1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(Luận án tiến sĩ) mô hình tínhgió, áp suất, nhiệt độ, độ ẩm trong khí quyển luận án PTS cơ học2 02 02

96 24 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 96
Dung lượng 11,49 MB

Nội dung

MUC LUC Mddau Chirang I: Tong quan ve tinh hinh nghien curu mo hinh tuong 1.1 Tinh hinh nghien cihi a nude ngoai 1.1.1 Phucfng trinh thuy tinh 1.1.2 Phuong trinh phi thuy tinh 1.2 Tinh hinh nghien cihi of Viet Nam 7 10 11 Chirang II: Xay dung mo hinh toan 12 2.1 He toa d6 tucmg 2.2 Cac lire tac dong quye'n 2.2.1 Cac luc khoi 2.2.2 Cac lire mat 12 13 13 15 2.2.3 Phucfng trinh chuyen dong ciia quy^n 2.2.4 Phuong trinh lien tuc 2.2.5 Cac phuong trinh chuyen dong roi quyen 2.2.6 Cac phucfng trinh van chuyen nhiet va am 17 18 19 23 Chuang III: Thuat toan giai mo hinh 3.1 He phucfng trinh cdban 28 28 3.2 Qua trinh tinh toan cho mot bucfc thdi gian At 30 3.3 3.4 Phan he phucfng trinh va tinh van toe thing dung Thuat toan tinh trucmg toe (u, v, w) va ap lire P 30 32 3.4.1 Sai phan hoa he phuong Ulnh (3.13) de xac dinh u^^^^ va p^^^^ 32 3.4.2 Sai phan hoa he phucfng trinh (3.14) de tinh v^^^ va p^^^ 36 3.4.3 Sai phan hoa phucfng trinh (3.14)' tinh w^^^ 38 3.4.4 Xac dinh trucmg nhiet do, am 39 3.5 Xac dinh dieu kien ban dau va bien 3.5.1 Dieu kien ban dau 3.5.2 Dieu kien bien 3.6 M6t so phuong phap noi suy cho dieu kien ban d^u, bien md hinh 44 44 45 45 3.6.1 N6i suy ham mot bien 45 3.6.2 Noi suy tuyen tinh ham hai bien 46 3.6.3 Phucfng phap binh phucfng toi thi^u 3.6.4 Ndi suy cac yeu to tuong theochieu cao 3.6.5 N6i suy ham bien d6i c6 chu ky 3.7 Xac dinh he so K 3.8 Xac dinh cac ye'u t6 tuong Icfp bien quyin satmatd^t 47 47 48 49 50 Chirang IV: X^y dung chuang trmh tinh va umg dung mo hinh thur nghiem cho mot khu vuc cu the 55 4.1 Chucfng trinh tinh 55 4.2 Tinh toan ki^m dinh mo hinh 58 4.3 LJig dung mo hinh thu nghiem tinh cac yeu to tucfng khu vuc d6ng b^ng BSc Bo va viing bi^n ke c^n vao miia dong 4.3.1 Di^u kien tunhien khu vuc nghien cuu 4.3.2 Cac du lieu ddu vao va ke't qua tinh 65 65 67 Ket luan va khuyen nghj 77 Tai lieu tham khao 78 Phuluc 80 MdDAU Hien nay, mang lu6i quan tr^c tucfng a nude ta thua thot Viec cung c^p cac thdng tin tucfng (gio, ap susit, nhiet do, am) gap rat nhieu kho khan cho boat dong san xua't, tinh cac thong so moi trucfng khac: tai gio, song bi^n, dong chay gio, Thong thucfng tinh toan cac thong so tuong dira vao cac tram quan trdc tucfng Ian can roi noi suy theo cac ham tuyen tinh hoac da thiic hoac trung binh c6 lugng hoac phuong phap binh phucfng toi thi^u Chua dap umg yeu cau chinh xac cao Can xay dung mo hinh toan dCng lire quyen, giai bai toan cho nghiem la cac tilling tucfng m6i c6 the' dap img chinh xac, mat dO th6ng tin du day, phan bo chieu khong gian Qua trinh van dong quyen la qua trinh het sire phiic tap, gay nen boi nhieu nhan to khac Tuy vay, no cung phai tuan theo cac qui luat co hoc: bao toan khdi lugng, bao toan dong lugng va nang lugng Nhcf cac quy luat ngucfi ta da xay dung dugc mo hinh toan hoc mo phong dugc cac qua trinh van dong ciia quyen Day la bai toan Idn, phirc tap ma the gidi da va dang giai quye't cang hoan thien cho tirng khu vuc v6i qui mo khac De'n nay, b nu6c ta bai toan chua dugc nghien cuu nhieu va chua xay dung dugc mot bo