giáo khoa, đồ dùng dạy học, thiết bị dạy học hiên có Học sinh: ơn tập lí thuyết & làm tập trước nhà
Phương pháp : Gợi mở , vấn đáp đan xen hoạt động nhóm III/ Tiến trình dạy:
1/ Ổn định
2/ Kiểm tra cũ:
Giáo viên gọi HS nhắc lại số kiến thức liên quan đến tiết học 3/ Bài mới:
Hoạt động 1: Làm BT SGK
Hoạt động HS Hoạt động GV Nội dung
α HS nêu cách tìm giao điểm đường thẳng d & mặt phẳng ()
HS trả lời theo cách suy nghĩ
Nhóm ,2 làm câu 5a
GV đúc kết thành phương pháp:
(β) Chọnchứa đường thẳng d (α)∧(β) Tìm
giao tuyến d’ d’ cắt d giao
điẻm cần tìm
(54)Nhóm , làm câu 5b Sau chọn nhóm lên trình bày, nhóm cịn lại nhận xét
Gọi AM & BN cắt I, ta cần chứng minh I,S,O thẳng hàng
Chứng minh chúng thuộc mặt phẳng phân biệt
HS đại diện lên trình bày giải
Muốn chứng minh đường thẳng đồng quy làm nào?
Chứng minh điểm thẳng hàng không gian nào?
GV chiếu đáp án lên bảng
a)Tìm giao điểm N SD với (MAB) Chọn (SCD) chứa SD
(SCD) & (MAB) có điểm chung M
Mặt khác AB CD = E Nên (SCD) (MAB) = ME MFSD = N cần tìm b)O = AC BD
CMR : SO ,AM ,BN đồng quy Gọi I = AM BN
AM ( SAC) BN (SBD)
(SAC) (SBD) = SO Suy :I SO
Vậy SO ,AM ,BN đồng quy t ại I HĐ2 : Làm BT 7/54 SGK
Hoạt động HS Hoạt động GV Nội dung
HS lên vẽ hình
Tìm giao tuyến tìm điểm chung mặt phẳng
Các HS khác suy nghĩ &
Gọi HS lên bảng vẽ hình
Nêu cách tìm giao tuyến mặt phẳng
BT 7/54 SGK
I
O N
M
E
B
C S
(55)đứng chổ trình bày giải
I∈ AD ⊂(KAD) K∈ BC⊂(IBC) ⇒(IBC)∩(KAD)=IK
a)Tìm giao tuyến
(IBC) & (KAD)
b)Tìm giao tuyến (IBC) & (DMN) E=MD∩ BI
F=ND ∩CI Gọi
EF=(IBC)∩(DMN) Ta có HĐ3 : Làm BT 9/54 SGK
Hoạt động HS Hoạt động GV Nội dung
HS làm theo nhóm & đại diện lên trình bày
Tìm giao điểm tập 5,cho học sinh thảo luận nhóm
BT 9/54 SGK
a)Tìm giao điểm M CD & mặt phẳng (C’AE)
d F
C
A
D
B S
C'
E
(56)Tìm đoạn giao tuyến (C’AE) với mặt hình chóp
Thiết diện hình tạo đoạn giao tuyến HS đại diện lên trình bày , HS khác nhận xét ,bổ sung
Tìm thiết diện hình chóp cắt (C’AE) làm nào?
GV chiếu slide tập lên bảng để HS quan sát rõ
Chọn mp(SCD) chứa CD
Mp(SCD) & C’AE) có C’ điểm chung thứ ( C’ thuộc SC)
Mặt khác DC AE = M
Suy (SCD) (C’AE) = C’M Đường thẳng C’M CD = M
Vậy CD (C’AE) = M
b) Tìm thiết diện hình chóp cắt mặt phẳng (C’AE)
(C’AE) (ABCD) = AE (C’AE) (SBC) = EC’
Gọi F = MC’SD
Nên (C’AE) (SCD) = C’F (C’AE) (SDA) = FA
Vậy thiết diện cần tìm AEC’F HĐ4 : Ghi tập thêm ,cũng cố & dặn dò:
Hoạt động HS Hoạt động GV Nội dung
Từ tập làm HS đúc rút thành phương pháp cho
Qua tiết học em cần nắm: - Xác định giao tuyến
của hai mặt phẳng - α Tìm giao điểm
của đường thẳng d & mặt phẳng ()
- Chứng minh điểm thẳng hàng
BTVN: Làm tất tập lại BTT: Cho tứ diện SABC Trên SA,SB& SC lấy điểm D ,E & F cho DE cắt AB I , EF cắt BC J , FD cắt CA K
CM: Ba điểm I , J ,K thẳng hàng
V/ Cũng cố dặn dò:
- Xem lại tập chữa.
- Làm tập lại & tập 2.1 - 2.9 - SBT_Tr 60-61
(57)- -Ngày: 07/10/2011
Tiết PPCT: 17
§2 HAI ĐƯỜNG THẲNG CHÉO NHAU VÀ HAI ĐƯỜNG THẲNG SONG SONG A.Mục tiêu:
Qua học HS cần: Về kiến thức:
+ Nắm khái niệm hai đường thẳng trùng nhau, song song, cắt nhau, chéo không gian
+ Nắm định lý hệ Về kỹ năng:
+ Xác định vị trí tương đối hai đường thẳng + Biết cách chứng minh hai đường thẳng song song
+ Biết áp dụng định lý để chứng minh, xác định giao tuyến hai mặt phẳng số trường hợp đơn giản
Về tư duy: Phát triển tư trừu tượng, tư khái quát Về thái độ: Cẩn thận, xác.
B Chuẩn bị thầy trò:
Chuẩn bị thầy: Giáo án, thước kẻ
Chuẩn bị trị: + Vị trí tương đối hai đường thẳng mặt phẳng + Xem
+ Đồ dùng học tập
C Phương pháp dạy học:
+ Nêu vấn đề,đàm thoại + Tổ chức hoạt động nhóm
(58)1 Ổn định lớp 2 Kiểm tra cũ:
(59)Hoạt động HS Hoạt động GV Nội dung ghi bảng
Có thể xảy TH
TH1: Có mặt phẳng chứa hai đường thẳng a, b
TH2: Khơng có mặt phẳng chứa a b
*a b có điểm chung
*a b khơng có điểm chung *a trùng b
Hai đường thẳng song song hai đường thẳng nằm mặt phẳng khơngcó điểm chung
Khi a b chéo HS chăm lắng nghe chép
AB CD; AD BC cặp đường thẳng chéo Vì chúng thuộc vào mặt
HĐ 1:
H: Cho hai đường thẳng a, b khơng gian Khi xảy trường hợp nào?
H: Trong TH1, nêu vị trí tương đối a b?
H: Từ nêu định nghĩa hai đường thẳng song song?
H: Trong TH2, nêu vị trí tương đối a b
H: Haỹ cặp đường thẳng chéo nhau? Vì sao?
Gọi HS khác nhận xét GV nhận xét
I Vị trí tương đối hai đường thẳng khơng gian:
TH1: Có mặt phẳng chứa a b
b a
P
M
a b
P
{M} ab = a // b
b a
P
a b
TH2: Khơng có mặt phẳng chứa a b
b
P
I
(60)3 Củng cố:
+ Hai đường thẳng song song, cắt nhau, trùng nhau, chéo không gian, định lý hệ
+ Làm tập sách giáo khoa trang 59
- -Ngày: 15/10/2011 Tiết PPCT: 18
LUYỆN TẬP §2
I/ Mục tiêu :
Qua học sinh cần : 1 Về kiến thức :
- Nắm vững khái niệm hai đường thẳng song song hai đường thẳng chéo không gian - Biết sử dụng định lý :
+ Qua điểm không thuộc đường thẳng cho trước có đường thẳng song song với đường thẳng cho
+ Định lý giao tuyến ba mặt phẳng hệ định lí
+ Hai đường thẳng phân biệt song song với đường thẳng thứ ba song song với 2 Về kĩ năng:
- Xác định vị trí tương đối hai đường thẳng - Biết cách chứng minh hai đường thẳng song song 3 Về tư thái độ :
- Phát triển tư trừu tượng,tích cực hoạt động, trả lời câu hỏi Biết quan sát phán đốn xác II Chuẩn bị :
1 Giáo viên : Các tập, slide, computer projecter
2 Học sinh : Nắm vững kiến thức học làm tập trước nhà III Phương pháp dạy học :
Gợi mở, vấn đáp, đan xen hoạt động nhóm IV Tiến trình học :
HOẠT ĐỘNG CỦA GV HOẠT ĐỘNG CỦA HS GHI BẢNG VÀ CHIẾU
HĐ1 : Ôn tập kiến thức
HĐTP1: Em nêu vị trí tương đối hai đường thẳng khơng gian
HĐTP : Nhắc lại tính chất học hai đường thẳng song song, hai đường thẳng chéo
- HS trả lời
- HS chia làm nhóm Lần lượt đại diện nhóm nêu tính
I Kiến thức :
- Chiếu slide hình vẽ minh họa vị trí tương đối hai đường thẳng không gian
(61)- Bây ta vận dụng tính chất để giải tập
HĐ : Luyện tập củng cố kiến thức
HĐTP1 : Bài tập áp dụng tính chất giao tuyến ba mặt phẳng
- Chiếu slide tập cho HS thảo luận, báo cáo
- GV ghi lời giải, xác hóa Nhấn mạnh nội dung định lí áp dụng
HĐTP :
- Chia HS thành nhóm
+ Nhóm 1,2 : thảo luận trình bày câu 2a
+ Nhóm 3, : thảo luận trình bày câu 2b
- Chiếu slide trình bàykết để HS tiếp tục nhận xét, sửa sai - Cho HS thấy áp dụng hệ định lí
- Nhận xét chung
chất, đại diện nhóm khác nhận xét
- HS thảo luận theo nhóm cử dậi diện nhóm trình bày
- HS theo dõi, nhận xét
- HS chia nhóm hoạt động Đại diện nhóm trình bày
- Nhóm 1,3 trình bày, nhóm 2, nhận xét
- Theo dõi, nhận xét
- Hoạt động nhóm Đại diện nhóm trình bày
- Đại diện nhóm khác nhận xét làm bạn
- Nêu cách chứng minh ba
II Bài tập:
Bài 1: ( Chiếu slide tập 1)
Bài2:(Chiếu slide tập 2) a)
Nếu PR // AC
Q R
S P
A
B D
C
Q R
P
C
D B
A
(62)- Cho HS HĐ theo nhóm + Nhóm : câu 3a
+ Nhóm 2, : câu 3b + Nhóm : câu 3c
- Có cách để chứng minh ba điểm thẳng hàng?
- Vậy ta sử dụng cách nào?
- Củng cố kiến thức cũ : đường trung bình tam giác
- Chiếu slide kết tập
- Nhận xét chung, sửa sai
điểm thẳng hàng (có thể nhắc đến phương pháp vectơ học lớp 10)
- Ba điểm thuộc đường thẳng (giao tuyến hai mặt phẳng)
(PQR) AD = S Với QS // PR //AC b)
Gọi I = PR AC Ta có : (PRQ) (ACD) = IQ Gọi S = IQ AD Ta có : S = AD (PQR)
Bài : (chiếu slide tập 3)
a) Trong mp (ABN) : A'
=AG ∩BN Gọi A '=AG ∩(BCD) Ta có :
Q
I
A
B
C
D
P S
R
G
A'
N M
B
C
D A
(63)¿
AA'⊂(ABN)
MM'// AA'
⇒MM'⊂(ABN)
¿{
¿
b)
B , M', A' B , M', A' Ta có điểm chung hai mp (ABN) (BCD) nên thẳng hàng
ΔNMM' Trong , ta có : G trung điểm NM
GA' MM' A' NM' // , suy trung điểm
M' BA' Tương tự ta có : trung điểm
BM'=M'A'=A'N Vậy GA'=1
2MM '
¿
MM' =1
2AA '
⇒GA' =1
2AA '
¿ ¿{
¿ ¿ ¿
¿
c)
V Củng cố :
Thế hai đường thẳng song song không gian ?
Nêu định lý giao tuyến ba mặt phẳng hệ định lý
Bài tập nhà : Cho tứ diện ABCD Cho I J tương ứng trung điểm BC AC, M điểm tuỳ ý cạnh AD
a) Tìm giao tuyến d hai mp (MỊ) (ABD) N=BD ∩d , K =IN ∩JM b) Gọi
Tìm tập hợp điểm K M di động đoạn AD ( M không trung điểm AD)
(64)- -Ngày: 30/10/2011
Tiết PPCT: 19 Đ3 đờng thẳng mặt phẳng song song
I Mục tiêu:
Qua học HS cần: 1 Kiến thức:
- Nắm vững định nghĩa dấu hiệu nhận biết vị trí tương đối đường thẳng mặt phẳng bào gồm: đường thẳng song song với mặt phẳng, đường thẳng cắt mặt phẳng
- Biết sử dụng định lý quan hệ song song để chứng minh đường thẳng song song với mặt phẳng
2 Kỹ năng:
- Vận dụng định lý cách nhuần nhuyễn vào trường hợp cụ thể - Vẽ hình xác
3 Thái độ:
- Thấy quan hệ đường thẳng với đường thẳng, đường mặt biện chứng rút kết luận
II Chuẩn bị:
(65)1 Bài cũ:
- Nêu vị trí tương đối hai đường thẳng a b
- Giải tốn: Cho hình lập phương ABCD.A’B’C’D’ Tìm giao điểm AC’ với mp(BDD’B’) * Ghi tóm tắt * Vẽ hình * Trình bày phương án giải
2 Bài mới:
Đặt vấn đề : Tiết trước ta xét vị trí tương đối đường thẳng với đường thẳng, ta xét vị trí tương đối đường thẳng với mặt phẳng
Hoạt động 1: Vị trí tương đối đường thẳng mặt phẳng.
HĐ GIÁO VIÊN HĐ HỌC SINH NỘI DUNG
GV: Nếu cho d () Xảy ra trường hợp sau:
+ d () khơng có điểm chung, ta nói d song song với ()
+ d () có điểm chung, ta nói d cắt ()
+ d () có hai điểm chung, ta nói d chứa ()
GV: Ngoài ba trường hợp trên, cịn có trường hợp khơng ?
GV: kết luận vị trí tương đối đường thẳng mặt phẳng
( )
( ) GV: Khi nào đường thẳng: d // (), d , d
+ Học sinh quan sát hình vẽ giáo viên rút nhận xét :
+ d // ()
( ) M + d
( ) + d
- Học sinh trả lời
+ Trả lời câu hỏi GV câu 1
+ Học sinh lĩnh hội kết luận giáo viên ghi vào
I Vị trí tương đối đường thẳng mặt phẳng:
( )
d M
( )
d
Hoạt động 2: Tính chất
HĐ GIÁO VIÊN HĐ HỌC SINH NỘI DUNG
- GV đặt vấn đề dấu hiệu nhận biết đường thẳng song song với mặt phẳng cắ vào giao điểm chúng có khơng? Dẫn dắt học sinh nghiên cứu địng
Học sinh: Đọc định lý, điền ký hiệu tóm tắt định lý
// ' ' ( )
d d
d
Giả thiết:
Kết luận: d // ().
II Tính chất: d
d
M
d
d // ( )
(66)lý 1:
+ Hướng dẫn chứng minh
+ Dựa vào định nghĩa vị trí tương đối d ()
+ Chứng minh phương pháp loại trừ
( )
d M Gợi ý: Giả sử ( Suy trái với giả thiết )
- Yêu cầu học sinh lớp giải câu 2
+ GV cho học sinh đọc định lý yêu cầu học sinh lớp chứng minh
+ Gọi học sinh nêu phương pháp chứng minh Ví dụ: Giáo viên u cẩu học sinh đọc tóm tắt nội dung ví dụ ( trang 61 SGK) Yêu cầu học sinh khác vẽ hình
Gợi ý:
+ Phương pháp tìm thiết diện + Tìm giao điểm cạnh hình chóp ABCD với mặt phẳng ()
+ Hãy tìm giao tuyến () với mp(ABC)?
+ Tìm giao tuyến () với mp(BCD) ?
