1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(Luận án tiến sĩ) dẫn nhảy bước biến đổi trong các hệ điện tử định xứ mạnh luận án TS 1 02 01

171 16 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 171
Dung lượng 43,89 MB

Nội dung

M Ụ C LỤC Trang ; MỤC LỤC Ì D A N H M Ụ C CÁC CHỮVIẾT TẮT D A N H M Ụ C CÁC BẢNG D A N H M Ụ C CÁC HÌNH VẼ, Đ THỊ M Ớ ĐẦU Chương Ì T Ổ N G Q U A N 14 L I Mất trật tự định xứ 14 1.2 Dẫn điện hệ electron định xứ mạnh: dẫn nhảy 18 1.3 Lưới trớ ng ẫu nhiên Miller - Abrahams 22 1.4 Đô dẫn điện hệ không gần lý thuyết thấm 7g 1.4.1 Bài to án mạng 28 1.4.2 Bài to án nút ngẫu nhiên 30 1.4.3 Độ dẫn điện môi trường không 32 1.5 Dẫn nhảy bước nhảy biến đối: Định luật Mott 34 Chương Ả N H HƯỞNG CỦA TƯƠNG TÁC E L E C T R O N E L E C T R O N LÊN M Ậ T ĐỘ TRẠNG THÁI VÀ P H Ụ THUÔC N H I Ệ T Đ ộ CỦA ĐỘ DẪN NHẢY BƯỚC BIẾN Đ ổ i 2.1 Mật độ trạng thái định xứ lân cận mức Fermi 39 39 2.1.1 Khảo sát đinh tính 39 2.1.2 Phương trình tự hoa hơp: Khe Coulomb 42 2.1.3 Mơ khe Coulomb máy tính điện tử 44 Ì Quan sát thực nghiệm 46 2.2 Các hiệu ứng chấn 48 2.2.1 Trườn g hợp 3D: chắn Yukawa 48 2.2.2 Trường hợp 2D: chắn d o cổng kim loại 49 Ì 2.3 Sự phụ thuộc nhiệt độ dẫn nháy bước biến đổi 52 2.3.1 Định luật Efros-Shklovskii 52 2.3.2 Qu an sát thực nghiệm 53 2.4 Chuyển Mott - Efros-Shklovskii 54 2.4 Ì Quan sát thực nghiệm 54 2.4.2 Biểu thức tổng quát cho phụ thu ộc nhiệt độ V R H 55 2.5 Dẫn nhảy bước biến đối vật liệu vô định hình 57 2.5.1 Mơ hình mật độ trạng thái cho vật liệu vơ định hình 57 2.5.2 Tính độ dẫn nhảy V R H cho vật liệu vô định hình 58 2.5.3 Thảo luận kết qua 59 Chương CÁC KIỆU ỨNG TƯƠNG TÁC COULOMB TRONG SUẤT NHIỆT ĐIỆN ĐỘNG ỏ MIỀN DẪiN NHẢY BƯỚC 62 BIẾN ĐỔI 3.1 Su ấ t nhiệt điện động V R H gần đúna lý thuyết thấm 62 3.2 Biếu thức giải tích tons quát 65 3.3 3.2.1 Hệ hai chiều (2D) 65 3.2.2 Hệ ba chiều (3D) 68 3.2.3 Thảo luận 71 Suất nhiệt điện động V R H cho vật liệu vò định hình 74 3.3.1 Biếu thức suất nhiệt điện động VRH cho vật liệu vị định hình 74 3.3.2 Tháo luận 78 Chuông DẨ N NHẢY BƯỚC BIÊN Đ ổ i P H Ụ T H U Ộ C T Ầ N s ố 81 Ì Phép gần cặp 81 4.2 Biểu thức tổng quát đô dẫn điện ác V R H 85 4.2.1 Hệ ba chiều (3D) 85 4.2.2 Hệ hai chiều (2D) 87 4.3 Kết số thảo luận 89 Chương DẪN NHẢY BƯỚC BIẾN Đ ổ i TRONG HỆ THẤP CHIỂU 5.1 94 Đặt vấn đề 5.2 Mơ hình phương pháp tính 96 5.3 Trường hợp nhiệt độ vơ hạn: tốn r-thấm 99 5.3.1 Tính tốn kết qua số 100 5.3.2 Thảo luận 107 5.4 V R H hệ chiều hữu hạn in 5.5 V R H hệ hai chiều bất đẳng hướng: "chuyển đổi chiều ?" 