chucfng trinh rieng tinh cac tmong tugng day dii ma chi CO mot so chucfng trinh nhap tir nu6c ngoai ve V6i ly tren, chiing toi xin dang ky lam de tai luan van tot nghiep ve va'n de nay, bucfc dau giai bai toan tugng, xay dung mot bg chucfng trinh tinh: truong gio, ap suat, quyen, nhiet do, am khong c6 nghiem bang so vcfi cac thong so ban dau va bien cho tmac cung mot so he so roi De dat dugc muc tieu tren, de tai can giai quyet cac nhiem vu sau: - Thu thap cac thong tin co so ve xay dung mo hinh toan mo phong cac qua trinh van dong quyen - Thu thap cac mo hinh tugng - Danh gia, phan tich cac mo hinh, lua chon mo hinh thich hgp d^ giai - Xay dung thuat toan giai - Vie't chucfng trinh tinh - Hieu chinh va ki^m nghiem mo hinh qua mot so so lieu thuc te' - Danh gia tin cay mo hinh va kha nang van dung vao thuc te' Pham vi noi dung cua de tai chu ye'u tap trung vao nghien cihi thuat toan giai mo hinh, ky thuat lap chucfng tnnh tinh, bu6c ddu giai quyet va'n de Icfp bien sat d^t, kie'm nghiem mo hinh v6i mot so so lieu gia dinh va thuc te' Pham vi vung nghien cihi la mot so vi du cu the tinh tmdng gio, ap, nhiet, am cho mot ph^n dong bang Song Hong va vung bien ke can So lieu dung tinh thu nghiem mo hinh ve dia hinh dugc thu thap tir ban dia hinh ty le l/10^ c6 tham khao them ban dia hinh 1/2.10^ va so lieu tugng tir cac tram: Ha Noi, Hung Yen, Hai Duong, Hong Gai (Quang Ninh), Van Li (Nam Dinh), Hon Dau, Bach Long VT (Hai Phong) thuoc Tdng cue Khi tugng Thuy van quan ly Bd cue luan van gom phan mo dau, ke't luan, tai lieu tham khao, phu luc va chucfng, cau true nhu sau: - Mo dau - Chuang I: T6ng quan ve tinh hinh nghien cuu mo hinh tugng - Chucfng II: Xay dung mo hinh toan - Chucfng III: Thuat toan giai mo hinh - Chuang IV: Xay dung chuang trinh tinh va ung dung mo hinh thu nghiem cho mot khu vuc cu the - Ket luan va khuye'n nghi Luan van da dugc hoan tai Phong Co hoc bien, Vien Co hoc, Trung tarn Khoa hoc Tu nhien va Cong nghe Quoc gia vdi sir giiip va hudng dSn tan tinh ciia PGS.TS Tran Gia Lich Hoc vien xin dugc bay to long bie't an sau sac nh^t t6i thay giao hudng dSn Trong qua trinh thuc hien, hoc vien nhan dugc su quan tarn, tao moi dieu kien thuan Igi cua lanh dao Phong, Vien Ca hoc, Trung tarn dao tao va boi duSng Co hoc va nhieu y kien dong gop qui bau cua cac giao su, tie'n sT, cac thay - c6 giao, cac nha nghien cihi, cac ban dong nghiep d nhieu ca quan, t6 chiic khoa hoc khac Nhan dip nay, tac gia xin dugc bay to long bie't an chan doi vori nhiing sir giup dd quy CHlfONG TONG QUAN vt TINH HINH NGHIEN ClTU MO HINH KHI TUONG Nghien cihi mo hinh tugng da c6 \\x lau, phuong phap so tri giai he phuang trinh dong luc hoc \in dau tien dugc Richardson de xuaTt vao nhung nam 1920 Do khdi lugng tinh toan rat lofn cung vdi cac thong tin trang thai ban d^u khong diy dii (mang lucfi quan trac tugng thua theft, chua c6 quan trac cao khong), phuang phap luc ba^y gi5 chua c6 hieu qua Co the noi giai cac m6 hinh tugng gan lien vcfi sir phat tri^n ciia may tinh Vai thap ky gan day nhieu the' he may tinh sieu tdc d6i, bai toan tugng da va dang dugc giai cang hoan thien dap img yeu cau nghien cuu quyen va du bao thdi tiet LI Tinh hinh nghien ciiru a nude ngoai O My, cac nude Tay Au nghien cuu mo hinh tugng ra't phat trien Co nhieu mo hinh tugng da