- Giáo viên thông báo hệ kết suy từ định lý - Giáo viên ghi tóm tắt, yêu cầu học sinh trình bày phương hướng chứng minh
( ) // ( ) // ( ) ( ) ' d d d
Giả thiết:
Kết luận: d // d’
- Học sinh nêu cách chứng minh
- Học sinh nghiên cứu, ghi tóm tắt vẽ hình
//( ) ( ) ( ) ( ) a a b
Giả thiết:
Kết luận a // b
Học sinh nghiên cứu ghi tóm tắt vẽ hình :
Học sinh giải
- Học sinh vẽ hình :
Định lí 1:
// ' //( ) ' ( ) d d d
d
Định lí 2:
//( )
( ) // ( ) ( )
a
a a b
b
Ví dụ (SGK)
(67)Hệ quả: Nếu hai mặt phẳng phân biệt song song với đường thẳng giao tuyến chúng ( có) song song với đường thẳng đó.
Hoạt động 3: Định lý 3
HĐ GIÁO VIÊN HĐ CỦA HỌC SINH NỘI DUNG
-Giáo viên đặt vấn đề: Với vị trí tương đối a // b ta có định lý 1, định lý Trong trường hợp a, b chéo ( không nằm mặt phẳng) nào?
- Giáo viên nêu định lý:
Hướng dẫn: Chứng minh tồn a / / b Lấy điểm M a, kẻ qua M đường thẳng b’//b Mặt phẳng () chứa a, b’
- Xét vị trí tương đối () b ? - Hãy chứng minh () nhất. Gợi ý: Dùng phương pháp phản chứng
Học sinh ghi tóm tắt
Giả thiết: Cho a, b chéo Kết luận: Tồn mặt phẳng () chứa a ()//b
Học sinh: ()// b () chứa b’ // b
( ) ( ) a b// Học sinh: Giả sử () chứa a () // b Khi điều vơ lý Từ suy điều phải chứng minh
Định lý 3: Cho hai đường thẳng chéo nhau Có mặt phẳng chứa đường thẳng song song với đường thẳng kia.
IV Củng cố hướng dẫn tập:
1 Củng cố: Giáo viên yêu cầu học sinh hệ thống hoá lại định lý dạng tóm tắt. 2 Hướng dẫn tập: Giải tập SGK
- -H
G F
E A
B
C
D M
b' a b
(68)Ngày: 01/11/2011
Tiết PPCT: 20
LUYỆN TẬP§3
I.Mục Tiêu:
1 Về kiến thức: Nắm định nghĩa tính chất đường thẳng mặt phẳng song.
2 Về kỉ năng: Biết áp dụng tính chất đường thẳng mặt phẳng song để giải toán như: Chứng minh đường thẳng song song mặt phẳng, tìmgiao tuyến, thiết diện
3 Về tư duy: + phát triển tư trừu tượng, trí tưởng tưởng tượng khơng gian + Biết quan sát phán đốn xác
4 Thái độ: cẩn thận, xác, nghiêm túc, tích cực họat động II.Chuẩn Bị:
1 Học sinh: - Nắm vững định nghĩa tính chất đường thẳng mặt phẳng song song làm tập nhà
- thước kẻ, bút,
2 Giáo viên: - Hệ thống tập, tập trắc nghiệm phiếu học tập, bút lông
- bảng phụ hệ thống tính chất đường thẳng mặt phẳng song song III Phương Pháp:
- Gợi mở, vấn đáp, đan xen hoạt động nhóm IV Tiến Trình Bài Học:
HĐ1: kiểm tra củ ( đưa tập trắc nghiệm bảng phụ) HĐ2: Bài tập chứng minh đường thẳng song song với mặt phẳng. HĐ3: Dựng thiết diện song song với đường thẳng.
HĐ4: tập trắc nghiệm củng cố, tập thêm (nếu thời gian) V Nội Dung Bài Học:
HĐ1: Kiểm tra củ:
- GV treo bảng phụ tập trắc nghiệm - Gọi HS lên hoạt động
* Bài tập:
Câu 1: Chọn mệnh đề mệnh đề sau:
Cho đường thẳng d mặt phẳng (P) ta có vị trí tương đối sau: A d cắt ( P ); d chéo (P), d song song với (P)
B d trùng với (P), d cắt (P), d song song với (P) C d cắt (P), d song song với (P), d nằm (P) D Câu B C
Câu 2: Điền vào chổ trống để mệnh đề đúng:
{dd // d '⊄(α ) d '⊂( α)
⇒ {
d // (α)
( β )⊃d (α ) ∩ ( β )=d '
⇒ {
(α ) // d ( β ) // d (α ) ∩ ( β )=d '
⇒ A B C
(69)M G N I C D B A C G2 G1 I B D A
- Đưa đáp án sửa sai ( có ) Đáp Án: Câu 1C
d //(α) Câu 2:A.; B d//d’; C d // d’; D song song với mp - Hệ thống lại học:
Bài mới
Hoạt Động Thầy Hoạt Động Trò Nội Dung Ghi Bảng
HĐ2: Bài tập CM đt //mp - Chia nhóm HS ( nhóm) - Phát phiếu học tập cho HS - Nhóm1, 2: Bài 1; nhóm 2,3:
- Quan sát hoạt động học sinh, hướng dẫn cần thiết
Lưu ý: sử dụng định lý TaLet
- Gọi đại diện nhóm trình bày
- Gọi nhóm cịn lại nhận xét
- GV nhận xét, sữa sai ( có) đưa đáp án
- Nhắc lại cách chứng minh đường thẳng song song với MP
{dd // d '⊄(α ) d '⊂( α)
⇒ d // (α)
HĐ3: Bài tập tìm thiết diện: - Chia nhóm HS ( nhóm)
- Phát phiếu học tập cho HS - Quan sát hoạt động học sinh, hướng dẫn cần thiết
- Gọi đại diện nhóm trình bày
- HS lắng nghe tìm hiểu nhiệm vụ
- HS nhận phiếu học tập tìm phương án trả lời - thơng báo kết hồn thành
- Đại diện nhóm lên trình bày
- HS nhận xét
- HS ghi nhận đáp án
- HS lắng nghe tìm hiểu nhiệm vụ
- HS nhận phiếu học tập tìm phương án trả lời - thơng báo kết hồn thành
- Đại diện nhóm lên trình bày
- HS nhận xét
- HS ghi nhận đáp án
Phiếu 1: Cho tứ diện ABCD Gọi G trọng tâm tam giác ABD Trên đoạn BC lấy điểm M cho MB = 2MC Chứng minh rằng: MG // (ACD)
Phiếu 2: Cho tứ diện ABCD Gọi G1, G2 trọng tâm tam giác ACD BCD CMR : G1G2 // (ABC)
Đáp án:
1/Gọi N trung điểm AD Xét tam giác BCN ta có:
BM BC = BG BN= Nên: MG // CN
CN⊂( ACD) Mà: Suy ra: MG // ( ACD) 2/ Gọi I trung điểm
CD Ta có:
{IG1 IA = IG2 IB =
⇒IG1 IA =
IG2 IB
Do đó: G1G2 // AB (1) AB⊂( ABC) Mà (2)
Từ (1), (2) suy ra: G1G2 // ( ABC )
HĐ2:
Phiếu học tập số 3:
(70)C
P N
Q
B D
A
M
Q
P
M
N O A
D
B
C S
- Gọi nhóm cịn lại nhận xét
- GV nhận xét, sữa sai ( có) đưa đáp án
- Lưu ý cho HS cách tìm giao tuyến hai mặt phẳng có chứa hai đường thẳng song song
Phiếu học tập số 4:
(α ) (α ) Cho hình chóp S.ABCD có đáy ABCD tứ giác lồi Gọi O giao điểm hai đường chéo AC BD Gọi mp qua O, song song với AB SC Tìm thiết diện với hình chóp? thiết diện hình gì? Đáp án:
3/ Từ M kẻ đường thẳng song song AC BD cắt BC AD N, Q - Từ N kẻ đường thẳng song song với BD cắt CD P
Suy thiết diện cần tìm : Hình bình hành MNPQ
4/ Từ O kẻ đường thẳng song song với AB cắt AD, BC M, N
- Từ N kẻ đường thẳng song song với SC cắt SB P
- Từ P kẻ đường thẳng song song với AB cắt SA Q
Suy thiết diện cần tìm hình thang : MNPQ
VI Củng Cố:
- Treo bảng phụ tập trắc nghiệm để HS hoạt động:
Câu 1: Cho hai đường thẳng a vàg b song song với mp(P) Mệnh đề sau đúng: A a b chéo
B a b song song với C a b cắt D a b trùng
E Các mệnh đề A, B, C, D sai
Câu 2: Khi cắt thiết diện mặt phẳng thiết diện thu hình sau đây? A Hình thang B hình bình hành C hình thoi
Bài 3: Cho mp(P) hai đường thẳng song song a b Mệnh đề mệnh đế sau đây? A Nếu (P) // a (P) // b
B b⊂( P) Nếu (P) // a (P) // b C b⊂(P) Nếu (P) // a
D ( P)∩ a ( P)∩ b Nếu
(71)Đáp án: 1.C ; A, B, C ; B, D, F
- -Ngày: 05/11/2011
Tit PPCT: 21 Đ4 Hai mặt phẳng song song
I Mục tiêu:
Qua HS cần nắm:
1) Về kiến thức: Nắm định nghĩa hai mặt phẳng song song ,tính chất hai mặt phẳng song song Điều kiện để hai mặt phẳng song song Áp dụng vào giải toán
2)Về kĩ năng: Rèn kỹ vẽ hình,vẽ hình biểu diễn, vận dụng vào chứng minh định lý, tập. 3)Về tư duy:Từ trực quan sinh động đến tư trừu tượng,tổng hợp tính chất hai mặt phẳng song song,dấu hiệu nhận biết hai mặt song song khả vận dụngvào giải toán
4)Về thái độ: Nhgiêm túc học tập,cẩn thận xác, II Chuẩn bị:
* HS: đọc trước sách giáo khoa, dụng cụ vẽ hình số mơ hình hai mặt song song. *GV: Mơ hình trực quan (nếu có), phiếu học tập bảng phụ.
III.Tiến trình học hoạt động. *Giới thiệu: Chia lớp thành nhóm
*Kiểm tra cũ:Trong không gian cho hai mặt vào đâu để phân biệt vị trí tương đối mặt phẳng Khi hai mặt phẳng song song?Vẽ hình minh họa?
*Bài mới:
Hoạt động GV Hoạt động HS Nội dung ghi bảng
HĐ1: Từ kiểm tra cũ. Tl: Căn vào số đường thẳng chung hai mặt phẳng không gian phân biệt vị trí tương đối hai đường thẳng
Hai đường thẳng song song hai đường thẳng điểm
I ĐỊNH NGHĨA: (SGK)
α β β α Kí hiệu: () // () hay () //()
(72)α β α β HĐ2:H1 Cho () // (),đường thẳng d nằm mặt phẳng ().thì đường thẳng d mặt phẳng () có điểm chung khơng ? sao? Chứng minh?Đưa phiếu học tập cho nhóm thảo luận
Đại diện nhóm trình bày,các nhóm khác tham gia thảo luận tìm kết
α β α β Giáo viên
tổng hợp đưa tính chất H2: Trên mặt phẳng cho hai đường thẳng cắt a b ,a b song song với Có nhận xét vị trí tương đốicủavà? chứng minh?(giáo viên hướng dẫn học sinh thảo luận) đưa định lí H2: Để chứng minh hai mặt phẳng song song ta có phương pháp nào?
H3:Giáo viên phát phiếu học tập cho nhóm.Hướng dẫn học sinh thảo luận
Phiếu học tập số 2: ( ví dụ 1) H1: Để chứng minh (G1G2 G ) // (BCD)ta phải chứng minh hai mặt phẳng thỏa yêu cầu nào?
H2: Tại G1G2 // NM? G2G3// PN?
H3: có kết luận hai đường thẳng G1G2; G2G3 với mặt phẳng (BCD)?
HĐ3:
H1: Qua điểm nằm
chung
Tl: Học sinh hoạt động nhóm thảo luận đưa lời giải
Đại diện nhóm trình bày kết nhóm, nhóm thảo luận
Học sinh thảo luận Đại diện nhóm trình bày giải nhóm góp ý để đưa định lí
Tl: + Dùng định nghĩa + Dùng định lí
Các nhóm nhận phiếu học tập, thảo luận tìm lời giải Đại diện nhóm trình bày giải nhóm Các nhóm thảo luận để đưa kết
Học sinh trình bày giải
II.TÍNH CHẤT: Định lý 1: ( SGK)
Chứng minh phương pháp phản chứng
Chứng minh: (sgk)
Ví dụ1:
Cho hình tứ diện ABCD, gọi G1; G2; G3 trọng tâmcủa tam giác ABC; ACD; ABD chứng minh mặt phẳng (G1G2 G )song song với mặt phẳng (BCD)
Đinh lí 2: (SGK)
b
a A
G3
G2
G1
P
N M
D
C B
A
(73)đường thẳng d ta dựng đường thẳng song song với đường thẳng d?
α α H2: Nếu thay đường thẳng d mặt phẳng Thì qua điểm ta dựng mặt phẳng song song với mặt phẳng ?
α α α H3: Từ định lí cho d//() ()có đường thẳng song song với d khơng ? qua d có mặt phẳng song song với ()?
H4: Hai đường thẳng phân biệt song song với đường thẳng thứ ba có song song với khơng?
H5: Nếu thay đường thẳng mặt phẳng tính chất cịn khơng?
Học sinh trả lời đưa định lí
Học sinh thảo luận đưa hệ quả1
Học sinh trả lời đưa hệ quả:
Hai mặt phẳng phân biệt song song với mặt phẳng thứ ba song song với
Hệ 1: (sgk)
Hệ 2: (sgk)
Hệ 3: ( sgk)
d
(74)α α H6: Cho điểm A không nằm mặt phẳng ().Có đường thẳng qua A song song với ()? Các đường thẳng nằm đâu?
Giáo viên phát phiếu học số 2( ví dụ 2)
H7 Để chứng minh hai mặt phẳng song song ta phải chứng minh thỏa yêu cầu nào?
H8 Hai đường phân giác ngồi góc có tính chất nào? Sx song song với mặt (ABC) sao? Tương tự Sz ; Sy từ suy điều phải chứng minh
H9.Có nhận xét đường thẳng SX, Sy ,Sz Theo hệ ta có điều gì?
HĐ4: Cho hai mặt phẳng song song Nếu mặt phẳng cắt mặt phẳng có cắt mặt phẳng khơng? Có nhận xét hai giao tuyến
(giáo viên chuẩn bị mơ hình ba mặt phẳng trên.)
Cho bảng phụ bên
H1: Có nhận xét độ dài hai
+Học sinh thảo luận theo nhóm Đại diện nhóm trình bày giải nhóm Các nhóm khác theo dõi ,thảo luận tìm kết đưa hệ
+ Học sinh nhắc lại phương pháp tổng hợp
+ Hai đường phân giác ngồi góc vng góc với
+ TL Vì tam giác SBC cân S nên Sx song songvới BC (vì vng góc với đường phân giác góc SBC)
Tương tự Sy //AC (Sx:,Sy) song song ( ABC)
Học sinh quan sát mơ hình đưa kết luận Chứng minh kết luận Từ giáo viên tổng hợp thành định lí
+Học sinh chứng minh hai đoạn AB = A’B’.
+Giống tính chất hai đường thẳng song song chắn hai cát tuyến
Ví dụ 2:Cho tứ diện SABC có SA=SB=SC gọi Sx, Sy, Sz phân giác ngoàicủa
gocStrong ba tam giác SBC, SCA, SAB Chứng minh:
a/ Mặt phẳng (Sx,Sy) sonh song với mặt phẳng(ABC);
b/Sx;Sy;Sz nằm mặt phẳng
(75)đoạn thẳng AB A’B’?
H2.Tính chất giống tính chất học hình học phẳng
song song đoạn thẳng tương ứng
HĐ5 Củng cố hướng dẫn học nhà:
+ Hai mặt phẳng song song có tính chất nào? để chứng minh hai mặt phẳng song song có phương pháp nào?