116 KẾT L U Ậ N 124 D A N H M Ụ C CÁC CƠNG TRÌNH Đà CƠNG B ố CỦA TÁC GIẢ LIÊN Q U A N ĐẾN LUẬN ÁN 125 TÀI LIỆU T H A M KHẢO 126 PHỤ LỤC Ì 137 PHỤ LỰC 148 PHỤ LỤC 151 PHỤ LỤC 156 PHỤ LỤC 161 PHỤ LỤC 163 D A N H M Ụ C CÁC C H Ữ V l Ế T TẮT H C (Hopping Conduction): dẫn nháy V R H (Variable Range Hopping): (dẫn nhảy) bước nh ay biến đổi DOS (Density of States): mật độ trạng thái ES: Efros-Shk lovsk ii SCE (Self-Consistent Equation): phương trình tự hoa hợp de (directed current): dòng điện ch iều ác (alternative current): dòng điện xoay ch iều ID, 2D, 3D (one-, two-, th ree-Dimensional): (h ệ) một, hai, ba ch iều Q1D (Quasi-one- Dimensional): hệ chuẩn ch iều L P (Longitudinal Percolation): thấm dọc TP (Transverse Percolation): thấm ngang L R (Longitudinal Resistance): điện trơ doc TR (Transverse Resistance): điện trớ ngang MTĐT: máv tính điện tử D A N H M Ụ C CÁC B Ả N G Bàng L I : Giá trị ngưỡng thấm số mạng Bâng 5.1: Bán kính thám hệ vơ hạn với nồng độ tap khác D A N H M Ụ C CÁC HÌNH V Ẽ , Đ ồT H Ị Hình L I : Mơ hình Mon Miền trạng thái định xứ gạch chéo, ngưỡng linh độn% E m E A ) Kim loại (b) Điện mơi 16 m H ì n h 1.2: Trạng thái truy ền qua (a) trạng thái định xứ(b) 16 H ì n h 1.3: Sự phụ thuộc di ện trở suất vào nhi ệt độ bán dẩn pha tạp 18 nhẹ H ì n h 1.4: Sự phụ thuộc điện trở suất vào nghịch đảo nhiệt độ Ge loại p theo số li ệu thực nghi ệm Fritzsche Cuevas [32] 20 Hình 1.5: Các trạng thái định xứ lân cận mức Fermi (a) mật độ trạng thủi (b) 21 Hình 1.6: Lưới trở ngẫu nhi ên Mi ller - Abrahams 27 Hình 1.7: Sự phụ thuộc độ dẫn điện vào giá trị cực đại sơ mũ rj 32 Hình 1.8: Dải trạng thái có lượng cách mức Fermi lượng nhỏ e Bên phải vè mật độ trạng thái g(s), vùng trạng thái bị chiếm dược gạch chéo 35 Hình 2.1: Các mức lượng dải lượng gần mức Fermi 40 Hình 2.2: Kết mô mật độ trạng thái miên khe Coulomb trường hợp d=3i K = cho 0,5 N = 1600 (đườìĩg liền nét) [24]; đường đìa nét kết Baranovskii et [12] cho mạng 14x14x14 Năng lượng tính 2 đơn vị (e N* /K), mật độ trạng thái đơn vị ị ĩde N Hình 2.3: Khe Coulomb ) 45 mẫu tinh Si:B quan sái trực tiếp nhờ kỹ thuật đỡ chui ngầm [47] 47 H ì n h 2.4: Sự phụ thuộc lượng mật độ trạng thái: dường li ên nét lời gi ải số phương trình tự hoa hợp; đường nét đứt gần bậc không (2.16); chấm khe Coulomb 3D (2.5), điểm trịn kết mơ [77] 48 Hình 2.5: (a) - Sơ đồ cấu trúc mẫu sư dụng thí nghi ệm [124] (b) - Điện tích ảnh ì' ỉ hưởng ứng diện cổng ki m loại 49 Hình 2.6: Lời giải số phương trình tự hoa hợp (đường liền nét) vù kết qua mô (x) mật độ trạng thải G(E) với chắn (2.18) Đường nét đứt tương {eng với gân bậc không (2.23) 52 Hình 2.7: Kết giải số phương trình (2.39) cho số giá trị điển hình tham SỐS, lương ứng hệ vơ định hình phổ biến 60 Hình 3.1: Sự phụ thuộc suất nhiệt diện độiĩíị VRH vào nhiệt độ vẽ với