dugc xay dung mo phong kha day dii cac trang thai quye'n vai cac quy mo khac Chang han mo hinh GME (Global model European), da mo ta va du bao cac trucfng tugng: ap sua't, gio, nhiet do, am, cho cac khu vuc tren pham vi toan cau vdi 31 Idp cao va ludi khong gian khoang 60 x 60 km, ihcfi gian du bao 6,12 gid Mo hinh HRM co phan giai cao ciia Cong hoa lien bang Dire, mo ta va du bao cac yeu to tugng khu vuc 24, 48 gia dap ung vcfi cac yeu cau ciia cac bai toan Ian truyen nhiem khong khi, tinh toan hai van, nong nghiep, Mo hinh GME ket hgp vdi HRM, tinh GME lam bien cho HRM ket qua kha tdt Hai mo hinh tren da va dang thu nghiem de mo phong va du bao cac truang tugng tai khoa Khi tugng Thuy van, Tmdng Dai hoc Khoa hoc Tu nhien - Dai hoc Qudc gia Ha Noi Nhieu nha toan hoc thuoc vien Han lam khoa hoc Nga (Lien X6 cu) da nghien cuu cac mo hinh tugng bai toan Ian truyen nhiem quyen, dien hinh nhu G.I Martriic, B.B Peneko, A.E Aloian, Rat nhieu cdng trinh nghien clJu m6 hinh tinh trudng tugng da dugc cong bd cac tap chi khoa hoc Su CO mat cac phucfng trinh tham gia he phucfng trinh dong luc quy^n [4, 5, 6, 7, 8, 9], chung toi c6 th^ phan loai mo hinh tugng sau: - M6 hinh thuy tmh dai dien nhu cua Australia, Nga (qui mo c5 trung binh) - M6 hinh phi thuy tmh (qui mo ca trung binh) 1.1.1 Phuang tnnh thuy Snh [9]: Phucfng trinh thuy tmh dugc dua vao he, he phuang trinh ca ban viet tga d6 D^ cac: ( dw d\x ifdn 5u » 5p , 5u , 5u \ d\x — + u — -pf-—+ w fV = ^ + — kh — + — kh — + T^ d\ d\ dy dz pdx 5x 5x 5y 5y p 5z dv dv dv dv ^ l d p d , d v d , d v l d — + u — + v— + w— + fu = - + — k h — + — kh — + Tyz dt d\ dy dz p 5y dx dx dy dy p dz dp - — = -g P dz ^ + —(ptO + — dt dx dy (1.1) (pv) + —(pw) = dz de dQ dQ dQ d dQ dQ d , 56 — -hu — + v ^ + w — = —kjh — + —k^i -hu — vt2 + —k», — + dt dy at dx rad dz dx dx dy dy dz dz dt dx dd: dy dz dx "^^^ dx dy "^^^ dy dz '^'- dz u, v, w la phan tdc theo cac true x, y, z p la ap sua^t quyen p la mat khong la nhiet the vi kh la he so roi theo chieu ngang j k^ la he s6 rdi theo chieu thing ddtig / ky^kt2 la he sd khuyech tan nhiet theo chieu ngang va thing diing kqh, kq^ la he sd khuye'ch tan am theo chieu ngang va thing dimg T„, Ty2 la ten xa thig suat, rdi theo chieu ngang va thing dutig f la thong sd luc coriolis dQ dt la phan nhiet b6 xung hay mat di rad Cac nghiem cdn tim: u, v, w, 0, q, p D^ giai he phuang trinh (1.1) c ^ cac dilu kien sau: Dieu kien ban dau: - Dua vao muc dia hinh so vdi mat bien va dac tinh be mat (d6 nham, albedo, d6 am be mat, tinh cha't da't, ) - Dua ap su^t be mat va profil cua gid, nhiet (tir bdng tham khong) Gid phai dugc phan anh trudng cao dia the vi bdi cac ban 850, 700, 500 mb, Nhd profil noi suy dugc cac gia tri ban dau, ap sua't noi suy qua phuang trinh thuy tinh Dieu kien bien: - Tai z = van tdc gid bang 0, nhiet nude bi^n la hing sd, nhiet mat dat dugc tinh bang phuang trinh can bang nhiet, giai phuang trinh sau: dT , d^T dt ' dx' dd: k^ la he sd truyen nhiet, T la nhiet da't - Bien tren cao, d cao 8500 - 19700 m thi coi p = 0, q = 0, p = - Bien hong: — = — = — = dn dt\ dn Thong thudng dau tien giai ludi thd, sau dd la'y ket qua ludi thd lam dieu kien bien cho ludi tinh Mo hinh LADM thay z =CT= p/po 1.L2 Mo hinh phi thuy finh [8]: He phuang trinh viet tga De cac: d\x d\x dw