+Tìm mệnh đề mệnh đề sau:
α β α β (A)Nếu hai mặt phẳng ()và ()song song với đường thẳng nằm () song song với()
α β α β (B) Nếu hai mặt phẳng ()và () song song với đường thẳng nằm () song song với đường thẳng nằm ()
α β α β ( C) Nếu hai đường thẳng song song với nằm hai mặt phẳng phân biệt ()và () ()và () song song với
(D)Qua điểm nằm mặt phẳng cho trước ta vẽ đường thẳng song song với mặt phẳng cho trước
+ Về nhà ơn lại định lí talét mặt phẳng đọc trước phần cịn lại tiết sau học phần lại + Làm tập 1;2 (sgk)
- -Ngày: 06/11/2011
Tit PPCT: 22 Đ4 Hai mặt phẳng song song
I MỤC TIÊU : Qua học HS cần: 1.Kiến thức :
Nắm vững định lí Thalet ,định nghĩa hình lăng trụ ,hình chóp cụt,hình hộp Kỹ năng:
Rèn luyện kỹ xác định đoạn thẳng tương ứng tỉ lệ, nhận biết hình lăng trụ ,hình hộp; rèn luyện kỹ vận dụng tính chất vào giải toán
3.Tư duy:
Phát triển tư trừu tượng , tư khái quát hoá Thái độ:
Cẩn thận ,chính xác
II CHUẨN BỊ CỦA GV VÀ HS. GV: giáo án ,thước kẻ.
HS: Ôn tập kiến thức cũ quan hệ song song.
III PHƯƠNG PHÁP DẠY HỌC: phương pháp gợi mở ,vấn đáp. D.TIẾN TRÌNH BÀI HỌC:
Ổn định lớp, giới thiệu: Chia lớp thành nhóm.
Kiểm tra cũ: Nhắc lại định nghĩa mặt phẳng song song định lí Thalet hình học phẳng
3.Bài mới:
(76)HS phát biểu chỗ
HS khác cho nhận xét
AB
A ' B '=
BC
B ' C '=
CA
C ' A '
HS ý lắng nghe
HS ghi
* Định lí Talet khơng gian phát biểu nào? - Gọi HS khác nhận xét GV chỉnh sửa
* Nếu d,d’ cát tuyến cắt mặt phẳng (α) , (β) , (γ) điểm A , B ,C A’ , B’ ,C’ đoạn thẳng tương ứng tỉ lệ gì?
GV giới thiệu số đồ dùng sống có hình dạng hình lăng trụ hay hình hộp hộp diêm,hộp phấn, thước ,quyển sách…
GV hình thành cho HS khái niệm hình lăng trụ
GV nêu yếu tố hình lăng trụ
III, Định lí Talet:
Định lí 4: Ba mặt phẳngđôi song song chắn cát tuyến đoạn thẳng tương ứng tỉ lệ
AB
A ' B '=
BC
B ' C '=
CA
C ' A '
IV,Hình lăng trụ hình hộp. Cho (α) // (α’) Trên (α) cho đa giác A1A2…An.Qua đỉnh A1, A2, …,An ta vẽ đường thẳng song song với cắt (α’) A1’,A2’ ,…,An’ Hình gồm đa giác A1A2…An A1’A2’…An’ hình bình hànhA1A1’A2A2’ ,A2A2’A3A3’ , …,AnAnA1’A1 dược gọi hình lăng trụ
Kí hiệu: A1A2…An.A1A1’A2A2’
(77)HS: Các mặt bên hình lăng trụ hình bình hành
đa giác đáy HLT đa giác
HLT xác định biết đáy cạnh bên
HS lên bảng vẽ
HS nhận xét chỗ
Theo dõi
Hình hộp có mặt ( mặt bên mặt đáy)
Các mặt hình bình hành
*Có nhận xét cạnh bên HLT?
* mặt bên HLT hình gì?
* Có nhận xét đa giác đáy HLT?
*HLT xác định biết yếu tố gì?
GV :Nếu đáy HLT tam giác ,tứ giác ,ngũ giác lăng trụ tương ứng gọi lăng trụ tam giác,lăng trụ tứ giác,lăng trụ ngũ giác
GV gọi HS lên vẽ hình
GV gọi HS khác nêu nhận xét
GV chỉnh sửa sai sót
GV giới thiệu khái niệm hình hộp
*Hình hộp có mặt mặt bên hình gì?
…,AnAn’
+Mặt bên:hình bình hành A1A1’A2A2’ ,A2A2’A3A3’ ,…,AnAn’A1’A1
+ đỉnh HLT:đỉnh đa giác đáy
Nhận xét:
+ Các mặt bên hình lăng trụ song song với
+Các mặt bên HLT hình bình hành
+ đáy HLT đa giác
Hình lăng trụ tam giác
Hình lăng trụ tứ giác
(78)*Củng cố hướng dẫn học nhà: Củng cố: -Định lí Talet;
- Định nghĩa hình lăng trụ; hình hộp 4.Hướng dẫn học nhà:
-Xem lại học lý thuyết theo SGK -Làm tập 1, SGK trang 71
- -Ngày: 10/11/2011
Tiết PPCT: 23 LUYỆN TẬP §4
I Mục tiêu:
(79)- Biết cách vận dụng định lí vào việc chứng minh hai đường thẳng song song. -Tìm giao tuyến, giao điểm
3) Về tư duy, thái độ:
Tích cực hoạt động, trả lời câu hỏi Biết quan sát phán đốn xác II Chuẩn bị:
GV: Giáo án, dụng cụ dạy học.
HS: Ôn tập lý thuyết làm tập nhà. IV Phương pháp:
Phương pháp gợi mở vấn đáp V Tiến trình học:
*Ổn định lớp, giới thiệu: Chia lớp thành nhóm
*Kiểm tra cũ: Kết hợp với điều khiển hoạt động nhóm
Hoạt động HS Hoạt động GV Nội dung
- Đọc đề vẽ hình
- Chứng minh hai mặt phẳng (b,BC) // ( a, AD )
- Giao tuyến hai mặt phẳng (A’B’C’) (a,AD) đường thẳng d’ qua A’ song song với B’C’ - Suy điểm D’ cần tìm - Dự kiến học sinh trả lời: Ta cần chứng minh:
' '// ' ' ' '// ' '
A D B C
A B D C
- Học sinh đọc đề vẽ hình
- Học sinh đọc đề vẽ hình: AA' '// ' ' MM MM AA
- AA’M’N hình bình hành
- Giao điểm đường thẳng A’M đường thẳngAM’ giao điểm đường thẳng A’M với mặt phẳng (AB’C’)
- Ta tìm hai điểm chung hai mặt phẳngđó
Suy nối hai điểm chung giao tuyến hai mặt phẳng cần
- Hướng dẫn học sinh vẽ hình - Có nhận xét hai mặt phẳng (b,BC) (a,AD)
- Tìm giao tuyến hai mặt phẳng (A’B’C’) (a,AD) - Qua A’ ta dựng đường thẳng d’ // B’C’ cắt d điểm D’sao cho A’D’// B’C’
Nêu cách chứng minh A’B’C’D’ hình bình hành
HD: Sử dụng định lý
Giáo viên hướng dẫn học sinh vẽ hình
Giáo viên hướng dẫn học sinh vẽ hình
- HD: Tìm giao điểm đường thẳng A’M vơi đường thẳng A’M với đường thẳng thuộc mặt phẳng(AB’C’)
- Nêu cách tìm giao tuyến hai mặt phẳng
Bài tập 1:
Giải:
//
( , ) //( , ) //
b a
b BC a AD
BC AD
( ' ' ') ( ,A B C b BC)B C' 'Mà ( ' ' ') ( ,A B C a AD) d'
b/ Chứng minh A’B’C’D’ hình bình hành
Ta có: A’D’ // B’C’ (1) Mặt khác (a,b) // (c,d)
( ' ' ' ') ( , )A B C D a b A B' 'Mà ( ' ' ' ') ( , )A B C D c d C D' 'Và
Suy A’B’ // C’D’ (2)
Từ (1) (2) suy A’B’C’D’ hình bình hành
(80)tìm
- Giao điểm đường thẳng A’M đường thẳng AM’ giao điểm đường thẳng A’M với mp( AB’C’)
- Ta tìm hai điểm chung hai mặt phẳng
Suy đường thẳng nối hai điểm chung giao tuyến hai mặt phẳng cần tìm
- Giao điểm dường thẳng d với mp(AM’M) giao điểm đường thẳng d với đường thẳng AM’ - Trọng tâm tam giác giao điểm ba đường trung tuyến
- Học sinh đọc đề vẽ hình
- Chứng minh BD // (B’D’C) - Chứng minh A’B // (B’D’C)
' ( ' )
BDA B A BD Mà Suy ( A’BD) // (B’D’C)
- HD: Tìm giao điểm đường thẳng A’M với đường thẳng thuộc mp(AB’C’)
- Nêu cách tìm giao tuyến hai mặt phẳng
- Nêu cách tìm giao điểm đường thẳng d với mp(AM’M)
- Trọng tâm tam giác giao điểm đường trung tuyến
HD: Áp dụng định lí để chứng minh hai mặt phẳng song song - Có nhận xét đườgn thẳng BD với mặt phẳng (B’D’C) - Tương tự đường thẳng A’B với mặt phẳng (B’D’C)
Bài tập 2:
Giải:
a/ Chứng minh: AM // A’M’
'// ' ' ' MM AA MM AA
AA’M’M hình bình hành,
suy AM // A’M’
' '
I A M AM b/ Gọi
' ( ' ')
AM AB C Do
'
IAM I(AB C' ')Và nên
' ( ' ')
I A M AB C Vậy c/
' ( ' ') ' ( ' ')
' ( ' ') ( ' ')
C AB C
C BA C
C AB C BA C
' '
AB A B O
( ' ') ( ' ')
O AB C
O BA C
( ' ') ( ' ')
O AB C BA C
(AB C' ') (BA C' ') C O'
' '
d C O
( ' ') ' ( ' ')
d AB C
AM AB C
(81)'
d AM G
( ' ) '
G d
G AM M
G AM
' '
OC AM GTa có:
Mà OC’ trung tuyến tam giác AB’C’ AM’ trung tuyến tam giác AB’C’
Suy G trọng tâm tam giác AB’C’
Bài tập 3:
a/ Chứng minh: (BDA’) // (B’D’C)
Ta có:
// ' ' ' ' ( ' ' )
//( ' ' )
BD B D
B D B D C
BD B D C
' // ' ) ' ( ' ' )
A B CD
CD B D C
Và
' //( ' '
A B B D C
Vì BD A’B nằm (A’BD) nên (A’BD) // (B’D’C) *Củng cố hướng dẫn học nhà:
-Xem lại tập giải -Làm thêm tập SGK
- -D'
C' A'
A
B C
(82)Ngày: 21/11/2010
Tiết PPCT: 24 ƠN TẬP HỌC KÌ I
I.Mục tiêu:
Qua tiết học HS cần:
* Kiến thức: Ôn tập kiến thức chương I chương II Hệ thống toàn kiến thức học kỳ I
* Kỹ năng: Vận dụng kiến thức chương I chương II vào việc giải toán
* Tư , thái độ: Tích cực hoạt động, trả lời câu hỏi Biết quan sát phán đốn xác II Chuẩn bị:
GV: Giáo án,sách giáo khoa, đồ dùng dạy học HS: Ôn tập lý thuyết hà trước đến lớp. C/ Phương pháp: Phương pháp gợi mở vấn đáp D/ Tiến trình học:
*Ổn định lớp, giới thiệu: Chia lớp thành nhóm
*Kiểm tra cũ: Kết hợp với điều khiển hoạt động nhóm. *Bài mới:
Hoạt động HS Hoạt động GV Nội dung
(83)Nêu định nghĩa, tính chất biểu thức toạ độ phép tịnh tiến, phép đối xứng trục, phép đối xứng tâm, phép quay, phép vị tự phép đồng dạng
- Nêu tính chất thừa nhận đường thẳng mặt phẳng - Nêu đn đt chéo 2đt song song
- Nêu ĐL HQ đt song songtrong mặt phẳng
- Nêu ĐN, ĐL, HQ đt mp song song
- Tìm ảnh qua phép
- Sử dụng tính chất: ảnh đường thẳng qua phép đối xứng tâm phép tịnh tiến đường thẳng song song trùng với
1 d d'
1 d d'
- Vì song song trùng với d , song song trùng với nên song song trùng d
'
d - Pt có dạng: 3x – y + C =
Gọi HS nêu định nghĩa, tính chất biểu thức toạ độ phép dời hình
phépđồng dạng mặt phẳng
- Gọi HS nêu:
Các tính chất thừa nhận
Nêu đn, tính chất hai đt chéo song song
Nêu đn tính chất đt mp song song
- Gọi HS nêu dạng toán thường gặp chương I - Nêu phương pháp giải
- HD: Sử dụng tính chất biểu thức toạ độ phép đối xứng tâm phép tịnh tiến
'
d Có nhận xét d
I/ Chương I: 1/ Phép tịnh tiến 2/ Phép đối xứng trục 3/ Phép đối xứng tâm 4/ Phép quay
5/ Phép vị tự 6/ Phép đồng dạng II/ Chương II:
1/ Đại cương đường thẳng mặt phẳng
2/ Hai đường thẳng chéo hai đường thẳng song song
3/ Đường thẳng mặt phẳng song song
B/ Bài tập:
I/ Các dạng tốn thường gặp chương I: Tìm ảnh điểm, đường qua phép dời hình phép đồng dạng
Bài tập 1: '
d v 2;1
Trong mặt phẳng Oxy cho đường thẳng d có phương trình: 3x – y – = Viết phương trình đường thẳng ảnh d qua phép dời hình có cách thực liên tiếp phép đối xứng tâm I ( 1; ) phép tịnh tiến theo vectơ
Bài giải: Gọi phép dời hình cần tìm F
1 d d'
1
d v 2;1
Gọi ảnh d qua phép đối xứng tâm I(1; 2), ảnh qua phép tịnh tiến theo vectơ
'
d F d
Ta có: '
d Đáp số: Phương trình đường thẳng ảnh đường thẳng qua phép dời hình nói là:
':
(84)d
M' F M( )M'1;5d'- Lấy M(1;0) nên
'
M d'- Thay (-1; 5) vào pt giải tìm C =
_ Nêu phương pháp tìm giao điểm, giao tuyến, tìm thiết diên, chứng minh đt song song, đt song song với mặt phẳng
- Đọc đề vẽ hình HD GV
-2 mp (SAD) v (SBC)
( )
( )
//
( ) ( )
AD SAD
BC SBC
AD BC
SAD SBC Sx
có điểm
chung S và: và: Sx // AD // BC b/ Ta có: MN// IA// CD
1
AM IN
AD IC
IG IS 3mà:
( G trọng tâm tam giác SAB)
IG
IS
//
IN IC GN SC
Nên:
'
d Từ pt có dạng nào?
Md M' F M Tìm C cách lấy tìm
- Nêu dạng toán thường gặp chương II
- Gọi HS nêu phương pháp giải
- HD HS đọc đề vẽ hình
-HD: C ó nh ận x ét g ì v ề mp (SAD) v (SBC)
II/ Các dạng toán thường gặp chương II:
- Tìm giao điểm, giao tuyến - Tìm thiết diện
- Chứng minh hai đường thẳng song song, đường thẳng song song với mặt phẳng
Bài tập 2:
Cho hình chóp S.ABCD có đáy hình bình hành ABCD Gọi G trọng tâm tam giác SAB I trung điểm AB Lấy điểm M đoạn AD cho AD = 3AM
a/ Tìm giao tuyến hai mặt phẳng (SAD) (SBC)
b/ Đường thẳng qua M song song với AB cắt CI N Chứng minh rằng:
NG// (SCD)
(85)
//
SC SCD
GN SCD
Mà:
/ //
1 3
c SK SCD
MN CD
MN IN
CK IC
IM IK
IG IS 3
IM IK
Ta có:
// //
GM SK
GM SCD
-HD: Sử dụng phương pháp:
' '
//
//
d d d d
d
- HD: Sử dụng tính chất trọng tâm tam giác
- HD: Tương tự câu b/ cho câu c/
- Giả sử IM cắt CD K Suy SK thuộc mặt phẳng ?
* Củng cố hướng dẫn học nhà:
Hệ thống toàn lý thuyết dạng toán thường gặp chương I II Ơn tập chuẩn bị thi học kì I
(86)- -Ngày: 04/12/2010
Tiết PPCT: 25
§5 phÐp chiÕu song song
hình biểu diễn hình không gian
I MỤC TIÊU :
Qua học HS cần:
1.Kiến thức :
-Khái niệm phép chiếu song song;
-Khái niệm hình biểu diễn hình khơng gian 2.Kỹ năng:
-Xác định phương chiếu, mặt phẳng chiếu phép chiếu song song Dựng ảnh điểm, đoạn thẳng, tam giác, đường tròn qua phép chiếu song song
-Vẽ hình biểu diễn hình khơng gian
3.Tư duy:
Phát triển tư trừu tượng , tư khái quát hoá, tư logic Thái độ:
Cẩn thận ,chính xác
II.CHUẨN BỊ CỦA GV VÀ HS.