giới hạn (3.21) - (3.24) 73 Hình 3.2: Sự phụ thuộc suất nhiệt điện động VRH vào nhiệt độ vật liệu vô định hĩnh vẽcùnq giới hạn (3.35), (3.36) Hình vẽ lồng mô tá chuyển Mo n - ES độ dẩn Nhiệt độ tính dơn vị E ik 79 B Hình 4.1: Đồ thị phụ thuộc Sj = d{ltíơj)/d(ìncừ) vào ln\ỵ /ỡ}) ph cho 13 hệ hai chiêu (ả = 2) ba chiêu (ả = 3) Tần số V - lo Hz Tần số điện trường ngồi từ 10'V/z đến ì0 Hz Tham sô Ả" = le /\KcE ) = 60 cho hệ tỊ hai chiêu ba chiều Đường liền nét vẽ theo biểu thức (4.28) (4.29) Đường gạch đứt theo cơng thức Austin-Mo tí (4.27) Đường gạch-chấm theo biểu thức (4.23) (4.24) ES 90 Hình 4.2: Sự phụ thuộc vảo nhiệt độ độ dẫn điện ác Đường liên nét vẽ theo (4.34) đường nét đứt - theo công thức Austin-Man (4.30), điểm (ký hiệu bảng hình vng) số liệu thực nghiệm đo mầu a-Si [35] 92 Hình 5.1: Mơ hình: dây dan song so ng liên kết yếu với qua tâm tạp phân bố ngẫu nhiên tro ng kho ảng khơng gian dây Hình 5.2: Các giá trị mơ trường -ìnổR' (L) c 97 - InỔR[-{ L) vẽ theo l u i cho hợp /7 = 0.1 giá trị s = 0.05; 0.1; 0.2; 0.3; 0.4 {từ xuống) 102 Hình 5.3: Hiệu ứng kích thước hữu hạn bán kính thấm: đụi lượng { ve phụ thuộc vào c V ụ m trường hợp p = OA vá "lú trị s khác nhau: s = 0.01; 0.05: 0.1; 0.2; 0.3 OA (nì xuống) [03 (•) v lnJt (L) Hình 5.4: Sự phụ thuộc \ŨM (L) {Ỉ) trường họp p = Ì giá trị (A) vào lũi cho {L) s = 0.05; 0.1; 0.2; 0.3 OA (từ xuống) Hệ số góc đường thắng chiều fractal D 105 Hình 5.5: Ví dụ đám thấm tới hạn cho mẫu với L = 400 p = ọ Ì (a) (c) LP với s = 0.1 0.3; (b) vả (á) TP với s = 0.1 0.3 tương ứng Hình 5.6: Sự phụ thuộc vào kích thước mật độ tới hạn S (L) cho hệ hữu C hạn ứng vói số giá trị p (từ xuống): 0.05, 0.1,02 112 Hình 5.7: Dày hữu hạn chiều: < 7} >=< ỉn(p/p ) > phụ thuộc ĩ' Q c 109 v ới số giá trị (L, Ẹ): (64000, 20); (16000, 20); (4000, 20); (Ỉ000, 20); (1000, 50) ị từ xuống) Đường thẳng liền nét ứng với định luật í ' 112 thức 5.10) Đườnq nét đứt nối điểm mơ nằm ngồi miền ĩ' Hình 5.8: Dây hữu hạn chiều: < TJ >=< lũ(p/p ) C [ln(2L/£)] w2 (cô ng > dược theo nhiệt độ ì = 0.002 , thuộc miền t~ Các điểm mô phóng với mẩu có L = 1000, 2000, 4000, 8000, 16000, 32000 64000 với ặ = 20 (kí hiệu •) £ = (kí hiệu bói A) ^ Hình 5.9: Sự phụ thuộc vảo lrư đại lượng In < /7" > (kí hiệu • vù X) Ịn< 77^ > (kí hiệu bới A) cho mẩu L = 100 với mật độ tạp s khác nhau: s = OA (hỉnh 5.9a), s = 0.4 {hình 5.9b) 118 Hình 5.10: Kết cho mẫu L = 1000, ã = lo, với nồng độ tạp s khác nhau: À- = 0.1, 0.2, 0.3 0.4 (từ xuống) 119 Hình 5.11: Tỷ sô TJc /ĩJc phụ thuộc vào Ư cho mẫu có ả = 10 với s khác nhau, s = 0.1; 0.2; 0.3; 0.4 (từtrên xuống) MỞ ĐẦU 1) Lý chọn đề tài: Dẫn nhảy (hopping conduction) chế dẫn chủ đạo nhiệt