di\ — +u— + v— +w— = dt dx dy dz dy dw dw dw — + u— + v—-i-w— = ^ dx dy dz dw dw dv^ dw — + u — + v — -hw— dt dx dy dz dJ dJ dJ dT — + u — + v— + w dt dx dy dz ~^-f- — at I dp , d dii ^ + lv + — v^ —-i-zlu p dx dz dz \ dp , d dw ^ ^-lu-i- — Vy — -i-Av p dy dz dz I dp d dw , = ^ - g + — V7 — + Aw p dz dz dz ^ fy /\dp d dT , ^ 'y - ^ = — V — + AT + e y /PEJ dt 5z * az (pu) + — (pw) — (pw) = 5x ay az P = pRT , d d d d A= —p^ —-I- — p — dx dd: dx dy ' dy T la nhiet khong Yn la gradient nhiel Irong moi trudng doan nhiet la lugng nhiel bd xung p, V la he sd rdi iheo chieu nim ngang va thing dung Cac ky hieu kliac luang ly nhu tren day giai he phuang tnnh he toa cong: t, = I; X2 = x; y, = y; a = (/ - /o).H / (H - z^) H la chi^u cao Idp bien tmh, 7^, la cao dja hinh Cac dieu kien ban dau va bien lucfng lu nhu mo hinh thuy tTnh Hai mo hinh tren la nhung md hinh tugng rat ca ban, mot sd md hinh khac [4, 5, 6, 7] da IIICMH cac Ihanh phan khac cho phii hgp hcfn dieu kien md phong thuc te 10 1.2 Tmh hinh nghien curu mo hinh a Viet Nam O Viet Nam, nghien curu giai mo hinh tugng ra't it Du bao nghiep vu tugng chu yeu bang phuang phap sindp Cac phan mem giai md hinh tugng chii yeu dugc nhap iix nude ngoai, nhu GME, HRM, LADM, TCLAPS, KBR, HOMACH, ciia chau Au, Diic, Uc, My Viec su dung cac phdn mem cua nude ngoai cd nhieu thuan Igi, nhung cung khong it khd khan: chucfng trinh chay theo mdt qui each nhat dinh khd sua chua theo y mudn, mot sd chuang trinh nhu HRM dix lieu dau vao ti^ Cong hoa Lien bang Diic cung c^p, mdt sd chucfng trinh budc ludi tinh qua Idn, G^n day, mot sd cong trinh nghien ciiu md hinh tugng tai hoi thao md hinh du bao tugng cua khoa Khi tugng thuy van thuoc trudng Dai hoc Khoa hgc Tu nhien - Dai hoc Qudc gia Ha Noi nam 2002 vdi cac tac gia: - Ths Nguyen Minh Tudng: Ap dung md hinh chinh ap ciia Krishnamurti vao du bao trudng dudng dong dan muc 700 mh va irng dung du bao quT dao ciia bao - TS Phan Van Tan: Ky thuat phan tich xoay va kha nang ung dung du bao dudng di ciia bao bang md hinh chinh ap Md hinh tinh cac yeu td tugng bien [10] 11 21 22 23 24 25 gl (m,n, j)=f*vl (m, n, j )+hvs* (ul (m,n+l, j )-ul (m, n, j ) } / (dy^Z) * -hvs* (ul(m,n, j)-ul (m,n-l, j) ) / (dy**2)+hvz*sz* (ul (m, n, j + ) * ul (m,n, j) ) /(dz**2)-hvz*s2* (ul(m,n, j)-ul (m, n, j-1) ) / (dz**2) • * wl (m,n, j ) * (ul (m,n, j+1) -ul (m,n, j-1) ) / (2*dz) * vl(m,n, j) * (ul (m,n+l, j) -ul(m,n-l, j) )/(2*dy) + * (sx/rol (m,n, j) ) * (pi (m, n, j+1)-pl(m, n, j-1) ) / (2'd2) * +( (0.5*hvs*sx) /(dx*dz) ) * (ul (m+1, n, j+1)-ul(m+l, n, j-1) * ul(m-l,n,j+1)+ul{m-l,n,j-1)) * +( (0.5*hvs*sy) / (dy*dz) ) * (ul (m,n+l, j+1)-ul (m, n+1, j-1) * ul(m,n-l,j+1)+ul(m,n-l,j-1) ) 22 j=l,jl 22 n=l,nl 22 m=l,ml roo(m,n,j)=0.0 23 m=l,ml 23 n=l,nl 23 j=l,jl-l 23 i=j,jl-l roo (m-, n, j ) =roo (m,n,j) + ( (rol(m,n,i)+rol(m,n,i + l) ) * (ro2(m,n,i)+ro2(m,n,i+1))) 24 j=2,jl-1 24 n=2,nl-l 24 m=2,ml-l sz=h/(h-zO(m,n)) dll=ul (m,n, j) * (z0(m+l,n) -z0(m-l,n) ) /(2*dxMh-z0 fm,n) ) ) dl2=vl (m,n, j) * (zO (m,n + l) -zO (m,n-l) ) / (2*dy* (h-zO (m,n) ) ) g2 (m,n, j)=-{vl (m, n+1, j )-vl (m, n-1, j) ) / (2*dy) - (wl(m, n, j+1) * wl(m,n,j-1) )/(2*dz)-l./ (to*rol(m,n,j))*(roi(m,n, j ) * ro2 (m,n, j) ) - (ul (m, n, j ) /roi (m, n, j) ) * (roi (m-^l, n, j ) * roi(m-l,n,j) )/(2*dx)-(vl(m,n, j) /rcl(m,n, j))*(rol(m,n + l,]) * roi(m,n-l,j) )/(2*dy)-(wl(m,n, j) /roi (m, n, j))*(roi(m,n,]^1) * roi(m,n,j-1))/ * (2*dz)+9.8*roo{m,n, j) * (dz/ (2*to*sz) )+dll+dl2 25 j=2,jl-1 25 n=2,nl-l 25 m=2,ml-l a(m,n,j)=-(ul(m,n,])+ABS(ul(m,n,j)))/{2*dx)-hvs/-ax-2;* to/(2*rol(m,n,j)*dx**2) b(m,n,j) = (l./to) + (ABS(ul(m,n,]))/dx;-(hvs-hvs.