GV: Giáo án ,thước kẻ.
HS: Soạn trước đến lớp trả lời câu hỏi hoạt động SGK.
III.PHƯƠNG PHÁP DẠY HỌC:
Phương pháp gợi mở ,vấn đáp
IV.TIẾN TRÌNH BÀI HỌC:
Ổn định lớp, giới thiệu: Chia lớp thành nhóm
2.Bài mới:
Hoạt động HS Hoạt động GV Ghi bảng HĐ1: Phép chiếu song song.
GV vẽ hình nêu khái niệm,
HS ý theo dõi bảng để lính hội kiến thức…
(87)ghi lên bảng…
GV phân tích để hình chiếu hình, đường thẳng song song với phương chiếu ghi ý lên bảng
GV ví dụ:
Xác định hình chiếu đường thẳng qua phép chiếu song song trường hợp sau: -Đường thẳng song song với phương chiếu;
-Đường thẳng không song song với phương chiếu
(P) mặt phẳng chiếu; d: phương chiếu; M’: hình chiếu song song M lên mặt phẳng chiếu (P)
Chú ý: ( SGK)
HĐ2: Các tính chất phép chiếu song song:
GV gọi HS nêu định lí
(GV vẽ hình lên bảng để minh họa trường hợp)
GV yêu cầu HS nhóm thảo luận để tìm lời giải ví dụ hoạt động SGK
GV gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét nêu lời giải
HS nêu định lí ý theo dõi để lĩnh hội kiến thức…
HS nhóm thảo luận rút kết quả:
HĐ1: Hính chiếu song song hình vng lag hình bình hành
HĐ2: Hình 2,67 khơng hình biểu diễn lục giác đều, AD khơng song song với BC
II.Các tính chất phép chiếu song song:
Định lí 1: (SGK) P
d
M' M
P
d A
A' B
B' C
(88)đúng…
HĐ3: Hình biểu diễn hình khơng gian mặt phẳng: GV: Hình biểu diễn hình H khơng gian hình chiếu song song hình H mặt phẳng theo phương chiếu hình đồng dạng với hình chiếu
GV u cầu HS nhóm xem ví dụ hoạt động gọi HS đứng chỗ trả lời (có giải thích)
HS ý theo dõi suy nghĩ để thảo luận tìm lời giải
HS Hình a c hình biểu diễn hình lập phương Hình b khơng hình biểu diễn hình lập phương có mặt khơng hình bình hành
III.Hình biểu diễn hình không gian mặt phẳng:
( Xem SGK)
HĐ3: Củng cố hướng dẫn học nhà: *Củng cố:
- Nhắc lại khái niệm phép chiếu song song tính chất -Bài tập áp dụng để củng cố kiến thức:
*Bài tập: Cho hai mp cắt theo giao tuyến d Gọi A B hai điểm thuộc mp A’, B’ hình chiếu song song A, B lên mặt phẳng theo phương chiếu l cho trước
a)Xác định giao tuyến mp (ABB’A’) với mp
b)Nếu ba mặt phẳng (ABB’A’) ,và đơi cắt ba giao tuyến có đặc điểm gì? c)Nếu AB//d A’B’ nào?
GV cho HS nhóm thảo luận để tìm lời giải gọi HS đại diện lên bảng trình bày lời giải (có giải thích) Tương tự GV cho HS thảo luận để tìm lời giải câuhỏi hoạt động 4, 5,
*Hướng dẫn học nhà:
-Xem lại học lý thuyết theo SGK
-Làm tập phần ôn tập chương II
- -Ngày: 05/12/2010
(89)I Mục Tiêu: Qua học HS cần:
1 Về kiến thức: Nắm định nghĩa tính chất đường thẳng mặt phẳng, mặt phẳng song song với mặt phẳng
2 Về kỉ năng: Biết áp dụng tính chất đường thẳng mặt phẳng song, mặt phẳng song song với mp để giải toán như: Chứng minh đường thẳng song song với đường thẳng, đường thẳng song song mặt phẳng, mp song song mp, tìm giao tuyến, thiết diện
3 Về tư duy: + phát triển tư trừu tượng, trí tưởng tưởng tượng khơng gian + Biết quan sát phán đốn xác
4 Thái độ: Cẩn thận, xác, nghiêm túc, tích cực họat động II Chuẩn Bị:
HS: Nắm vững định nghĩa tính chất đường thẳng mặt phẳng song, mặt phẳng song song với mp, làm tập nhà
- Thước kẻ, bút,
GV: Hệ thống tập, tập trắc nghiệm phiếu học tập, bút lơng, bảng phụ.
Hệ thống tính chất đường thẳng mặt phẳng song song, hai mp song song, tập trắc nghiệm III Tiến Trình Bài Học:
HĐ1: Hệ thống kiến thức ( đưa tập trắc nghiệm bảng phụ) HĐ2: Bài tập tìm giao tuyến tìm thiết diện
HĐ3: Bài tập chứng minh đường thẳng song song đường thẳng đường thẳng song song với mặt phẳng, mp song song với mp
HĐ4: Bài tập trắc nghiệm củng cố, tập thêm (nếu thời gian) V Nội Dung Bài Học:
HĐ1: Hệ thống kiến thức
- GV treo bảng phụ tập trắc nghiệm - Gọi HS lên hoạt động
* Bài tập:
Câu 1: Điền vào chổ trống để mệnh đề đúng:
{dd // d '⊄(α ) d '⊂( α)
⇒ {
d // (α)
( β )⊃d (α ) ∩ ( β )=d '
⇒ {
(α ) // d ( β ) // d (α ) ∩ ( β )=d '
⇒ A B C
D Cho hai đường thẳng chéo Có mp chứa đường thẳng Câu 2: Điền vào chổ trống để mệnh đề đúng:
{(P ) // (Q )
a⊂( P) ⇒ {
a⊂(α ), b ⊂(α ) a∩ b a // ( β ), b // ( β )
⇒ A B
C Hai mặt phẳng phân biệt song song với mp thứ ba
D Cho hai mặt phẳng song song với nhau, mp cắt mặt phẳng cắt mặt phẳng - Gọi HS lên làm
- Gọi HS nhận xét
(90)d //(α) Đáp Án: Câu 1:A.; B d//d’; C d // d’; D song song với mp
(α ) // ( β ) Câu 2: a // (Q); B ; C song song với nhau; D hai giao tuyến chúng song song với
- Hệ thống lại kiến thức vào mới:
Hoạt động GV Hoạt động HS Nội Dung
HĐ1: Ôn tập lại kiến thức: Gọi HS đứng chỗ nêu phương pháp chứng minh hai đường thẳng song song, đường thẳng song song mặt phẳng, hai đường thẳng song song nhau,…
HS nhóm thảo luận cử đại diện chỗ trình bày lời giải
HS nhận xét, bổ sung sửa chữa ghi chép
HĐ2: Bài tập áp dụng:
GV cho HS nhóm xem nội dung tập SGK trang 78 cho nhóm thảo luận để tìm lời giải gọi HS đại diện lên bảng trình bày lời giải
GV gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét nêu lời giải (nếu HS khơng trình bày lời giải)
HS nhóm thảo luận để tìm lời giải cử đại diện lên bảng trình bày lời giải có giải thích
HS nhận xét bổ sung sửa chữa ghi chép
HS trao đổi để rút kết quả: …
Bài tập 4: (SGK) (Hình vẽ 1)
Hình vẽ
Hoạt động GV Hoạt động HS Nội Dung
HĐ3: Bài tập áp dụng để chứng minh quan hệ song song. GV nêu đề tập ghi lên bảng GV cho HS nhóm thảo luận để tìm lời giải Gọi HS đại diện lên bảng trình bày lời giải
Gọi HS nhận xét, bổ sung (nếu cần) GV nhận xét nêu lời giải (nếu HS khơng trình bày lời giải)
HS nhóm thảo luận ghi lời giải vào bảng phụ Cử đại diện lên bảng trình bày lời giải (có giải thích) HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi rút kết quả: …
Bài tập:
3Cho hình chóp S.ABCD đáy ABCD hình thoi cạnh a SA=SB=SC=SD=a Gọi E, F trung điểm cạnh SA, SB; M điểm cạnh BC
a)Xác định thiết diện hình chóp S.ABCD với mặt phẳng (MEF) Thiết diện hình gì?
b)Chứng minh CD//(MEF)
c)Nếu M trung điểm BC, chứng minh: (MEF)//(SCD)
(Hình vẽ 2)
y
z
t x
J
I
A D
C B
D' A'
B'
(91)Hình vẽ
GV
hướng dẫn gọi HS đứng chỗ trả lời câu hỏi trắc nghiệm SGK
HĐ3: Củng cố hướng dẫn học nhà: -Xem lại tập đẽ giải
-Đọc xem trước chương III
- -M E
F
A D
B C
S
(92)Ngày: 07/12/2010 CHƯƠNG III _ VÉCTƠ TRONG KHƠNG GIAN QUAN HỆ VNG GĨC
Tiết PPCT: 27
Đ1 vectơ không gian đồng phẳng các véctơ
I Mục Tiêu:
Qua học HS cần: 1 Về kiến thức:
- Quy tắc hình hộp để cộng vectơ khơng gian;
- Khái niệm điều kiện đồng phẳng ba vectơ không gian 2 Về kỹ năng:
- Vận dụng phép cộng, trừ vectơ, nhân vectơ với số, tích vơ hướng hai vectơ, hai vectơ không gian để giải tập
- Biết cách xét đồng phẳng không đồng phẳng ba vectơ không gian Về tư duy: + Phát triển tư trừu tượng, trí tưởng tưởng tượng khơng gian + Biết quan sát phán đốn xác
4 Thái độ: Cẩn thận, xác, nghiêm túc, tích cực họat động II Chuẩn Bị:
GV: Giáo án, phiếu học tập,
HS: Soạn trước đến lớp, trả lời câu hỏi hoạt động. III Phương Pháp:
(93)IV Tiến trình học:
* Ổn định lớp, giới thiệu: Chia lớp thành nhóm * Bài mới:
Hoạt động GV Hoạt động HS Nội Dung
HĐ1: Tìm hiểu định nghĩa và phép tốn vectơ trong khơng gian.
HĐTP1:
GV gọi HS nêu định nghĩa vec tơ không gian GV cho HS nhóm thảo luận để tìm lời giải hoạt động GV vẽ hình minh họa lên bảng…
Gọi HS đại diện nhóm lên bảng trình bày lời giải
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét nêu lời giải (nếu HS khơng trình bày lời giải)
HĐTP2: Phép cộng phép trừ vectơ không gian: GV: Phép cộng phép trừ hai vectơ không gian định nghĩa tương tự phép cộng phép trừ hai vectơ mặt phẳng.Vectơ không gian có tính chất mặt phẳng
GV gọi HS nêu lại tính chất vectơ mặt phẳng như: quy tắc điểm, quy tắc hình bình hành,…
HS nêu định nghĩa… HS nhóm thảo luận để tìm lời giải cử đại diện lên bảng trình bày lời giải (có gải thích)
HS nhận xét, bổ sung sửa chữa ghi chép HS trao đổi rút kết quả:…
HS ý theo dõi để lĩnh hội kiến thức…
HS suy nghĩ nhắc lại tính chất vectơ hình học phẳng…
HS xem đề thảo luận để tìm lời giải…
I.Định nghĩa phép tốn vectơ trong khơng gian:
1)Định nghĩa: (Xem SGK) HĐ1: SGK
HĐ2:
B D
A
(94)GV nêu ví dụ (SGK) cho HS nhóm thảo luận để tìm lời giải
Gọi HS đại diện lên bảng trình bày lời giải
GV gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời giải (nếu HS khơng trình bày lời giải)
HĐTP3:
GV cho HS nhóm thảo luận để tìm lời giải hoạt động SGK
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời giải (nếu HS khơng trình bày lời giải)
HĐTP4: Quy tắc hình hộp: GV vẽ hình lên bảng phân tích chứng minh để đến quy tắc hình hộp đưa tốn sau:
Cho hình hộp ABCD.A’B’C’D’ chứng minh rằng:
AA ' '
ABAD AC
GV cho HS nhóm thảo luận để tìm lời giải gọi HS đại diện lên bảng trình bày lời giải Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời giải giải (nếu HS khơng trình bày lời giải)
HS đại diện lên bảng treo bảng phụ kết giải thích
HS nhận xét, bổ sung sửa chữa ghi chép HS trao đổi rút kết quả:
…
HS thảo luận theo nhóm để tìm lời giải cử đại diện lên bảng trình bày lời giải (có giải thích)
HS nhận xét, bổ sung sửa chữa ghi chép HS trao đổi để rút kết quả:
…
ABC’D’ hình bình hành
' '
' AA '
®pcm
AC AB AD
AD AD
HĐ3: Cho hình hộp ABCD.EFGH Hãy thực phép toán sau đây:
) EF
)
a AB CD GH
b BE CH
*Quy tắc hình hộp:
' AA '
AC ABAD
HĐ2: Phép nhân vectơ với một số:
3.Phép nhân vectơ với số: Ví dụ 2: (xem SGK)
(95)HĐTP1:
GV: Trong khơng gian tích số với vectơ định nghĩa tương tự mặt phẳng
GV cho HS nhóm xem nội dung ví dụ cho nhóm thảo luận để tìm lời giải Gọi HS đại diện lên bảng trình bày lời giải
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung sửa chữa ghi chép (nếu HS khơng trình bày lời giải)
HĐTP2:
GV cho HS nhóm thảo luận để tìm lời giải ví dụ hoạt động SGK gọi HS đại diện lên bảng trình bày lời giải Gọi HS nhận xét bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời giải (nếu HS khơng trình bày lời giải)
HS nhóm xem nội dung ví dụ thảo luận để tìm lời giải cử đại diện lên bảng trình bày (có giải thích)
HS nhận xét, bổ sung sửa chữa ghi chép HS trao đổi để rút kết quả:
…
HS thảo luận để tìm lời giải cử đại diện lên bảng trình bày lời giải (có giải thích)
HS nhận xét, bổ sung sửa chữa ghi chép HS trao đổi rút kết quả: …
HĐ3: Củng cố hướng dẫn học nhà: *Củng cố:
-Nêu lại khái niệm vectơ không gian, tính chất vectơ khơng gian, tích số với mọt vectơ
-Áp dụng: Cho HS nhóm thảo luận để tìm lời giải tập SGK gọi HS đại diện lên bảng trình bày lời giải (có giải thích)
*Hướng dẫn học nhà:
-Xem lại học lý thuyết theo SGK
-Soạn trước phần lại, làm thêm tập 3,4 SGK trang 91 92
- -Ngày: 10/12/2010
Tiết PPCT: 28 LUYỆN TẬP §1
I.Mục Tiêu:
Qua học HS cần:
M
G N
B D
C
(96)1 Về kiến thức:
-Khái niệm điều kiện đồng phẳng ba vectơ không gian 2 Về kỹ năng:
-Vận dụng phép cộng, trừ vectơ, nhân vectơ với số, tích vơ hướng hai vectơ, hai vectơ không gian để giải tập
-Biết cách xét đồng phẳng không đồng phẳng ba vectơ không gian Về tư duy: + Phát triển tư trừu tượng, trí tưởng tượng khơng gian
+ Biết quan sát phán đốn xác
4 Thái độ: Cẩn thận, xác, nghiêm túc, tích cực họat động II.Chuẩn Bị:
GV: Giáo án, phiếu học tập,
HS: Soạn trước đến lớp, trả lời câu hỏi hoạt động. III Phương Pháp:
- Gợi mở, vấn đáp, đan xen hoạt động nhóm III Tiến trình học:
*Ổn định lớp, giới thiệu: Chia lớp thành nhóm *Bài mới:
Hoạt động GV Hoạt động HS Nội Dung
HĐ1: Khái niệm đồng phẳng vectơ không gian:
HĐTP1:
GV gọi HS nhắc lại khái niệm vectơ phương
GV vẽ hình phân tích vectơ đồng phẳng không đồng phẳng nêu câu hỏi Vậy khơng gian ba vectơ đồng phẳng?