độ thấp hệ trật tự với trạng thái electron định xứ mạnh mặt lý thuyết giai đoạn đáu nghiên cứu dẫn nhảy người ta chua ý đến tương tác electron - electron trạng thái định xứ Nhưng thực nghiệm khẳng định tương tác electron - electron dẫn tới nhiều hiệu ứng vật lý quan trọng, nhát nhiệt độ thấp V a i trò tương tác electron - electron vấn đề hav khó lý thuyết cá c hệ má t trật tự Dẫn nhảy xảy nhiều loại vật liệu c như: bán dẫn pha tạp, vô định hình, granular metal, oxyt kim loại Đặc biệt , gán đảv người ta quan sát tháy dẫn nhảy trong; cấu trúc thấp chiều như: polymers dẫn sợi silic xốp, oris nanổ cacbon (carbon nanotubes), hệ chấm lương tử, sợi D N A vật liệu quan trọng Irons công nghệ đương đại tươníỉ lai Đó lý chúng tơi chọn đề tài 2) Mục đích, đỏi tượng phàm vi nghiên cứu Nghiên cứu ảnh hướng tương tác electron - electron vi cấu trúc hệ kích thước nhỏ lên tính chất động, chế độ dẫn nhảy bước biến đ ổ i (VariableRange Hopping - V R H ) hệ electron định xứ mạnh mục tiêu Luận án Luân án tập trung khảo cứu vàn đề sau: • Ánh hưởng tương tác electron - electron lên mật độ trạng thái • Ảnh hưởng tương tác electron - electron lên phụ thuộc nhiệt độ độ dẫn điện V R H suất nhiệt điện động V R H hệ mát trật tự • Đ ộ dẫn điện phụ thuộc tần số nhiệt độ chế độ hồi phục • Cá c đặc trưng thấm trons hệ hai chiều bất đắng hướn2 • Dẩn nhảy hệ chiều hữu hạn hệ hai chiều bất đẳng hướnsỉ mạnh 3) Phương pháp nghiên cứu de tài Để giải toá n đặt ra, ngoai phương pháp truyền thống lý thuyết chất rủn, sử dụng hai phương pháp đặc thù: (ỉ) Phương pháp lý thu yết thấm: phương pháp tin cậy sử dụng hiệu nghiên cứu tính chất động hệ có cấu trúc ngẫu nhiên (2) Phương pháp mơ phịng trẽn máy tính điện tứ Nói chung, v iệc nghiên cứu định lượng tính chất điện tử hệ mát trật tự mạnh vượt khả phương pháp giải tích có, v từ lâu mô trực tiếp hệ trẽn máy tính điện tử trở thành phương pháp khịm* thể thiếu Bans phương pháp Monte - Carlo chúng tơi tính mật độ trạng thái, độ dẫn V R H dải rộng giá trị tham số khác v đó, mặt kiểm định biểu thức giải tích trons trường hợp giới hạn, mặt khác so sánh trực tiếp với thực nghiệm Ngoài ra, phương pháp giải tích số áp dụng trường hợp cần thiết giải phương trình tư hoa hợp hay so sánh với số liệu thúc nghiệm cụ 4) Ý nghĩa khoa học thực tiễn đề tài - Góp phần hồn thiên lý thu yết vai trò tương tác electron - electron tượnii động hệ trật tự v ới trạng thái electron định xứ manh - Đề xu ất mơ hình đế nghiên cứu các- đặc trưng thám độ dẫn V R H phụ thuộc vào tham số khác hệ hai chiều chiều - Kết qu ả nghiên cứu so sánh trực tiếp với thực nghiệm gợi mờ nghiên cứu lý thu yết 5) Những đóng góp mói luận án Đề tài nghiên