-/ax"z-tG/ * (rol(m,n,j)*dx**2) , , c(m,n,j)=-(ABS(ul(m,n,j))-ui;m,n,]))/(2*dx)-hvs/ax /-.c/ * (2*rol(m,n,])*dx**2) 26 n=2,nl-1 26 m=2,ml-l 26 j=2, jl-1 , , , ^ _ ^- ^ - > / d(m,n,])=ul(m,n,])/to+gl(m,n :.- p m|.,n, ^- ,-.,.;; / * (dx*rol(m,n,::,^-ito/(2*dx^rol;m,n,:,.;)Vg m^.,n,.,.* g2 (m, n, j ) ) 83 26 c 27 28 c 281 29 41 42 43 45 46 461 30 continue Xac dinh Lm,Km 27 j=l,jl 27 n=l,nl al(ml,n,j)=1.0 ak(ml,n,j)=0.0 28 j=2,jl-l 28 n=2,nl-l 28 m=ml-l,2,-l al (m,n, j)=-a(m,n, j) / (b (m,n, j )+c (m, n, j ) *al(m+l, n, j ) ) ak(m,n, j) = (d(m,n, j)-c(m,n, j) *ak(m+l,n, j) )/ * (b(m,n, j)+c(m,n,j)*al(m+l,n,j)) tinh u**(k+1/2) 281 j=2,5 281 n=2,nl-l 281 m=2,ml-l cl=dz/zOO(m,n) u(m,n, j) = (0.03*uc/akm)*log((j-1)*cl) 29- j=5, jl-1 29 n=2,nl-l 29 m=2,ml-l u(m,n,j)=al(m,n,j)*u(m-l,n,j)+ak(m,n,j) 41 j=2,jl 41 n=2,nl u(ml,n,j)=u(ml-1, n, j) 42 j=2,jl-l 42 m=2,ml-l u(m,1,j)=u(m,2,j) 43 j=2,jl-1 43 m=2,ml-l u(m,nl,j)=u(m,nl-l,j) 45 j=2,jl-1 u(ml,l,j}=u(ml-l, 1, j) 46 j=2,jl-l u(ml,nl,j)=u(ml-1,nl-1, j) 461 n=l,nl 461 m=l,ml u(m,n,jl)=uc 30 j=2,jl-l 30 n=2,nl-l 30 m=2,ml-l p(m,n,j)=pl(m,n,j)+0.5*to*g2(m,n,:)-to/(2*dxnMu(m,n, * c u(m-1,n,j}) TINH V**k+1, P**k+1 31 j=2,jl-1 31 n=2,nl-l 31 m=2,ml-l sx={z0(m+l,n)-z0(m-l,n))M]*l.-n;/'.'3xvn-z' m,ni)) 84 sy=(j*l.-h)*(zO(m,n+l)-zO(m,n-l) )/( (h-z0(m,n) ) -2*dv) S2=(h/(h-zO(m,n)))**2 31 g3(m,n, j)=-f*u(m,n, j) -u(m,m, j) * (vl (m+1, n, j )-vl (ml,n,j))/(2*dx) * -wl(m,n,j)*(vl(m,n,j + l)-vl(m,n, j 1))/(2*dz)+hvs*(vl(m+l,n,j) * -vl(m,n, j) )/(dx**2)-hvs*(vl(m,n, j)-vl(m-l,n, j) )/(dx**2) + * hvz*sz*(vl(m,n, j+l)-vl{m,n, j) ) / (dz**2)-hvz^sz* (vl (m, n, j ) * vl(m,n, j-1))/(dz**2) + * (sy/rol (m,n, j) ) * (pi (m,n, j+1) -p(m,n, j-1) ) /(2*dz) + ( {0.5*hvs*sx) /(dx*d2) ) * (vl (m+1, n, j + 1)-vl (m+1, n, j-1)vl(m-l,n,j+l)+vl(m-l,n,j-1)) * * +( (0.5*hvs*sy)/(dy*d2) ) * (vl (m, n+1, j + 1)-vl (m, n+1, j-1)* vl(m,n-l,j+1)+vl(m,n-l,j-1)) 32 j=2,jl-l 32 n=2,nl-l 32 m=2,ml-l sz=(h/(h-zO(m,n))) dll=u.(m,n, j) * (zO (m+l,n)-zO(m-l,n) ) /(2*dx* (h-zO(m,n) ) ) dl2=vl (m,n, j) *-(zO (m,n+l)-zO(m,n-l) ) /(2*dy*(h-z0 (m,n) ) ) 32 g4 (m,n, j)=- (u(m+l,n, j) -u(m-l,n, j ) ) / (2*dx) -(wl(m,n,]+l)* wl(m,n,j-1))/(2*dz)-(l./rol(m,n, j) )*(rol(m,n, j ) ro2 (m, n, j ) ) /to * -{u(m,n,j)/rol(m,n,j))*(rol(m+l,n,j)-rol(m-l,n,j))/(2*dx) * - (vl (m, n, j ) /roi (m, n, j ) ) * (roi (m,n+l, j ) -roi (m, n-1, j ) ) / (2*dy)-(wl(m,n,j)/ * roi(m,n,j) )*(roi(m,n,j+1)-roi (m,n, j 1))/ (2*dz)+9.8*roo{m,n,j) * *(dz/(2*to*sz))+dll+dl2 c Tinh an,bn,cn,dn 33 j=2,jl-l 33 n=2,ml-l 33 m=2,ml-l a(m,n, j)=-(vl(m,n, j)+ABS(vl(m,n, j) ) ) / :2*dy)-hvs/(dy — ) * (to/(2*rol(m,n,j)*dy**2)) b(m,n, j) = (l./to)+ABS(vl (m,n, j) ) /dy+(hvs+hvs) /(dy**2] + * (to/(rol(m,n,j)*dy-*2)) 33 c(m,n, j)=-(ABS(vl(m,n,j)}-vl(m,n,j))/(2*dy)-(hvs/dy-2)* (to/(2*rol(m,n,j)*dy**2)) 34 j=2,jl-l 34 m=2,ml-l 34 n=2,nl-l , d(m,n,j) = (vl(m,n,j)/to)+g3(m,n,j)-(p.im,n-l,])-p.