GV gọi HS nêu định nghĩa đồng phẳng vectơ, GV vẽ hình ghi tóm tắt bảng (hoặc treo bảng phụ)
HĐTP2: Ví dụ áp dụng: GV cho HS lớp xem nội dung ví dụ hoạt động
HS nhắc lại khái niệm vectơ phương…
HS ý theo dõi bảng…
HS suy nghĩ trả lời: Ba vectơ đồng phẳng giá chúng sòng song với mặt phẳng
HS nêu định nghĩa SGK
HS nhóm thảo luận để tìm lời giải đại diện lên
II.Điều kiện đồng phẳng vectơ: 1) Khái niệm đồng phẳng vectơ khơng gian:
2) Định nghĩa: * Hình vẽ 3.6 SGK
Trong không gian ba vectơ gọi đồng phẳng giá chúng song song với mặt phẳng
A B
(97)SGK cho HS nhóm thảo luận để tìm lời giải, gọi HS đại diện nhóm lên bảng trình bày lời giải
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời giải (nếu HS không trình bày lời giải)
bảng trình bày (có giải thích) HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi để rút kết quả: ,
IK ED
AF
Các vectơ có giá song song với mp(AFC) vectơ có giá nằm mặt phẳng (AFC) nên vectơ đồng phẳng
Ví dụ: HĐ 5_(SGK)
HĐ2: Điều kiện để vectơ đồng phẳng:
HĐTP1:
GV gọi HS nêu nội dung định lí GV vẽ hình, phân tích gợi ý (Sử dụng tính quy tắc hình bình hành)
GV cho HS nhóm suy nghĩ tìm lời giải gọi HS đại diện lên bảng trình bày lời giải Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lf (nếu HS khơng trình bày lời giải)
HĐTP2:
GV cho HS nhóm thảo luận
HS nêu định lí SGK cgú ý theo dõi hình vẽ để thảo luận theo nhóm tìm cách chứng minh định lí 1… HS đại diện nhóm lên bảng trình bày lời giải (có giải thích)
HS nhận xét , bổ sung sửa chữa ghi chép
HS trao đổi để rút kết quả: …
HS thỏa luận theo nhóm để
3) Điều kiện để vectơ đồng phẳng: Định lí 1: (Xem SGK)
Ví dụ: HĐ 6_(SGK) K
I D
A
C
B
H
E
G
(98)tìm lời giải ví dụ HĐ gọi HS đại diện nhóm lên bảng trình bày lời giải
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét nêu lời giải (nếu HS khơng trình bày lời giải)
HĐTP3:
Tương tự GV cho HS nhóm thảo luận để tìm lời giải ví dụ HĐ gọi HS đại diện lên bảng trình bày lời giải
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét nêu lời giải (nếu HS khơng trình bày lời giải)
tìm lời giải cử đại diện lên bảng trình bày lời giải (có giải thích)
HS nhận xét, bổ sung sửa chữa ghi chép
HS trao i rỳt kt qu; vectơ -a b
2
c a b a b
2
c a b a b c, ,
Dựng vectơ Theo quy tắt phép trừ hai vectơ ta tìm vectơ Vì nên theo định lí ba vectơ đồng phẳng
HS thảo luận theo nhóm để tìm lời giải cử đại diện lên bảng trình bày lời giải (có giải thích)
HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi để rút kết quả: Ta có:
0
ma nb pc0 giả sử p Khi ta viết:
m n
c a b
p p
Vậy …
Ví dụ: HĐ7_SGK
HĐ3: Củng cố hướng dẫn học nhà: *Củng cố:
-Nhắc lại điều kiện đồng phẳng vectơ -Áp dụng giải tập:
1)Cho tứ diện ABCD, gọi G trọng tâm tam giác BCD Chứng minh rằng:
ABACAD AG
, ,
AC BD IJ
2)Cho tứ diện ABCD Gọi I, J tương ứng trung điểm AB, CD Chứng minh vectơ đồng phẳng
*Hướng dẫn học nhà:
-Xem học lí thuyết theo SGK
-Làm thêm tập 1, 2, 3, 4,5, 10 SGK
(99)- -Ngày: 12/12/2010
Tiết PPCT: 29 Đ2 hai đờng thẳng vng góc
I.Mục Tiêu:
Qua học HS cần: 1 Về kiến thức:
-Khái niệm vectơ phương đường thẳng; -Khái niệm góc hai đường thẳng;
2 Về kỹ năng:
-Xác định vectơ phương đường thẳng, góc hai đường thẳng -Biết chứng minh hai đường thẳng vng góc với
Về tư duy: + Phát triển tư trừu tượng, trí tưởng tượng không gian + Biết quan sát phán đốn xác
4 Thái độ: Cẩn thận, xác, nghiêm túc, tích cực hoạt động II.Chuẩn Bị:
GV: Giáo án, phiếu học tập,
HS: Soạn trước đến lớp, trả lời câu hỏi hoạt động. III Phương Pháp:
- Gợi mở, vấn đáp, đan xen hoạt động nhóm III Tiến trình học:
*Ổn định lớp, giới thiệu: Chia lớp thành nhóm *Bài mới:
Hoạt động GV Hoạt động HS Nội Dung
HĐ1:
HĐTP1: Tìm hiểu góc hai vectơ khơng gian: GV gọi HS nêu định nghĩa SGK, GV treo bảng phụ
I.Tích vơ hướng hai vectơ khơng gian:
(100)có hình vẽ 3.11 (như SGK lên bảng) phân tích viết kí hiệu…
HĐTP2: Ví dụ áp dụng: GV cho HS nhóm thảo luận tìm lời giải ví dụ HĐ gọi HS đại diện nhóm lên bảng trình bày có giải thích
GV gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời giải (nếu HS khơng trình bày lời giải)
HĐTP3: Tích vơ hướng hai vectơ:
GV gọi HS nhắc lại khái niệm tích vơ hướng hai vectơ hình học phẳng lên bảng ghi lại công thức
HS nêu định nghĩa SGK
Chú ý theo dõi bảng để lĩnh hội kiến thức…
HS nhóm thảo luận để tìm lời giải cử đại diện lên bảng trình bày lời giải (có giải thích)
HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi để rút kết quả: Với tứ diện ABCD H trung điểm AB, nên ta có:
0
, 120
, 150
AB BC
CH AC
HS nhắc lại khái niệm tích vơ hướng hai vectơ hình học phẳng
v
B
A
C
u BAC vu
0
0 BAC180 u v ,
(101)tích vơ hướng hai vectơ GV: Trong hình học khơng gian, tích vơ hướng hai vectơ định nghĩa hoàn toàn tương tự
GV gọi HS nêu định nghĩa tích vơ hướng hai vectơ khơng gian
HĐTP4: ví dụ áp dụng:
GV cho HS nhóm thảo luận để tìm lời giải ví dụ HĐ gọi HS đại diện lên bảng trình bày lời giải
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời giải (nếu HS khơng trình bày lời giải)
HS nêu khái niệm tích vơ hướng hai vectơ khơng gian (trong SGK)
HS nhóm thảo luận để tìm lời giải cử đại diện lên bảng trình bày lời giải (có giải thích)
HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi để rút kết quả:
' AA '
' os ',
'
AC AB AD
BD AD AB AB AD
AC BD
c AC BD
AC BD 2 2
' ( AA ')( )
AA ' AA '
Ëy cos ',
đó: AC' BD
AC BD AB AD AD AB
AB AD AB AD AD AB
AD AB AB AB
V AC BD
Do
Ví dụ HĐ1: (SGK)
(102)*Định nghĩa: (Xen SGK)
0, 0, ta cã :
os ,
u v
u v u v c u v
0, 0, quy íc :
u v u v Nếu
HĐ2: tìm hiểu vectơ phương đường thẳng: HĐTP1:
GV gọi HS nêu định nghĩa vectơ phương đường thẳng
GV đặt câu hỏi:
aaNếu vectơ phương đường thẳng d vectơ kvới k0 có phải vectơ phương đường thẳng d khơng? Vì sao?
HS nêu định nghĩa SGK
HS nhóm suy nghĩ trả lời giải thích …
II.Vectơ phương đường thẳng: 1)Định nghĩa: (SGK)
d a
0 đ ợc gọi vectơ ph ơng đ ờng thẳng
a
d
2)Nhận xét: (SGK)
B'
C'
A'
B
C
A
D
(103)Một đường thẳng d khơng gian hồn tồn xác định nào?
Hai đường thẳng d d’ song song với nào?
GV yêu cầu HS lớp xem nhận xét SGK
aaa)Nếu vectơ phương đường thẳng d vectơ kvới k0 vectơ phương đường thẳng d b)…
c)…
HĐ3: Củng cố hướng dẫn học nhà: *Củng cố:
-Nhắc lại khái niệm góc hai vectơ khơng gian khái niệm vectơ phương -Áp dụng: Giải tập SGK
GV cho HS nhóm thảo luận để tìm lời giải gọi HS đại diện lên bảng trình bày lời giải GV nhận xét, bổ sung nêu lời giải (nếu HS khơng trình bày lời giải)
*Hướng dẫn học nhà:
-Xem lại học lí thuyết theo SGK
-Làm tập 3, 4, 5, SGK trang 97, 98
- -Ngày: 20/12/2010
Tiết PPCT: 30 LUYỆN TẬP §2
I Mục Tiêu: Qua học HS cần: 1 Về kiến thức:
-Khái niệm điểu kiện để hai đường thẳng vng góc với 2 Về kỹ năng:
-Xác định vectơ phương đường thẳng, góc hai đường thẳng -Biết chứng minh hai đường thẳng vng góc với
Về tư duy: + Phát triển tư trừu tượng, trí tưởng tượng không gian + Biết quan sát phán đốn xác
4 Thái độ: Cẩn thận, xác, nghiêm túc, tích cực hoạt động II.Chuẩn bị:
GV: Giáo án, phiếu học tập,
HS: Soạn trước đến lớp, trả lời câu hỏi hoạt động. III Phương Pháp:
- Gợi mở, vấn đáp, đan xen hoạt động nhóm III Tiến trình học:
*Ổn định lớp, giới thiệu: Chia lớp thành nhóm
*Kiểm tra cũ: Kết hợp với điều khiển hoạt động nhóm. *Bài mới:
Hoạt động GV Hoạt động HS Nội Dung
HĐ1: Tìm hiểu góc hai đường thẳng khơng gian:
III Góc hai đường thẳng: 1)Định nghĩa: (SGK)
(104)HĐTP1:
GV gọi HS nhắc lại định nghĩa góc hai đường thẳng mặt phẳng
Góc hai đường thẳng có số đo nằm đoạn nào?
GV: Dựa vào định nghĩa góc hai đường thẳng mặt phẳng người ta xây dựng nên định nghĩa góc hai đường thẳng không gian Vậy theo em góc hai đường thẳng khơng gian góc nào?
GV gọi HS nêu định nghĩa góc hai đường thẳng khơng gian
GV vẽ hình hướng dẫn cách vẽ góc hai đường thẳng khơng gian
GV nêu câu hỏi:
Để xác định góc hai đường thẳng a b không gian ta làm nào?
u
v
u vNếu vectơ
phương đường thẳng a vectơ phương đường thẳng b (,) có phải góc hai đường thẳng a b khơng? Vì sao?
Khi góc hai đường thẳng khơng gian 00? GV nêu nhận xét SGK yêu cầu HS xem SGK HĐTP2: Bài tập áp dụng: GV cho HS nhóm thảo luận để tìm lời giải ví dụ HĐ gọi HS đại diện nhóm có kết nhanh lên bảng trình bày
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời
HS suy nghĩ nhắc lại định nghĩa góc hai đường thẳng mặt phẳng
0 0 ;90
Góc hai đường thẳng có số đo đoạn
HS suy nghĩ trả lời …
HS nêu định nghĩa góc hai đường thẳng không gian…
HS suy nghĩ trả lời …
HS ý theo dõi bảng dể lĩnh hội kiến thức
HS nhóm thảo luận để tìm lời giải cử đại diện lên bảng trình bày (có giải thích) HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi để rút kết quả:
khơng gian góc hai đường thẳng a’ b’ qua điểm song song với a b
a
b
a’
(105)
giải (nếu HS khơng trình bày lời giải)
0
0
, ' ' 90 ; , ' ' 45
' ', ' 60
AB B C AC B C
A C B C
HS ý theo dõi để lĩnh hội kiến thức…
Ví dụ HĐ3: (SGK)
HĐ2: Tìm hiểu hai đường thẳng vng góc:
HĐTP1:
GV: Trong mặt phẳng, hai đường thẳng vng góc với nào?
Định nghĩa hai đường thẳng vng góc không gian tương tự mặt phẳng GV gọi HS nêu định nghĩa SGK
GV nêu hệ thống câu hỏi: ,
u v
ab u v,
-Nếu vectơ phương hai đường thẳng a, b vectơ có mối liên hệ gì?
ca-Cho a//b có
HS suy nghĩ trả lời …
HS nêu định nghĩa SGK
HS suy nghĩ trả lời…
u v
IV.Hai đường thẳng vng góc: 1)Định nghĩa: (SGK)
Hai đường thẳng đgl vng góc với góc chúng 900.
aba vng góc với b kí hiệu:
a
b
O b’ Nhận xét: (SGK)
D' D
A
C
B
A'
C'
(106)đường thẳng c cho c so với b?
-Nếu đường thẳng vng góc với khơng gian liệu ta có khẳng định cắt khơng?
HĐTP2: Bài tập áp dụng: GV phân công nhiệm vụ cho HS nhóm thảo luận tìm lời giải ví dụ HĐ
Gọi HS đại diện lên bảng trình bày lời giải
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời giải (nếu HS khơng trình bày lời giải)
/ /
a b
c b
c a
Không khẳng định được, hai đường thẳng chéo
HS nhóm thảo luận để tìm lời giải cử đại diện lên bảng trình bày (có giải thích)
HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi để rút kết quả: …
Ví dụ HĐ4: (SGK)
Ví dụ HĐ5: (SGK)
HĐ3: Củng cố hướng dẫn học nhà: *Củng cố:
Gọi HS nhắc lại định nghĩa: Góc hai đường thẳng, hai đường thẳng vng góc, điều kiện để hai đường thẳng vng góc
*Áp dụng: Giải tập 5, SGK
GV phân cơng nhiệm vụ cho nhóm gọi HS đại diện lên bảng trình bày lời giải GV nhận xét, bổ sung nêu lời giải (nếu HS khơng trình bày lời giải) *Hướng dẫn học nhà:
-Xem lại học lý thuyết theo SGK
-Làm thêm tập lại SGK trang 97 98
- -D' D
A
C
B
A'
C'
(107)Ngày: 01/01/2011
Tiết PPCT: 31 Đ3 đờng thẳng vng góc với mặt phẳng
I Mục Tiêu:
Qua học HS cần:
1 Về kiến thức:
-Biết định nghĩa điều kiện để đường thẳng vng góc với mp; -Khái niệm phép chiếu vng góc;
-Khái niệm mặt phẳng trung trực đoạn thẳng
2 Về kỹ năng:
-Biết cách chứng minh đường thẳng vng góc với mp, đường thẳng vng góc với đường thẳng;
-Xác định vectơ pháp tuyến mặt phẳng - Phát triển tư trừu tượng, trí tưởng tượng khơng gian
- Xác định hình chiếu vng góc điểm, đường thẳng, tam giác -Bước đầu vận dụng định lí ba đường vng góc
-Xác định góc đường thẳng mp
-Biết xét mối liên hệ tính song song tính vng góc đường thẳng mp Về tư duy:
+ Phát triển tư trừu tượng, trí tưởng tượng khơng gian + Biết quan sát phán đốn xác
4 Thái độ: Cẩn thận, xác, nghiêm túc, tích cực hoạt động. II.Chuẩn bị:
GV: Giáo án, phiếu học tập,
HS: Soạn trước đến lớp, trả lời câu hỏi hoạt động.
III Phương Pháp:
- Gợi mở, vấn đáp, đan xen hoạt động nhóm III Tiến trình học:
*Ổn định lớp, giới thiệu: Chia lớp thành nhóm
*Kiểm tra cũ: Kết hợp với điều khiển hoạt động nhóm. *Bài mới:
Hoạt động GV Hoạt động HS Nội Dung
HĐ1:
HĐTP1: Tìm hiểu định nghĩa đường thẳng vng góc với mp.
GV vẽ hình gọi HS nêu định nghĩa, GV ghi kí hiệu.
HS nêu định nghĩa SGK
HS ý theo dõi bảng để lĩnh hội kiến thức.