cứu lu ận án thu ộc hướng "Lý thu yết hệ trật tự" Các nghiên cứu theo hướng luận án đà cho nhũng đóng 2Ĩp mới: - Nhún mật độ trạng thái hệ 2D với chắn gây bới cổng kim loại - Nhàn biểu thức giải tích tổng quát cá độ dẫn điện v suất nhiệt điện đ ộ n " V R H cho vật liệu vơ định hình, phù hợp v ới thực nghiệm - Thu biếu thức tống qu át su ất nhiệt điện độnsỉ V R H mỏ tả chu yến liên tục từ dáns điệu Mott đến dáng điệu ES nhiệt độ giảm - Nhận dược biểu thúc tống quát cho độ dan điện V R H phụ thuỏc tần số v nhiệt độ dải rộng giá trị cứa tham số - Đề xuất mơ hì nh cho tượng thấm hệ hai chiều (2D) bất đắng hướng mạnh v tính đặc trưng thấm mơ hì nh - Nghiên cứu thống kê phụ thuộc độ dẫn nhảy V R H vào chiều dài nhiệt độ tr ong hệ chiều (ỈD) hữu hạn Đề xuất biểu thức cho giới hạn quan sát phụ thuộc nhiệt độ theo dáng điệu M o n - Nghiên cứu thống kê độ dẫn V R H hệ 2D bất đắng hướng mạnh dai rộng giá trị nhiệt độ, nồng độ tạp, mức độ bất đảng hướng v kích thước hệ Đề xuất khả chuyển dáng điệu phụ thuộc nhiệt dô đô dẫn từ dáng điệu ID sang dáng điệu 2D tảng nồng độ tạp tr ong hệ hữu hạn 6) Cấu trúc luận án Ngoài phần mở đầu kết luận, luận án gồm chương phần phụ lục Trong chương Ì chúng tơi tổng quan nghiên cứu thực nghiệm dẫn nhảy v giới thiệu vắn tắt sở lý thuyết đại dẫn nhảy Đó mơ hình lưới trớ ngẫu nhiên Miller - Abrahams v ới phổ trở rộng v phương pháp lý thuyết thấm đế tính điện trở hiệu đụng lưới trở Định luật Mott-T~ 1/íí/+iỉ giới thiệu cuối chương Ì mớ đầu dẫn nhảv bước biến đ ố i ( V R H ) chưa tính đến tương tác Coulomb trạng thái electron định xứ Tuy nhiên tương tác electron - electron gây ảnh hưởng quan trọng lên dẫn nhảy bước biến đ ổ i hiệu ứng nghiên cún chương luận án Chương trình bầy ảnh hưởng tương tác electron - electron lên mật độ trạng thái v phụ thuộc nhiệt độ độ dẫn nhảy bước biến đ ố i Sau trình bẩy khảo sát định tính khe Coulomb mật độ tr ạng thái giới thiệu phương pháp nghiên cún định lượng khe Coulomb giải phương trì nh tự hoa hợp mơ hệ máy tính điện tử Sự p hù hợp kết hai phương pháp không cho hệ tương tác Coulomb mà cho hộ với chán Yukawa (3 chiều) chán cổng kim loại (2 chiều) cho thấy đắn phương pháp góp phần khắng định tổn khe Coulomb Do quan sát thực nghiệm trực tiếp khe Coulomb việc khó chí thực trons thời gian gán nhờ kỹ thuật chui ngâm, nén nhiều năm vấn dề khe Coulomb tranh cãi sơi nổi, ngồi việc tiến hành nhiều thực nghiệm số, 10 đó: 2 ỉ* s ds Ịú-S sỉ de * £- +1 * £ +1 - +1 side Ì ] ^ k £l 4.1 +1 -i F £ - + ì Do /,» - / „ ; / , = / , ; / „ =/ £7 ứ e de h J> £ ểf + Ì iiJi p »»+.1 (2) 2f nên: / = / , + / f = 2(/, -7 ) I2 lr = a / ? j - z l - - +3zlarctgzl zl arctg^-llnừ + l ) + i z l l n + l ) - parctgfc- U i : [12 3 ?