^m,n,]);/ (dy*rol(m,n,j))-(to/(2*dy*rol=m,n,:;;}Mg4^m,n-.,:,g4 (m, n, j ) ) 34 continue c Tinh Ln,kn 35 j=l,jl 85 35 ^ 36 361 3611 3612 3613 362 37 c 49 50 52 511 38 c 391 35 m=l,ml al (m,nl, j)=1.0 ak(m,nl,j)=0.0 36 j=2,jl-1 36 m=2,ml-l 36 n=nl-l,2,-l al(m,n, j)=-a(m,n, j) / (b (m, n, j )+c (m,n, j ) *al (m, n+1, j ) ) ak(m,n, j) = (d(m,n, j) -c(m,n, j) *ak(m,n+l, j) ) / * (b(m,n,j)+c(m,n,j)*al(m,n+l,j)) 361 m=2,ml-l 361 j=2,jl-l v(m,1,j)=ak(m,2,j)/(l.-al(m,2,j) ) 3611 j=2,jl-l v(l,l,j)=v(2,l,j) 3612 j=2,jl-l v(ml,l,j)=v(ml-l,l,j) 3613 m=l,ml v(m,1,jl)=v(m,l,jl-1) 362 j=2,5 362 n=2,nl-l 362 m=2,ml-1 cl=d2/zOO(m,n) v(m,n,j) = (0.03*vc/akm)*log((j-1) *cl) 37 j=5,jl-l 37 m=2,ml-l 37 n=2,nl-l v(m,n,j)=al {m,n,j)*v(m,n-l,j)+ak(m,n, j) bien v**k+l 49 j=2,jl-1 49 m=2,ml-l v(m,nl,j)=v{m,nl-l,j) 50 j=2^jl-l 50 n=2,nl-l v(ml,n,j)=v(ml-l, n, j ) 52 j=2,jl-l v(ml,nl,j)=v(ml-1,nl-1, j ) 511 m=l,ml 511 n=l,nl v(m,n, jl)=vc 38 j=2,jl-1 38 n=2,nl-l 38 m=2,ml-l p(m,n,j)=p(m,n,j)+0.5*to*g4(m,n,j)* (to/ (2*dy) ) •* (v(m,n, j) -v(m,n-^,]) ) Tinh W**k+1 391 n=l,nl 391 m=l,ml w(m,n,1)=0.0 86 39 j=i,ji-i 39 n=2,nl-l 39 m=2,ml-l dll=u(m,n,j)MzO(m+l,n)-zO(m-l,n))/(2MxMh-zO(m,n))) dl2=v m n,j)MzO(m,n+l)-zO(m,n-l))/(2MyMh-zO(m,n dl= -(u(m+l,n,])-u(m-l,n,j))/(2*dx) d2= -(v(m,n+l,j)-v(m,n-l,j))/(2*dy) l,n, d3= -(l./(to*rol(m,n,j)))Mrol(m,n,j)-ro2(m,n,j)) _^d4= -(u{m,n,j)/(2*dx*rol(m,n,j)))Mrol(m+l,n,:)-rol(m- 39 ph4(m,n,]) = (dl+d2+d3+d4+d5+dll+dl2) 40 j=i,ji-i 40 m=2,ml-l 40 n=2,nl-l aph=(rol(m,n, j + l)-rol(m,n, j))/(2.*rol(m,n, j) ) 40 w(m,n, j+l) = (l.aph) *w(m,n, j) /(l.+aph)+(d2/(l.+aph))*ph4(m,n,j) 522 j=2,jl-l 522 m=2,ml-l 522 w(m,1,j)=0 523 j=2,jl-1 523 n=2,nl-l 523 w (ml, n, j ) =0 524 j=2, jl-1 524 m=2,ml-l 524 w (m, nl, j ) =0 525 j=2,jl-l 525 n=2,nl-l 525 w(l,n,j)=0 526 j=2,jl-l 526 w(ml,1,j)=0 527 j=2,jl-l 527 w (ml, nl, j ) =0 528 j=2,jl-l 528 w(l,nl,j)=0 529 j=2,jl-l 529 w(l,l, j)=0 521 m=l,ml 521 n=l,nl 521 w (m, n, j 1) =0 c Chinh bien p 54 j=2,jl-l 54 m=2,ml-l p (m, 1, j ) =p (m, 2, j ) 54 55 j=2,jl-1 55 m=2,ml-l 55 p(m,nl,j)=p(m,nl-l, j 87 ' ' J/ 56 • 561 562 57 58 582 583 59 150 151 400 152 153 c 56 j=2,jl-l 56 n=2,nl-l p(ml,n,j)=p(ml-1,n,j) 561 j=2,jl-l 561 n=2,nl-l p(l,n,j)=p(2,n,j) 562 j=2,jl-1 562 n=2,nl-l p(ml,n,j)=p(ml-l,n, j) 57 j=2,jl-1 p ( m l , n l , j)=p (ml-1, nl-1, j) 58 j=2,jl-l P ( m l , l , j ) = p ( m l - l , , j) 582 j=2,jl-l p(l,nl,j)=p(2,nl-l,j) 583 j=2,jl-1 P(l,l,j)=p(2,2,j) 59 n=l,nl 59 m=l,ml p(m,n,jl)=pc 150 j=l,jl 150 n=l,nl 150 m=l,ml v2(m,n,j)=vl(m,n,j) w2 (m, n, j ) =wl (m, n, j ) u2 (m, n, j ) =ul (m, n, j) p2(m,n,j)=pl(m,n,j) 151 j=l,jl 151 n=l,nl 151 m=l,ml ul (m, n, j ) =u (m, n, j ) vl(m,n,j)=v(m,n,j) wl (m, n, j ) =w (m, n, j ) pi(m,n,j)=p(m,n,j) continue 152 j=l,jl 152 n=l,nl 152 m=l,ml u ( m , n , j ) = * (u2 (m,n,j)+u (m, n 153 j=l,jl 153 n=l,nl 153 m=l,ml v(m,n,j)=v2(m,n,j) w (m, n, j ) =w2 (m, n, j ) p(m,n,j)=p2(m,n,j) TINH Q**(K+l) 61 j=2,jl-1 61 n=2,nl-l 88 61 62 63 64 641 65 61 m=2,ml-l sy=(j*dz-h)*(zO{m,n+l)-zO(m,n-l))/ ( (h-zO(m,n))*2*dy) sz=(h/(h-zO(m,n)))**2 sx=(zO(m+l,n)-zO(m-l,n))*(j*dz-h)/(2*dx*(h-zO (m,n) ) ) g5(m,n,j)=ul(m,n,j)*(ql(m+1,n,j)-ql (m-1,n,j))/(2*dx)(hqs/(dx**2))*(ql(m+1,n,j)-ql(m,n,j))+ (hqs/(dx**2))*(ql(m,n,j)-ql (m-1,n,j)) + (vl(m,n,j)/(2*dy) (ql(m, n+1,j)-ql(m,n-l,j))-(hqs/(dy**2))*(ql (m, n+1, j ) ql(m,n,j)) + (hqs/(dy**2))*(ql(m,n,j)-ql(m, n-1, j) ) + (wl(m,n,j)/(2*dz))*(ql(m,n,j+1)-ql(m,n,j-1) ) (hqz*sz/(dz**2))*(ql(m,n,j+1)-ql(m,n, j ) ) + (hqz*sz/(dz**2))*(ql(m,n,j)-ql(m,n, j-1) ) ' + ( ( * h q s * s x ) / ( d x * d z ) ) * (ql (m+1,n,j + 1)-ql(m+1,n, j - ) ' ql(m-l,n,j+1)+ql(m-l,n,j-1)) ' + ( ( * h q s * s y ) / ( d y * d z ) ) * (ql (m,n+1,j + 1)-ql(m,n+1,j-1)' ql(m,n-l,j+l)+ql(m,n-l,j-1)) 62 j=2,jl-l 62 n=2,nl-l 62- m=2,ml-l s x = ( z O ( m + l , n ) - z O ( m - l , n ) ) * (j*dz-h)/ 2*dx*(h-z0(m,n))) a(m,n,j)=-(to*te*(u(m,n,j)+ABS(u(m, n,j)))/(2*dx))(to*te*hqs/(dx**2)) b(m,n,j)=l.+(to*te*ABS(u(m,n,j)))/dx+to*te*(hqs^hqs)/(dx**2 c(m,n,j)=-to*te*(ABS(u(m,n,j) )-u(m,n,j) ) / (2*dx)to*te*hqs/(dx**2) d(m,n,j)=to*fk+ql(m,n,j)-to*(1.-te)*g5(m,n,j) • -sx*ul(m,n,j)*(ql(m,n,j+1)-ql(m,n,j-1))/(2*dz) 63 j=l,jl 63 n=l,nl al(ml,n,j)=1 ak(ml,n,j)=0 64 j=2,jl-l 64 n=2,nl-l 64 m=ml-l,2,-l al(m,n,j)=-a(m,n,j)/(b(m,n,j )+c(m,n,j)*al(m+ ak(m,n,j)=(d(m,n,j)-c(m,n,j) *ak(m+1,n, j) ) / (b(m,n,j)+c(m,n,j)*al(m+l,n,j)) 641 j=l,jl 641 n=l,nl ql3(l,n,j)=ql(l.n,j) 65 j=2,jl-l 65 n=2,nl-l 65 m=2,ml-l , ^ ql3(m,n,j)=al(m,n,j)*ql3(m-l,n,:}-aK.m, 66 j=2,jl-l 66 m=2,ml-l ql3(m,1,j)=ql3(m,2,j) 67 j=2,jl-l 89 r^.] 67 68 69 70 71 711 c 72 73 74 c 67 m=2,ml-l ql3(m,nl,j)=ql3(m,nl-l,j) 68 j=2,jl-l 68 n=2,nl-l q l { m l , n , j ) = q l ( m l - l , n , j) 69 j=2,jl-l q l ( m l , n l , j ) = q l ( m l - , n l - , j) 70 j=2,jl-l ql3(ml,1,j)=ql3(ml-1,2,j) 71 n=l,nl 71 m=l,ml ql3(m,n,jl)=ql3(m,n,jl-1) 711 n=l,nl 711 m=l,ml ql3(m,n,l)=ql(m,n,1) Tinh q23 72 j=2,jl-l 72 m = l , m l 72* n=2,nl-l sy=(j*dz-h)*(zO(m,n+l)-zO(m,n-l))/((h-zO{m,n))*2*dy) a ( m , n , j)=-(to*te/(2*dy))*(v(m,n,j)+ABS(v (m, n, j) ) ) * (to*te*hqs/(dy**2)) b(m,n,j)=1.+to*te*ABS (v(m, n,j))/dy+(to*te/(dy**2) ) * (hqs^hqs c(m,n, j)=-(to*te*(ABS(v(m,n,j) )-v(m,n,j)))/(2*dy)* (to*te/(dy**2))*hqs d ( m , n , j)=ql3(m,n,j)-(vl(m,n,j)*sy/(2*dz) )*(ql(m,n,]+1)* ql(m,n,j-1)) 73 j=l,jl 73 m=l,ml al(m,nl,j)=1 ak(m,nl,j)=0 74 j=2,jl-l 74 m=l,ml 74 n=nl-l,2 ])) a l ( m , n , j ) = - a (m n, j ) / (b(m,n, j ) +c (m,n, j ) *al (m, n' ak(m,n,j)=(d(m,n,j)-c(m n,j)^ak(m,n+1,j))/ * (b(m,n,j)+c(m,n,j)*al m,n+1,j)) 75 Tinh q23 741 j=l,jl 741 m=l,ml q23(m,1,j)=ql3(m,1,j) 75 j=2,]l-l 75 m=l,ml 75 n=2,nl q2 3(m,n,j)=al(m,n,j)*q23(m, 752 752 n=l,nl 752 m=l,ml q ( m , n , l)=ql (m,n, 1) 741 90 ) -a 53 c 751 753 n=l,nl 753 m=l,ml q2 3(m,n,jl)=q23(m,n,jl-1) tinh q(k+l) 751 n=l,nl 751 m=l,ml q(m,n,1)=ql(m,n,1) 76 j=2,jl-l 76 n=2,nl-l 76 m=2,ml-l sy=(j*dz-h) * (zO (m,n+l)-zO (m, n-1) ) / ( (h-zO (m, n) ) *2*dy) sx=(zO(m+l,n)-zO(m-l,n) ) *(j*dz-h) /(2*dx*(h-z0 (m,n) } ) sz=(h/(h-zO(m,n)))**2 a(m,n, j)=-to*te* (w (m, n, j )+ABS (w (m,n, j) ) )/(2*dz)* (to*te*hqz*sz/(dz**2)) b(m,n, j ) =l.+to*te*ABS (w(m, n, j ) ) /dz+to*te*sz* (hqz+hqz) / (dz**2) c(m,n, j)=-to*te* (ABS (W (m, n, j ) ) -w (m, n, j) ) / (2*dz) * to*.te*hqz*sz/ (dz**2) 76 d(m,n, j)=q23(m,n, j ) + ( (to*te) / (2*dz) ) * (q23 (m, n, j + 1) * q23 (m,n, j-1) ) * (u(m,n, j) *sx+v(m,n, j) *sy) 77 n=l,nl 77 m=l,ml al(m,n,j1)=1 77 ak(m,n,jl)=0 771 n=2,nl-l 771 m=2,ml-l 771 j=jl-l,2,-l al (m,n, j ) =-a (m, n, j ) / (b (m, n, j) +c (m, n, j) *al (m, n, j+1) ) 771 ak(m,n,j)=(d(m,n,j)c(m,n, j)*ak(m,n,j+1))/(b(m,n,j)+c(m,n, j) * SL 772 78 782 783 784 a l (m, n, j + 1) ) 772 n=l,nl 772 m=l,ml q(m,n,l)=ql(m,n,1) 78 j=2,jl-1 78 n=2,nl-l 