(108)GV gọi HS nêu định lí trong SGK, GV cho HS nhóm thảo luận để tìm cách chứng minh định lí.
GV gọi HS đại diện lên bảng trình bày lời giải.
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu chứng minh (nếu HS khơng trình bày đúng) Từ định lí ta có hệ sau: GV nêu nội dung hệ SGK
HĐTP2: Ví dụ áp dụng: GV nêu ví dụ cho HS nhóm thảo luận để tìm lời giải Gọi HS đại diện lên bảng trình bày lời giải
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét nêu lời giải (nếu HS khơng trình bày lời giải)
HS nêu nội dung định lí,thảo luận theo nhóm để tìm chứng minh Cử đại diện lên bảng trình bày chứng minh (có giải thích)
HS nhận xét, bổ sung sửa chữa ghi chép.
HS ý theo dõi bảng
HS suy nghĩ trả lời câu hỏi của HĐ 2.
Muốn chứng minh đường thẳng d vng góc với mp, ta chứng minh đường thẳng d vng góc với hai đường thẳng cắt nằm mp
…
HS nhóm thảo luận để tìm lời giải cử đại diện lên bảng trình bày (có giải thích) HS nhận xét, bổ sung sửa chữa ghi chép.
HS trao đổi để rút kết quả: …
Đường thẳng d gọi vng góc với mpnếu d vng góc với đường thẳng a nằm mp
d Kí hiệu:
II.Điều kiện để đường thẳng vng góc với mp:
Định lí:(SGK)
Hệ quả: (SGK) Ví dụ HĐ1: (SGK) Ví dụ HĐ2: (SGK)
SA ABCD Bài tập: Cho hình chóp S.ABCD có đáy ABCD hình thang vng A B,
a
d
(109)
SAB
a)Chứng minh BC;
SBC
b)Trong tam giác SAB, gọi H chân đường cao kẻ từ A Chứng minh rằng: SH
HĐ2: Tìm hiểu tính chất:
HĐTP1:
GV gọi HS nêu tính chất SGK
GV vẽ hình phân tích… HĐTP2: Bài tập áp dụng GV nêu đề tập (hoặc phát phiếu HT)
GV yêu cầu HS nhóm thảo luận để tìm lời giải gọi HS đại diện lên bảng trình bày. GV gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, nêu lời giải đúng (nếu HS khơng trình bày lời giải)
HS nêu tính chất và ý theo dõi bảng để lĩnh hội kiến thức…
HS nhóm thảo luận để tìm lời giải cử đại diện lên bảng trình bày (có giải thích). HS nhận xét, bổ sung sửa chữa ghi chép.
HS trao đổi để rút kết quả: …
III.Tính chất:
Tính chất 1: (SGK)
Mặt phẳng trung trực đoạn thẳng: (SGK)
Tính chất 2: (SGK)
ABCD
Bài tập: Cho hình chóp S.ABCD có đáy ABCD hình vng SA, O giao điểm hai đường chéo AC BD hình vng ABCD
SAC
a)Chứng minh BD;
b) Chứng minh tam giác SBC, SCD tam giác vuông
c)Xác định mp trung trực đoạn thẳng SC
HĐ3: Củng cố hướng dẫn học nhà:
-Nhắc lại phương pháp để chứng minh dường thẳng vuông gác với mp; -Nhắc lại tính chất;
-Xem lại tập giải;
-Xem soạn trước phần lại SGK. -Làm tập 1, 2, SGK trang 105.
- -Ngày: 01/01/2011
Tiết PPCT: 32 Đ3 đờng thẳng vng góc với mặt phẳng
I Chuẩn bị:
GV: Giáo án, phiếu học tập,
HS: Soạn trước đến lớp, trả lời câu hỏi hoạt động. II Phương Pháp:
- Gợi mở, vấn đáp, đan xen hoạt động nhóm III Tiến trình học:
*Ổn định lớp, giới thiệu: Chia lớp thành nhóm
(110)Hoạt động GV Hoạt động HS Nội Dung HĐ1: Tìm hiểu tính chất
giữa quan hệ song song quan hệ song song đường thẳng và mp:
HĐTP1:
GV vẽ hình phân tích để dẫn đến tính chất liên hệ quan hệ song song quan hệ vng góc đường thẳng mp.
HĐTP2: Ví dụ áp dụng:
GV nêu ví dụ cho HS nhóm thảo luận để tìm lời giải.
SA ABCD
Ví dụ: Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật
BC SAB ADSAB
a)Chứng minh: từ suy
AHSBb)Gọi AH đường cao tam giác SAB Chứng minh:
HS ý theo dõi để lĩnh hội kiến thức …
HS nhóm thảo luận để tìm lời giải cử đại diện lên bảng trình bày (có giải thích)
HS nhận xét, bổ sung sửa chữa ghi chép.
HS nhoms trao đổi để rút kết quả: …
IV Liên hệ quan hệ song song và quan hệ vuông góc đường thẳng mp.
Tính chất 1: (SGK)
/ / )
, : ph©n biƯt
) / /
a b
a b
a
a b
b a a b
b
Hình vẽ: Hình 3.22 SGK Tính chất 2: (SGK)
/ / )
, : ©n biÖt
) / / a a a Ph b a a
Hình vẽ: Hình 3.23 SGK Tính chất 3: (SGK)
/ / ) ) / / a
a b a
b
a
b a b a
b
Hình vẽ: Hình 3.24 SGK
HĐ2: Tìm hiểu phép chiếu vng góc định lí ba đường vng góc.
HĐTP1:
GV vẽ hình dẫn dắc đến khái niệm phép chiếu vng góc
GV cho HS xem nhận xét SGK.
HS ý theo dõi để lĩnh hội kiến thức…
HS xem nhận xét SGK…
(111)HĐTP2: Tìm hiểu định lí ba đường vng góc:
GV vừa nêu vừa vẽ hình minh họa định lí ba đường vng góc. GV hướng dẫn chứng minh:
, '
a b b a b
ab’ …
HĐTP3:
Tương tự HĐTP2, GV vẽ hình và phân tích nêu định nghĩa góc giữa đường thẳng mp.
GV phân tích giải tập ví dụ (hoặc tập tương tự) SGK
HS ý theo dõi bảng để lĩnh hội kiến thức…
HS ý theo dõi hướng dẫn suy nghĩ thảo luận theo nhóm để tìm chứng minh định lí…
HS ý theo dõi để lĩnh hội kiến thức: Về góc đường thẳng và mp …
HS ý theo dõi lời giải …
1)Phép chiếu vng góc: (SGK)
Cho d , phép chiếu song song theo phương d gọi phép chiếu vng góc lên mp
*Nhận xét: (Xem SGK)
2)Định lí ba đường vng góc: (SGK)
Hình 3.27 SGK
B b
A
b' A’ a B’
3)Góc đường thẳng mp: Định nghĩa: (SGK)
HĐ3: Củng cố hướng dẫn học nhà: *Củng cố:
-Gọi HS nhắc lại tính chất liên hệ quan hệ song song quan hệ vng góc đường thẳng mp, phép chiếu vng góc, định lí ba đường vng góc góc đường thẳng mp
-Bài tập áp dụng: Giải tập SGK trang 105 *Hướng dẫn học nhà:
d
B' B A
(112)-Xem lại học lí thuyết theo SGK
-Làm thêm tập SGK trang 105
- -Ngày: 01/01/2011
Tiết PPCT: 33 Đ3 đờng thẳng vuông góc với mặt phẳng
Luyện tập
I.Chuẩn bị:
GV: Giáo án, phiếu học tập,
HS: Làm tập trước đến lớp. II Phương Pháp:
- Gợi mở, vấn đáp, đan xen hoạt động nhóm III Tiến trình học:
*Ổn định lớp, giới thiệu: Chia lớp thành nhóm
*Kiểm tra cũ: Kết hợp với điều khiển hoạt động nhóm. *Bài mới:
Hoạt động GV Hoạt động HS Nội Dung
HĐ1:
HĐTP 1: Ơn tập lại lí thuyết đường thẳng vng góc với mặt phẳng:
GV gọi HS đứng chỗ trả lời tập SGK trang 104
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét nêu lời giải đúng(nếu HS khơng trình bày lời giải)
HĐTP2: Bài tập chứng minh đường thẳng vng góc với mặt phẳng:
GV cho HS xem đề thảo luận theo nhóm để tìm lời giải, gọi HS đại diện lên bảng rình bày lời giải Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời giải (nếu HS khơng trình bày lời giải)
GV hướng dẫn HS làm tương tự tập
HS chỗ suy nghĩ trả lời câu hỏi tập 1… HS nhận xét, bổ sung sửa chữa ghi chép…
HS trao đổi để rút kết quả: … KQ: a)Đúng, b) Sai, c)Sai, d)Sai
HS thảo luận theo nhóm để tìm lời giải cử đại diêệnlên bảng trình bày lời giải (có giải thích) HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi để rút kết quả:
) )
nªn
a BC AI
BC ADI
BC DI
b BC ADI
BC AH
AH ADI
Mµ DI AH AH BCD
(113)Bài tập 2: (SGK)
HĐ2:
HĐTP1: Giải tập SGK: GV cho HS nhóm xem đề tập cho HS thảo luận theo nhóm để tìm lời giải Gọi HS đại diện lên bảng trình bày lời giải nhóm
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời giải (nếu HS không trình bày
HS xem đề thảo luận theo nhóm để tìm lời giải, cử đại diện lên bảng trình bày lời giải (có giải thích)
HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi để rút kết quả:
)
a OA OB
OA OBC
OA OC
OA BC
BC OH
BC AOH
BC OA
BC AH
ABCH CABHTương tự ta chứng minh nên H
Bài tập 4: (SGK)
B D
C A
I
(114)đúng lời giải)
HĐTP2: Giải tập SGK. GV cho HS thảo luận theo nhóm để tìm lời giải gọi HS đại diện lên bảng trình bày
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời giải (nếu HS khơng trình bày lời giải)
(GV hướng dẫn vẽ hình hướng dẫn giải)
trực tâm tam giác ABC b)Áp dụng hệ thức lượng vào tam giác vuông ABC AOK…
HS thảo luận theo nhóm để tìm lời giải đại diện lên bảng trình bày lời giải (có giải thích) HS nhận xét, bổ sung sửa chữa ghi chép
HS trao đổi rút kết quả: …
Bài tập 7: SGK
A
O
C
B
(115)HĐ3: Củng cố hướng dẫn học nhà: *Củng cố:
-Gọi HS nhắc lại tính chất liên hệ quan hệ song song quan hệ vuông góc đường thẳng mp, phép chiếu vng góc, định lí ba đường vng góc góc đường thẳng mp
-Nhắc lại: Để tính góc đường thẳng mặt phẳng ta áp dụng hệ thức lượng tam giác vng, định lí cơsin tam giác,…
*Hướng dẫn học nhà:
-Xem lại tập giải làm thêm tập SGK trang 104 105
- -A
C
B S
M
(116)Ngày: 20/01/2011
Tiết PPCT: 34 ( Tiết1: Chương & phần đầu chương )kiÓm tra
I Mục tiêu:
(117)-Củng cố lại kiến thức chưong II III :
+Đường thẳng mặt phẳng song song, hai mặt phẳng song song, phép chiếu song song, …
+Quan hệ vng góc khơng gian: Chứng minh đường thẳng vng góc với đường thẳng, vng góc với mặt phẳng; …
2)Về kỹ năng:
-Làm tập đề kiểm tra -Vận dụng linh hoạt lý thuyết vào giải tập 3)Về tư thái độ:
Phát triển tư trừu tượng, khái qt hóa, tư lơgic,…
Học sinh có thái độ nghiêm túc, tập trung suy nghĩ để tìm lời giải, biết quy lạ quen II.Chuẩn bị GV HS:
GV: Giáo án, đề kiểm tra, gồm mã đề khác
HS: Ôn tập kỹ kiến thức chương I, chuẩn bị giấy kiểm tra IV.Tiến trình kiểm tra:
*Ổn định lớp. *Phát kiểm tra: Bài kiểm tra gồm phần:
(118)Ngy: 20/01/2011
Tit PPCT: 35 Đ4 hai mặt phẳng vu«ng gãc
I Mục Tiêu:
Qua học HS cần: 1 Về kiến thức:
-Khái niệm góc hai mặt phẳng;
-Khái niệm điều kiện để hai mặt phẳng vng;
-Tính chất hình lăng trụ đứng, lăng trụ đều, hình hộp đứng, hình hộp chữ nhật, hình lập phương; - Khái niệm hình chóp hình chóp cụt
2 Về kỹ năng:
-Xác định góc hai mặt phẳng -Biết chứng minh hai mặt phẳng vng góc
- Vận dụng tính chất hình lăng trụ đứng, hình hộp, hình chóp đều, chóp cụt để giải tập Về tư duy:
+ Phát triển tư trừu tượng, trí tưởng tượng khơng gian + Biết quan sát phán đốn xác
4 Thái độ: Cẩn thận, xác, nghiêm túc, tích cực hoạt động. II.Chuẩn bị:
GV: Giáo án, phiếu học tập,
HS: Soạn trước đến lớp, trả lời câu hỏi hoạt động. III Phương Pháp:
- Gợi mở, vấn đáp, đan xen hoạt động nhóm IV Tiến trình học:
*Ổn định lớp, giới thiệu: Chia lớp thành nhóm
*Kiểm tra cũ: Kết hợp với điều khiển hoạt động nhóm. *Bài mới:
Hoạt động GV Hoạt động HS Nội Dung
HĐ1: Tìm hiểu góc hai mặt phẳng:
HĐTP1:
GV vẽ hình nêu định nghĩa góc hai mặt phẳng
HS ý bảng để lĩnh hội kiến thức…
(119)HĐTP2: Tìm hiểu cách xác định góc hai mặt phẳng cắt nhau:
GV vẽ hình nêu cách xác định góc hai mặt phẳng
vµ
GV: Dựa vào đâu để suy góc hai mặt phẳng góc hai đường thẳng m n?
GV phân tích suy cách dựng góc hai mặt phẳng cắt nhau…
HS theo dõi bảng để lĩnh hội kiến thức…
HS: Dựa vào tính chất góc có cạnh tuơng ứng vng góc bù hình học phẳng
1)Định nghĩa: (SGK)
Góc hai mặt phẳng góc hai đường thẳng vng góc với hai mặt phẳng
2)Cách xác định góc hai mặt phẳng cắt nhau:
vµ Xét hai mặt phẳng cắt theo giao tuyến c
c
a b
(120)nc m c ( ) Từ điểm I bất kỳ c, mặt phẳng dựng đường thẳng dựng đường thẳng vµ Góc hai mặt phẳng góc hai đường thẳng m n
HĐ2: Tìm hiểu diện tích hình chiếu đa giác. HĐTP1:
GV lấy ví dụ cho HS nhóm thỏa luận tìm lời giải GV gọi HS đại diện nhóm lên bảng trình bày lời giải (có giải thích)
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét nêu chứng minh (nếu HS khơng trình bày lời giải)
GV: Như ta biết: Đa giác n ln phân tích thành n -2 tam giác, ta có
HS thảo luận theo nhóm để tìm lời giải cử đại diện lên bảng trình bày (có giải thích)
HS nhận xét, bổ sung sửa chữa ghi chép…
HS trao đổi để rút kết quả: …
HS ý bảng để lĩnh hội kiến thức…
3) Diện tích hình chiếu đa giác:
SA ABC S'S c os
Ví dụ: Cho hình chóp S ABC có đáy tam giác, Tam giác SBC có diện tích S, tam giác ABC có diện tích S’ Góc tạo hai mặt phẳng (SBC) (ABC) Chứng minh rằng:
Tổng quát ta có:
' os
S S c
S: diện tích hình H; S’: diện tích hình H’(hình chiếu hình H lên mặt phẳng)
: Góc hai mặt phẳng chứa hình H
c
a b
m
n
(121)cơng thức tổng qt diện tích hình chiếu đa giác… GV nêu công thức diện tích hình chiếu (tương tự SGK)
HĐTP2: Bài tập áp dụng: GV nêu đề tập cho HS thảo luận theo nhóm
Gọi HS đại diện lê bảng trình bày lời giải
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời giải (nếu HS khơng trình bày lời giải)
HS thảo luận theo nhóm để tìm lời giải cử đại diện lên bảng trình bày (có giải thích) HS nhận xét, bổ sung sửa chữa ghi chép
và hình H’
*Bài tập áp dụng:
SC ABC
Cho hình chóp S.ABC có đáy ABC tam giác vng cân B có , AB = SA =a
Tính diện tích tam giác SAB
HĐ3: Củng cố hướng dẫn học nhà: *Củng cố:
-Gọi HS nhắc lại khái niệm góc hai mặt phẳng, nhắc lại cách dựng góc hai mặt phẳng *Hướng dẫn học nhà:
-Học theo SGK, xem trước soạn trước phần lý thuyết lại
- -Ngày: 20/01/2011
Tit PPCT: 36 Đ4 hai mặt phẳng vuông góc
I Mục Tiêu:
Qua học HS cần: 1 Về kiến thức:
-Khái niệm góc hai mặt phẳng;
-Khái niệm điều kiện để hai mặt phẳng vng;
-Tính chất hình lăng trụ đứng, lăng trụ đều, hình hộp đứng, hình hộp chữ nhật, hình lập phương; - Khái niệm hình chóp hình chóp cụt
2 Về kỹ năng:
-Xác định góc hai mặt phẳng -Biết chứng minh hai mặt phẳng vng góc
(122)+ Phát triển tư trừu tượng, trí tưởng tượng khơng gian + Biết quan sát phán đốn xác
4 Thái độ: Cẩn thận, xác, nghiêm túc, tích cực hoạt động. II.Chuẩn bị:
GV: Giáo án, phiếu học tập,
HS: Soạn trước đến lớp, trả lời câu hỏi hoạt động. III Phương Pháp:
- Gợi mở, vấn đáp, đan xen hoạt động nhóm IV Tiến trình học:
*Ổn định lớp, giới thiệu: Chia lớp thành nhóm
*Kiểm tra cũ: Kết hợp với điều khiển hoạt động nhóm.