+l v = «4-^ [24 ^ -2zlarctgd lln(zf + v ta(á» ;+ v ; A l)4 f£ẩ±^lỉ±lk J 2> £-+\ Vậy: l / , = / í + / f =2(/, -/„.) A = é#i — ả' - — zl 12 - f arctg(zl-f) T -'de 10 + lOzlarctgzl - -zl arctgzl - — l n 3 h - 'ỉn \ A - S Ỵ s- +1 £ - + \ + \ 2 +\)+2A \ĨI{A + ì) de 3) E > E' > 0: í sảe ĩ a —:— + , £• + Ì */,.+/,„+/,„, đó: 157 £• +1 í +1 £ +1 M É* da te sỉ da de +1 4) E < E ' < 0: ' £ ' Ị : \ + 0—- de' A *-/ +/ +/ "éi-»•£-< 4o 4ft 4r đó: Do đó: / ) ) =/j +/« =2(/ +/ ) t * s + Bị J r +1 = a/3\-A* +-A - i ( z j - a r c t g z l ) [4 2 - - l n +1) zl'arctgzll J v 5) E ' > E > : '>"' - r ị tuftte MU í f tf&i «w* - ỉ í • P - f ^ f í {" -hi " + r _ a?ỂỂLTẺẾL-i 6) É' < E < : 158 = „fí t e m ĩ s \ Tĩĩ í ^ +1 *fff+1 tron g đó: I 6a =/ ; / 5fl =/ w J ề =/ f Ì sị + Ì «i +1 = 6fr Du ói- - ln(zl +1)}; o e de ce£Ìd£ = 00 ĩ ^ í ^ • ^ Ẳ •° s - +1* sỉ +1 12 Như vậy: / = / ị + / f = ( / + / ) d ĩ* = A -\ l A ( a r c t ^) + ln + ( ^ 1) > 5A 5r Do đó: / M J =2(/ +2/ +/ ) A r S r 2 = a/?j—-d - z l + 24arctgzl arctg4-arctg zl ztf ln(/l + l ) + - l i r ( z l Vậy: -A -—A + 14zlarctgzl - - ĂaictgA - — ln(á +\)+A 3 2 v , Ị, ,\ - (tí arctg(4 - s) -2arctg + - I n zr +11-21 T [aU + l) ' ; y rJ^lnM-i-) + I ^ — - (ji Tính J : 1) E>0,E': s.ds, , _flf *e f_2f.r*^r: , a = 0: a—^— + 0—«— Ids' a—— + +1 / j a = a r^irặ£L; 4) E' > E > 0: / (3) / i = a j ỡ = ,2 £ +l £ r^rặ£L ; , +l, £ f J£ Í ?£ f L•~ ữ / ? +1 f ểậặfe =J 5) E < E' < 0: +1 •r ố* +1 £ +1 í +Ì £ j ' +l ™J U J - 5b J - 5c y „ati** l f s d s psỊds, _ g f ' J g ' - ĩ • ĩ =„fìf g £^g f ' ^ ' s\ + 6)E / ( u ) ịsg{s)deịg{s')ds'e = / W = Ịg{e)ds 2r k|+k|+b-5 7c - ỉ 2k T/E B 2r Ịgịe')đeỵ t \s\+s'\+ ]£-£' c - — - 2k T/E a> Tính I< : 1) E > , E ' lG a (1 + s Ịl + ys)sds i Ã' [- [lAA* + 672À +1680)+r(3zl +224à + 420A)+ r^đ [10080 3) E < , E ' >0: / ( a ) = %sg{s)de[ {e')ds g — /-: Ì G:\-d J L , Ì +—ắ + 15 21 = lG {^s'-\\ ữ +r\ ,4 + ỵ8)sds[G {\ + e' \\ ữ 25 „ + — A* \ + ỵ 10 72 96 + + nà +168zf)] ỵsyiè 28 36 4) E < E ' < 0: / — zf + — ả' + —ẩ 10 5) E ' > E > 0: lói 28 36 íÌ = Gịị-À +—A* 20 I +— A 28 +r ' 24 360 160 15 105 45 6) E' < E < 0: M h = í«(í)Ar.= j > ( l = G 20 ™ 28 ^)(i + I24 Vậy: / " " = £ / , = a > ? < ^ ' íG (l 360 160 J r + ff )(l + l l ^ £ 105 45 tơ 112 Ì Tính f + : 1) E>0,E' fc L ste'V*' = f Go (ì+í Xi + L 2 u ( 2) E < 0, E' > 0: / ) I 24 180 = £ g(ff'>te' í 60 G " (* *' + Xi + ^ 1120 g(s>te =i/,"" 3) E > E' > 0: /, w =f ^ M ^ * - fG (l + ^)(l ^ ( G ( l + + ^)(l + ^ ' ,n 12 4) E'>E>0: ] Jỵ = [g(s)ds ị Ì 12 g(s)ds=jr 5) E < E' < 0: /,'"»= [ {e)deỊg{e')de i8 6) E

Ngày đăng: 05/12/2020, 19:02

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w