- Nêu định nghĩa góc hai mặt phẳng, cơng thức tính diện tích hình chiếu
( ) -Áp dụng: GV vẽ hình lên bảng hai mặt phẳng cát theo giao tuyến c gọi HS lên bảng dùng thước vẽ nêu cách xác định góc hai mặt phẳng
*Bài mới:
Hoạt động GV Hoạt động HS Nội Dung
HĐ1: Tìm hiểu hai mặt phẳng vng góc:
HĐTP 1:
GV gọi HS nêu định nghĩa hai đường thẳng vng góc… GV vẽ hình viết ký hiệu lên bảng…
HĐTP2:
GV gọi HS nêu định lí điểu kiện cần đủ để hai mặt phẳng vng góc với
GV vẽ hình lên bảng gợi ý phân tích chứng minh
HĐTP3: Bài tập áp dụng: GV cho HS nhóm thảo luận tìm lời giải ví dụ HĐ SGK gọi HS đại diện lên bảng trình bày lời giải
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời giải (nếu HS không trình bày dúng lời giải)
HS nêu định nghĩa hai mặt phẳng vng góc
HS ý theo dõi bảng để lĩnh hội kiến thức…
HS nêu định lí SGK…
Chú ý theo dõi bảng…
HS thảo luận theo nhóm để tìm lời giải ghi lời giải vào bảng phụ, cử đại diện lên bảng trình bày lời giải HS nhận xét, bổ sung sửa chữa ghi chép…
HS trao đổi rút kết quả: …
II Hai mặt phẳng vng góc: 1)Định nghĩa: ( SGK trang 108)
( ) ( ) Hai mặt phẳng vng góc với ký hiệu:
(123)
HĐ2: Tìm hiểu vè hệ và định lí:
HĐTP1:
GV gọi HS nêu hệ 2, GV ghi hệ ký hiệu bảng
HĐTP2:
GV nêu định lí hướng dẫn chứng minh
GV vẽ hình lên bảng ghi định lí ký hiệu
GV cho HS nhóm thảo luận để chứng minh định lí
Gọi HS đại diện lên bảng trình bày chứng minh
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, phân tích chứng minh (nếu HS khơng trình bày đúng)
HĐTP3:
GV cho HS nhóm thảo luận tìm lời giải ví dụ HĐ SGK trang 109 gọi đại diện lên bảng trình bày lời giải GV nhận xét, bổ sung (nếu cần)
HS nêu hệ SGK…
HS ý bảng để lĩnh hội kiến thức…
HS ý theo dõi bảng… HS thảo luận theo nhóm để tìm chứng minh định lí cử đại diện lên bảng trình bày lời giải (có giải thích)
HS nhận xét, bổ sung sử chữa ghi chép…
HS thảo luận theo nhóm để tìm lời giải cử đại diện lên bảng trình bày (có giải thích)
Hệ 1: (SGK) d a a a d
Hệ 2: (SGK) A d A d d
Định lí 2: (SGK)
d d
Ví dụ HĐ2 & HĐ3: (SGK trang 109)
HĐ3: Tìm hiểu hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương:
HĐTP1:
GV nêu định nghĩa hình lăng trụ đứng SGK
Tương tự hình hộp chữ nhật, hình lập phương
(GV vẽ hình minh họa…) HĐTP2:
GV cho HS thảo luận theo
HS ý theo dõi bảng để lĩnh hội kiến thức…
(xem hình vẽ 3.35 SGK)
HS nhóm thảo luận để tìm
(124)nhóm để tìm lời giải ví dụ HĐ4 SGK
Gọi HS đại diện nhóm đứng chỗ để trình bày lời giải Gọi HS nhận xét, bổ sung (nếu cần)
GV nêu ví dụ (SGK trang111) GV phân tích hướng dẫn giải…
lời giải cử đại diện lên bảng trình bày (có giải thích) HS nhận xét, bổ sung sửa chữa ghi chép…
1)Định nghĩa: (SGK)
Hình vẽ: 3.35 SGK
Ví dụ: (SGK trang 111)
HĐ4: Tìm hiểu hình chóp đều hình chóp cụt đều: HĐTP1:
GV vẽ hình minh họa nêu khái niệm hình chóp hình chóp cụt
Hình chóp có mặt bên với nhau?
Góc tạo mặt bên với mặt có khơng? Vì sao?
(Câu hỏi đặt tương tự hình chóp cụt đều)
HS ý theo dõi bảng để lĩnh hội kiến thức…
HS suy nghĩ trả lời câu hỏi đặt ra…
IV Hình chóp hình chóp cụt đều:
Hình chóp có đáy đa giác chân đường cao trùng với tâm đa giác đáy gọi hình chóp
I B'
C'
D'
A'
D C
B
A
B
O
E
D
C S
(125)HĐTP2:
GV cho HS thảo luận theo nhóm để tìm lời giải ví dụ HĐ
GV: Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời giải (nếu HS khơng trình bày lời giải)
HS thảo luận theo nhóm để tìm lời giải ví dụ HĐ 7, cử đại diện lên bảng trình bày lời giải (có giải thích)
HS nhận xét, bổ sung sửa chữa ghi chép…
Phần hình chóp nằm đáy thiết diện song song với đáy cắt cạnh bên hình chóp gọi hình chóp cụt
Ví dụ HĐ 6, 7: (SGK trang 112) HĐ5: Củng cố hướng dẫn học nhà:
*Củng cố:
- Nhắc lại định nghĩa hai mặt phẳng vng góc với nhau, điều kiện cần đủ để hai mặt phẳng vng góc với
( ) - Nêu phương pháp chứng minh hai mặt phẳng vng góc với nhau. *Áp dụng: Giải tập SGK trang 114
*Hướng dẫn học nhà:
- Xem lại học lý thuyết theo SGK;
- Làm tập 1, , 4, 6, 11 SGK trang 113, 114
- -O S
(126)Ngày: 25/01/2011
Tiết PPCT: 37 Luyện tập §4
III Tiến trình học:
*Ổn định lớp, giới thiệu: Chia lớp thành nhóm
*Kiểm tra cũ: Kết hợp với điều khiển hoạt động nhóm.
- Nêu định nghĩa hai mặt phẳng vng góc, điều kiện cần đủ để hai mặt phẳng vng góc -Áp dụng: Giải tập 7a SGK trang 114 (GV vẽ hình lên bảng)
GV hướng dãn giải câu b) *Bài mới:
Hoạt động GV Hoạt động HS Nội Dung
HĐ1:
HĐTP 1: GV gọi HS đứng chỗ trình bày lời giải tập (có giải thích)
GV nhận xét, bổ sung nêu lời giải (nếu HS khơng trình bày lời giải)
HĐTP2:
GV cho HS thảo luận theo nhóm gọi HS đại diện lên bảng trình bày lời giải.
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời giải (nếu HS khơng trình bày lời giải)
HS đứng chỗ trình bày lời giải (có giải thích)
HS suy nghĩ rút kết quả: a) Đúng; b)Sai
HS thảo luận theo nhóm để tìm lời giải cử đại diện lên bảng trình bày (có giải thích)
HS nhận xét, bổ sung sửa chữa ghi chép…
HS trao đổi rút kết quả:
2 2
2 2
2 2
giao tuyến ,
CA vu«ng ë A
DB giao tuyÕn vu«ng ë B
CD
6 24 676
676 26
CA AB
AB ADC
AB BAD
CA DA
CA DB AB
CD cm
(127)Bài tập 2: SGK
HĐ2:
HĐTP1: Giải tập SGK GV cho HS thảo luận theo nhóm gọi HS đại diện lên bảng trình bày lời giải. GV vẽ hình lên bảng…
Gọi HS nhận xét, bổ sung (nếu cần)
GV nhận xét, bổ sung nêu lời giải (nếu HS khơng trình bày lời giải)
HS thảo luận theo nhóm để tìm lời giải cử đại diện lên bảng trình bày (có giải thích)
HS nhận xét, bổ sung sửa chữa ghi chép…
HS trao đổi rút kết quả:
) Vì nên
) H nên
Trong mặt phẳng ta có HK//BC
b BC ABD BCD ABD
c DB AHK DB HK
BCD HK BD
v BC BD
Bài tập 3: SGK
D
C B
(128)HĐTP2:
GV vẽ hình, phân tích nêu lời giải tập SGK
GV gọi HS nêu phương pháp chứng minh hai mặt phẳng vng góc …
giả thiết
góc hai
mặt phẳng
AD ABC AD BC
Theo AB BC
BC ABD BC BD
AB BC
ABD
BD BC
ABC DBC
HS ý theo dõi bảng để lĩnh hội kiến thức trả lời câu hỏi …
A
C D
(129)Bài tập 6: SGK
HĐ3: Củng cố hướng dẫn học nhà:
*Củng cố:
- Nhắc lại định nghĩa hai mặt phẳng vuông góc với nhau, điều kiện cần đủ để hai mặt phẳng vng góc với
( ) - Nêu phương pháp chứng minh hai mặt phẳng vng góc với nhau. *Áp dụng: Giải tập SGK trang 114
*Hướng dẫn học nhà: - Xem lại tập giải; - Làm tập lại SGK
- -O B
A D
(130)Ngy: 10/02/2011
Tit PPCT: 38 Đ5 khoảng c¸ch
I MỤC TIÊU.
1 Về kiến thức : Học sinh nắm cách tính khoảng cách : Từ điểm điểm đến đường thẳng
Từ điểm điểm đến mặt phẳng
Từ đường thẳng đến mặt phẳng song somg với đường thẳng Tính chất đường vng góc chung hai đường thẳng chéo
2 Về kỹ : Học sinh vẽ hình từ giả thiết , biết nhận xét hình vẽ định hướng cách giải từ hình vẽ kiện đề
3 Về tư thái độ : Có tinh thần hợp tác, tích cực tham gia học, rèn luyện tư logic. II CHUẨN BỊ PHƯƠNG TIỆN DAY HỌC
1 Thực tiễn: Học sinh nắm khái niệm khoảng cách từ điểm đến đường thẳng 2 Phương tiện : Giáo án , thước , phấn màu , hệ thống câu hỏi
III PHƯƠNG PHÁP DẠY HỌC
Về sử dụng PPDH gợi mở vấn đáp đan xen hoạt động nhóm IV TIẾN TRÌNH BÀI HỌC
1 Ổn đinh tổ chức lớp 2 Hỏi cũ :
H: Định nghĩa hai mặt phẳng vng góc Điều kiện cần đủ để hai mặt phẳng vng góc 3 Dạy học mới:
Hoạt động 1:
(131)Hoạt động GV Hoạt động HS Nội Dung
Vẽ hình dùng thước hoặt compa đo độ dài OH OP ; Độ dài OH bé
Chứng minh : Xét tan giác vuông OHP ta có
OP2=OH2+HP2 Suy OH nhỏ
Khi điểm mằm đường thẳng
Yêu cầu HS vẽ hình nháp dùng thước hoặt compa xác định độ dài OH OP kết luận Khẳng định độ dài đoạn OH hay khoảng cách hai điểm O H gọi khoảng cách từ O đến đường thẳng a Từ yêu cầu HS chứng minh khoảng cách từ O đến đường thẳng a bé so với khoảng cách từ O đến điểm bất kìcủa đường thẳng a
Khoảng cách từ điểm đến đường thẳng ?
Xét toán : Cho điểm O đường thảng a , dựng OH vng góc với a H Trên đường thẳng a lấy điểm P so sánh độ dài OH với OP kết luận Khoảng cách hai điểm O H gọi khoảng cách từ điểm O đến đường thẳng a
Xem SGK
Vẽ hình chứng minh
Khi điểm mằm mặt phẳng
Xét khoảng cách từ điểm đền măt phẳng dựa khoảng cách từ điểm đến đường thẳng
(α ) (α ) (α ) Bài toán cho đỉem O mặt phẳng Chứmg minh khoảng cách từ điểm O đến mặt phẳng bé so với khoảng cách từ O tới điểm mặt phẳng
Yêu cầu HS vẽ hình định hướng cho HS chứng minh
(α) (α) Kẻ OH ┴ lấy điểm M Cần chứng minh OH nhỏ OM :
Khoảng cách từ điểm đến mặt phẳng ?
2 Khoảng cách từ điểm đền măt phẳng
Khoảng cách hai điểm O H gọi khoảng cách từ điểm O đến mặt phẳng ()
Đưa định nghĩa khoảng cách Khoảng cách đường thẳng O
a
P H
H M
(132)Đọc định nghĩa SGK
Vẽ hình chứng minh
(α) Khi đường thẳng a cắt mặt phẳng điểm
giữa đường thẳng mặt phẳng song song
Yêu cầu HS đọc định nghĩa SGK làm toán sau :
(α ) (α ) (α ) Cho đường thẳng a song song với mặt phẳng Chứng minh khoảng cách đường thẳng a mặt phẳng bé so với khoảng cách từ điểm thuộc a tới điểm thuộc mặt phẳng Định hướng cho HS làm
A' (α) (α) A' lấy điểm A a Kẻ A┴ lấy điểm M Cần chứng minh A nhỏ AM
(α) Khi khoảng cách đường thẳng a mặt phẳng ?
mặt phẳng song song
Định nghĩa ( SGK trang 116 )
II KHOẢNG CÁCH GIỮA HAI ĐƯỜNG THẲNG SONG SONG, GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG
Hoạt động GV Hoạt động HS Nội Dung
Đọc định nghĩa SGK
Đưa định nghĩa khoảng cách đường thẳng mặt phẳng song song
Yêu cầu HS đọc định nghĩa SGK làm toán sau :
(α) (α) (α) Cho đường thẳng a song song với mặt phẳng Chứng minh khoảng cách đường thẳng a mặt phẳng bé so với khoảng cách từ điểm thuộc a tới điểm thuộc mặt phẳng
1 Khoảng cách đường thẳng mặt phẳng song song
Định nghĩa ( SGK trang 116 )
A a B
A B
(133)Vẽ hình chứng minh
(α) Khi đường thẳng a cắt mặt phẳng điểm
Định hướng cho HS làm
A' (α ) (α ) A' lấy điểm A a Kẻ A┴ lấy điểm M Cần chứng minh A nhỏ AM
(α ) Khi khoảng cách đường thẳng a mặt phẳng ?
Đọc định nghĩa SGK
Vẽ hình chứng minh
Vẽ hình chứng minh
Đưa định nghĩa khoảng cách hai mặt phẳng song song Yêu cầu HS đọc định nghĩa SGK làm toán sau :
(α) (β) (α) (β) Cho hai mặt phẳng Chứng minh khoảng cách hai mặt phẳng nhỏ khoảng cách từ điểm thuộc a tới điểm mặt phẳng tới điểm mặt phẳng
Định hướng cho HS làm
(α) M' (β) (α) (β) Lấ y điểm M kẻ M vng góc với Khoảng cách hai mặt phẳng
d((α ), ( β ))=d(M , ( β))
( β ) Lấy điểm N M' Cần chứng minh M nhỏ MN
2 Khoảng cách hai mặt phẳng song song
Đinh nghĩa ( SGK )
(α) (β) Kí hiệu khoảng cách hai mặt phẳng song song với
d((α ), ( β ))
HĐ3: Củng cố hướng dẫn học nhà: *Củng cố:
- Qua học em cần nắm vấn đề ? *Hướng dẫn học nhà:
- Xem lại lý thuyết học; - Làm tập SGK
- -Ngày: 15/02/2011
M
M
(134)Tiết PPCT: 39 Đ5 khoảng cách
I MC TIấU.
1 Về kiến thức : Học sinh nắm cách tính khoảng cách : Từ điểm điểm đến đường thẳng
Từ điểm điểm đến mặt phẳng
Từ đường thẳng đến mặt phẳng song somg với đường thẳng Tính chất đường vng góc chung hai đường thẳng chéo
2 Về kỹ : Học sinh vẽ hình từ giả thiết , biết nhận xét hình vẽ định hướng cách giải từ hình vẽ kiện đề
3 Về tư thái độ : Có tinh thần hợp tác, tích cực tham gia học, rèn luyện tư logic. II CHUẨN BỊ PHƯƠNG TIỆN DAY HỌC
1 Thực tiễn: Học sinh nắm khái niệm khoảng cách từ điểm đến đường thẳng 2 Phương tiện : Giáo án , thước , phấn màu , hệ thống câu hỏi
III PHƯƠNG PHÁP DẠY HỌC
Về sử dụng PPDH gợi mở vấn đáp đan xen hoạt động nhóm IV TIẾN TRÌNH BÀI HỌC
1 Ổn đinh tổ chức lớp 2 Hỏi b i cà ũ :
H: Nêu khoảng cách từ điểm đến đờng thẳng mặt phẳng Nêu khoảng cách hai đờng thẳng song song, hai mặt phẳng song song?
3 Dạy học b i mà ới:
Hoạt động 1:
III ĐƯỜNG VNG GĨC CHUNG VÀ KHOẢNG CÁCH GIỮA HAI ĐƯỜNG THẲNG CHÉO NHAU
Hoạt động GV Hoạt động HS Nội Dung
Vẽ hình chứng minh theo định hướng GV
Yêu cầu HS vẽ hình định hướng cho HS chứng minh
Nối AM , DM , BN , CN Cần chứng minh hai tam giác AMD BNC cân M N Từ ta có MN đường trung tuyến hai tam giác AMD BNC suy MN vuông với BC AD chứng minh hai tam giác AMD BNC cân M N cách xét tam giác
Sau HS chứng minh MN ┴ BC MN ┴ AD GV cần khẳng định MN đường vng góc chung hai đường thẳng AD BC chéo từ đưa định nghĩa
Xét toán cho tứ diện ABCD , gọi M ,N trung điểm cạnh BC AD chứng minh MN ┴ BC MN ┴ AD
Định nghĩa ( SGK ) A
B
C
D M
(135)Vẽ hình đọc SGK
Vẽ hình chứng minh tương tư nhửng trường hợp
Hướng dẩn HS cách vẽ hình cách tìm đường vng góc chung hai đường thẳng chéo Nghĩa phải có đường thẳng ∆ vừa cắt hai đường thẳng chéo a b vừa vng góc với hai đường thẳng a , b
Yêu cầu HS đọc nhận xét vẽ hình SGK
Cho HS tự chứng minh khoảng cách hai đường thẳng chéo bé so với khoảng cách hai điểm lần lược nằm hai đường thẳng
2.Cách tìm đường vng góc chung hai đường thẳng chéo (SGK)
)
3 Nhận xét ( SGK
Vẽ hình giải theo định hướng GV
Định hướng cho HS làm ví dụ ( SGK ) trang 118
Cần xác định đoạn vng góc chung SC BD nghĩa đoạn vng góc chung vừa cắt vừa vng góc với SC BD ta tính độ dài đoạn vng góc chung khoảng cách hai đường thẳng chéo SC BD
M
N
a
a
b
a
b M
N
A B
C D
O
(136)Trả lời chổ
Cho HS làm tập trắc nghiệm số trang 119
củng cố cho HS cách xác định khoảng cách
dặn dò ; nhà học làm tập SGK
4 Hoạt động củng cố b i hà ọc
- Giáo viên hệ thống lại cách xác định khoảng cách hai đờng thẳng cheó -Hớng dãn HS giải tập 4,5,6 trang 119 SGK
- -Ngày: 26/03/2011
Tiết PPCT: 40 Luyện tập §5
I MỤC TIÊU.
1 Về kiến thức : Củng cố cho học sinh cách tính khoảng cách : Từ điểm điểm đến đường thẳng
Từ điểm điểm đến mặt phẳng
Từ đường thẳng đến mặt phẳng song somg với đường thẳng Tính chất đường vng góc chung hai đường thẳng chéo
2 Về kỹ : Học sinh vẽ hình từ giả thiết , biết nhận xét hình vẽ định hướng cách giải từ hình vẽ kiện đề
3 Về tư thái độ : Có tinh thần hợp tác, tích cực tham gia học, rèn luyện tư logic. II CHUẨN BỊ PHƯƠNG TIỆN DAY HỌC
1 Thực tiễn: Học sinh nắm khái niệm khoảng cách từ điểm đến đường thẳng 2 Phương tiện : Giáo án , thước , phấn màu , hệ thống câu hỏi
III PHƯƠNG PHÁP DẠY HỌC
Về sử dụng PPDH gợi mở vấn đáp đan xen hoạt động nhóm IV TIẾN TRÌNH BÀI HỌC
1 Ổn đinh tổ chức lớp Hỏi cũ :
H: Định nghĩa hai mặt phẳng vng góc Điều kiện cần đủ để hai mặt phẳng vng góc Dạy học mới:
Hoạt động 1.
Bài tập 1: Hình chóp S.ABCD có đáy hình vng tâm O, cạnh a, cạnh SA vng góc với (ABCD) SA=a Gọi I trung điểm cạnh SC M trung điểm đoạn AB
a) Chứng minh IO (ABCD)
(137)Hoạt động GV Hoạt động HS Nội Dung
GV: Giao nhiệm vụ cho tng HS, theo dõi hoạt động HS, gọi HS lên bảng chữa tập, GV theo dõi xỏc hoỏ kờt qu
HS: Độc lập tiến hành giả toán, lên bảng trình bay lời giải, xác hoá ghi nhận lời giải
a)Ta có
SA(ABCD) ma IO//SA IO(ABCD)
b)Trong mặt phẳng (ICM) ta dựng IHCM
Trong mặt phẳng (ABCD) dựng OHCM, ta có IHCM IH khoảng cách từ I đến đường thẳng CM
OH OM
CN MC Gọi N giao điểm của OM với cạnh CD Hai tam giác vng MHO MNC đồng dạng nên Do
2 2
5
a a
CN OM a
MC a
OH=
2
SA a
Ta cịn có IO= IH2=IO2+OH2
2 3
2 20 10
a a a
=
3 30
10 10
a a
Vậy khoảng cách IH=
B C A
(138)Hoạt động 2
Bài tập 2: Cho tam giác ABC với AB=7cm, BC=5cm, CA=8cm Trên đường thẳng vng góc với (ABC) A lấy điểm O cho AO= 4cm Tính khoảng cách từ O đến đường BC
Hoạt động GV Hoạt động HS Nội Dung
GV: Giao nhiệm vụ cho tng HS, theo dõi hoạt động HS, gọi HS lên bảng chữa tập, GV theo dõi xỏc hoỏ kờt qu
HS: Độc lập tiến hành giả toán, lên bảng trình bay lời giải,
xác hoá ghi nhận lời giải Ta dng AHBC H
Theo cơng thức Herơng diện tích tam giác ABC là:
( )( )( )
p p a p b p c S= 10(10 5)(10 7)(10 8) = 10 3 =
2S
BC
20
5 3AH===
Vì AHBC nên OHBC, theo định lí ba đường vng góc Suy OH2=OA2+AH2=16+48=64 Vậy OH=8cm
4.Hoạt động củng cố học:
- Giáo viên hệ thống lại cơng thức tính khoảng cách -Hướng dẫn HS làm tập 3, 4, trang 119, SGK
- -B H
C O
(139)Ngày: 02/05/2009 KIỂM TRA CUỐI NĂM Tiết PPCT: 41 & 42 ( Đại số giải tích hình học )
ĐỀ CHUNG CỦA TRƯỜNG
(140)- -Ngày:02 /05/2009 ÔN TẬP CHƯƠNG
Tiết PPCT: 43 ( Tiết 1: Lý thuyết & tập )
I.Mục Tiêu:
Qua học HS cần:
1 Về kiến thức: Nắm định nghĩa tính chất vectơ khơng gian; hai đường thẳng vng góc; đường thẳng vng góc với mặt phẳng; hai mặt phẳng vng góc khoảng cách
2 Về kỹ năng: Biết áp dụng lý thuyết vào giải tập; Áp dụng phương pháp học vào giả tập
3 Về tư duy: + Phát triển tư trừu tượng, trí tưởng tượng khơng gian + Biết quan sát phán đốn xác
4 Thái độ: Cẩn thận, xác, nghiêm túc, tích cực họat động II.Chuẩn Bị:
HS: Nắm vững định nghĩa tính chất học áp dụng giải tập SGK. - Thước kẻ, bút,
GV: Hệ thống tập, tập trắc nghiệm phiếu học tập, bút lông, bảng phụ. III Phương Pháp:
- Gợi mở, vấn đáp, đan xen hoạt động nhóm IV Tiến Trình Bài Học:
*Ổn định lớp, chia lớp thành nhóm
Hoạt động 1:
(141)Treo bảng phụ câu hỏi trắc nghiệm yêu cầu học sinh trả lời, giải thích ?
Đa: 1C; 2C
Chính xác hóa két
Theo dõi trả lời, giải thích
2 IJ 2 AD
1
2 BC1C,vì:=+
2C theo tính chất trọng tâm ta có A, B, D
Câu 1:Cho tứ diện ABCD.Gọi I, J lần lược trung điểm AB CD.Chọn câu câu sau:
AB
AC
CD A Ba Véctơ,, đồng phẳng.
AB
BC
CD B Ba véctơ,, đồng phẳng
AD IJ BC
C Ba véctơ ,, đồng phẳng
AB
IJ
CD D Ba véctơ, , đồng phẳng
Câu 2: Cho tứ diện ABCD.Gọi G trọng tâm tứ diện Mệnh đề sau sai:
1 (
OG OA OB OC OD
A )
0 GA GB GC GD B ( )
AG AB AC AD
C
1
( )
4
AG AB AC AD
D
3 Bài học:
Hoạt động 2: Hệ thống lại kiến thức học
Hệ thống lại đề mục kiến thức học chương III Hướng dẫn HS tự trả lời câu hỏi tự kiểm tra SGK(119)
Chú ý theo dõi trả lời câu hỏi GV đưa
*Củng cố hướng dẫn học nhà:
-Xem lại cá tập giải, - Làm thêm tập lại
- -Ngày: 10/05/2009 ÔN TẬP CHƯƠNG
Tiết PPCT: 44
IV Tiến Trình Bài Học:
*Ổn định lớp, chia lớp thành nhóm
*Kiểm tra cũ: Kết hợp với điều khikển hoạt động nhóm. Bài mới:
Hoạt động 3: Giải tập1SGK
Hướng dẫn HS giải Cho HS nhận dạng tốn
Đọc đề, tìm hiểu nhiệm vụ, vẽ hình chứng minh
Chứng minh tam giác vng
ˆ
AOB AOCˆ BOCˆ Bài1: Tứ diện OABC có
OA = OB = OC = a == 600 =900.
(142)Câu a: thuộc dạng tốn?
Hướng giải?
H1?: Nhận xét OAB, OAC, OBC Suy :
H2?: Cách chứng minh hai đường thẳng vng góc khơng gian
H3?Để chứng minh OA BC ta cần chứng minh điều gì?
Cho HS nhận xét GV xác hóa kết
H4?:Câu b thuộc dạng tốn nào?
H5? Cách giải?
Tính IJ?
Cho HS nhận xét, Gv đưa nhận xét cuối
Nhận dạng toán:
và hai đường thẳng vng góc khơng gian Áp dụng định lý pytago
ˆ
AOBVì OAB có =600
OA = OB nên OAB Tương tự AOC đều, AB = AC = a
2OBC vng cân O
nên BC = a
Ta có: BC2 = AB2 + AC2
.vậy theo định lý Pytago ta có: ABC vng A
TL: Chứng minh đường thẳng vng góc với mặt phẳng chứa đường thẳng
Ta cần chứng minh đường thẳng OA vng góc với mặt phẳng chứa BC
Tìm đường vng góc chung hai đường thẳng chéo khơng gian, tính khoảng cách chúng
(OBC) chứa BC vng góc với OA, từ giao điểm I OA với (OBC) kẻ IJ vng góc với BC IJ đường thẳng cần tìm
Giải:
Vì OAB, OAC Là tam giác nên AB = AC = a
OBC tam giác vuông cân O nên
2BC = a.
Ta có: BC2 = AB2 + AC2 ABC
vuông A
Gọi I trung điểm OA Vì OAB nên BI OA Tương tự ta có: CI OA Suy OA (IBC)
Mà BC (IBC) nên OA BC
b)Giải:
Gọi J trung điểm BC Ta có:
IBC cân I nên IJ BC (1) Mặt khác, OA (IBC) (cm trên) Mà IJ IBC) nên OA C IJ (2) Từ (1) (2) ta suy IJ đường vng góc chung OA BC Xét JBC vuông J
2
a
2
a
Ta có IB = ; BJ =
2
a
2
IB BJ JI = =
c)Giải
Ta có : OJ BC (1)
2
a
Xét OBJ có OJ =
2
a
Xét BAJ có JA =
(143)Cách giải?
Ta chứng minh mặt phẳng chứa đường thẳng vng góc với mặt phẳng kia?
Chứng minh hai mặt phẳng vng góc
Mặt phẳng chứa đường thẳng vng góc với mặt phẳng
chứng minh mp(OBC) OJ vng góc với mp(ABC)
2
a
2
a
OJ2 + JA2 = ()2+()2 = a2 = OA2
Vậy OAJ vuông J hay OA JA (2) Từ (1) (2) ta suy OJ (ABC) Mà OJ (OBC)
Vậy (OBC) (ABC)
Hoạt động 4: Giải tập 2(SGK) Tổ chức cho HS giải tập theo nhóm
Theo dõi, hướng dẫn em làm tập
Cho nhóm trình bày
GV xác hóa kết quả, sữa chữa sai lầm
Các nhóm làm việc theo phân cơng
Phân nhóm giải tập Đọc đề,vẽ hình, tìm phương pháp giải
Đại diện nhóm trình bày
Nhóm khác nhận xét
Bài 2:
Giải:
Theo định lý cosin SAB , SBC
3 ta có: AB = a, BC = a
2Áp dụng Pytago cho SAC ta có:
AC = a
Vậy: AB2 = AC2 + BC2 = a2 +2a2 = 3a2
Hay ABC vuông C b)Gọi H trung điểm AC
2
a
SH = BH =
2
a
2
a
SH2 + HB2 = ( )2 + ( )2 = a2
=SB2
SH HB (1) SH AC (2)
Từ (1) (2) ta suy ra: SH (ABC)
H AA
(144)2
a
SH khoảng cách từ S đến (ABC) Và
*Củng cố học:
Cách xác định khoảng cách hai đường thẳng, đường thẳng với mặt phẳng
Trắc nghiệm: Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a SA (ABCD), SA = a Khi đó, khoảng cách hai đường thẳng BD SC là:
3
a
2
a
6 A B C D
Cho hình chóp tam giác O.ABC có OA, OB, OC đơi vng góc, OA = OB = OC = a Khoảng cách từ O đến mặt phẳng(ABC) bằng:
3 3
a
6
a
A a B a C D
Đa: 1D ; 2C
(145)- -Ngày: 12/05/2009 TRẢ BÀI KIỂM TRA CUỐI NĂM
Tiết PPCT: 45 ( Trả kiểm tra cuói năm )