78 m=2,ml-l q(m,n,j)=al(m,n,j)*q(m,n, j-l)+ak(m,n,]) 782 j=2,jl-l 782 n=2,nl-1 q(l,n,j)=q(2,n,j) 783 j=2,jl-1 783 n=2,nl-l q(ml,n,j)=q(ml-l,n, j) 784 j=2,jl-1 784 m=2,ml-l q(m,1,j)=q(m,2,j) 91 785 j=2,jl-l 785 m=2,ml-l 785 q(m,nl,j)=q(m,nl-l, j) 786 j=2,jl-l 786 q d l , j)=q(2,2, j) 787 j=2,jl-l 787 q(ml,l,j)=q(ml-l, 1,j) 788 j=2,jl-l 788 q(ml,nl,j)=q(ml,nl-l,j) 789 j=2,jl-l 789 q(l,nl,j)=q(l,nl-l, j) 781 n=l,nl 781 m=l,ml 781 q(m,n, jl)=q(m,n, jl-1) 790 n=l,nl 790 m=l,ml 790 q(m,n,l)=q23(m,n, 1) c Tinh T the vi 79 j=2,jl-1 79 n=2,nl-l 79 m=2,ml-l sy=(j*dz-h)*(zO(m,n+l)-20 (m,n-l))/((h-zO(m,n))*2*dv) sz=(h/(h-zO(m,n)))**2 sx=(zO(m+l,n)-zO (m-1, n) ) * (j *dz-h) /[2*dx* (h-zO(m,n) ) ) 79 g5 (m,n, j) =ul (m,n, j ) * (tl (m+l,n, j) -tl (m-l,n, j) ) / (2*dx) (hts/(dx**2) ) * (tl (m+l,n,])-tl(m,n, j) )-^ (hts/ (dx**2) ) * (tl (m,n, j) -tl (m-l,n, j) ) ^(vl fm,n, j ) / (2*dy) ) • & (tl(m,n + l,j)-tl (m,n-l,j) ) - (hts/(dy'*2) ) *i tl{m,n^l,: * tl(m,n,j))+(hts/(dy**2))*(tl(m,n,j)-tl(m, n-l,j))+ * (wl(m,n,j)/(2*dz))* (tl (m,n,j + 1)-tl(m,n, j-1) ) htz *sz/(dz**2))* & (tl(m,n,j+l)-tl(m,n,j))+ * (htz*sz/ (dz**2))* (tl (m,n,j)-tl(m,n, j-1' } * -((0.5*hts*sx)/ (dx*dz) } * (tl (m+1, n, j ^1; -tl >m-r:, n, :-1 * tl(m-l,n,j + l)+tl(m-l,n, j-1) ) * -((0.5*hts*sy)/ (dy*dz) ) * (tl (m, n-^1, j^l)-tl(m, n-l, :-1 * tl(m,n-l,j+1)+tl(m,n-l,j-1) ) 80 j=2,jl-1 80 n=2,nl-l 80 m=2,ml-l sx=(z0 (m+l,n) -zO (m-l,n) ) * (j*dz-h) / •:2*dx' (h-zO (m,n) ) ) a (m,n, j)=- (to*te* (u(m,n, j) +ABS (u (m, n, j ) ) ) / (2*dx} ) + (to*te*hts/(dx**2)) 'hts*hts)/ ri-:.- tr * \ b(m,n,j)=!.+(to*te*ABS(u(m,n,: ) ) /dx^t c(m,n,j)=-to*te*(ABS(u(m, n, ] ) )u(m,n,j / 'dx (to*te*hts/(dx*'2;) d(m,n,j)=to*fk+tl(m,n,j)-to*(l.-te 81 j=l,jl 92 81 82 821 83 84 85 86 87 81 n=l,nl al(ml,n,j}=l ak(ml,n,j)=0 82 j=2,jl-l 82 n=2,nl-l 82 m=ml-l,2,-l al(m,n, j)=-a(m,n, j)/(b(m,n,j)+c(m,n, j)*al(m +l/n,j)) ak(m,n, j) = (d(m,n, j)-c(m,n, j)*ak(m+l,n, j) ) / * (b(m,n, j)+c(m,n, j) *al(m+l,n, j) ) 821 j=l,jl 821 n=l,nl tl3(l,n,j)=tl(l,n,j) 83 j=2,jl-l 83 n=2,nl-l 83 m=2,ml-l tl3(m,n,j)=al(m,n,j)*tl3(m l,n,j)+ak(m,n,j) 84 j=2,jl-l 84 m=2,ml-l tl3(m,l,j)=tl3(m,2,j) 85 j=2,jl-l 85 m=2,ml-l tl3(m,nl,j)=tl3(m,nl-l,j) 86 j=2,jl-1 86 n=2,nl-l tl3(ml,n,j)=tl3(ml- n, ]) 87 j=2,jl-1 tl3(ml,nl,j)=tl3(ml l,nl- l.j) do-88 j=2,jl-1 tl3(ml,1,j)=tl3 ml-1,2,j) 89 n=l,nl 89 m=l,ml tl3 (m,n,jl)=tl3(m,n,jl-1) Tinh t23 90 j=2,jl-l 90 m^l,ml 90 n=2,nl-l sy=(j*dz-h)*(zO(m,n+l zO(m,n-l))/((h-zO(m,n))*2*dv) m,n, j ) *ABS (v (m,n, j a(m,n,j)=-(to*te/(2*dy) to*te*hts/(dv**2) b (m, n, j ) =1 +to*te*ABS (v(m, n, j ) ) /dy o*te • a y *'2 • ; r - £ - n t s J / •2 c(m,n, j)=- (to*te* (ABS (v(m,n, j) ) -v (: (to*te/(dy**2))*hts dz); d(m,n, j)=tl3 (m,n, j)-(vl (m,n,]; *sy/ m, n ' tl(m,n, j-1) ) 91 j=l,jl 91 m=l,ml al(m,nl,j)=1 ak(m,nl,j)=0 93 92 921 93 932 933 c 931 92 j=2,jl-l 92 m=l,ml 92 n=nl-l,2,-l al(m,n,j)=-a(m,n,j)/(b(m,n,j)+c(m,n,j)*al(m, n+1, j ak(m,n,j) = (d(m,n,j)-c(m,n,j)*ak(m,n+l, j) ) / * (b(m,n,j)+c(m,n,j)*al(m,n+1, j) ) Tinh t23 921 j=l,jl 921 m=l,ml t23(m,l,j)=tl(m,l, j) 93 j=2,jl-l 93 m=l,ml 93 n=2,nl t23(m,n, j)=al(m,n,j)*t23(m,n-l,j)+ak(m,n,j) 932 n=l,nl 932 m=l,ml t23(m,n,l)=tl(m,n,l) 933 n=l,nl 933 m=l,ml t23 (m,n,jl)=t2 3(m,n, jl-1) tinh t(k+1) 931 n=l,nl 931 m=l,ml t (m, n, 1) =tl (m, n, 1) 94 j=2,jl-1 94 n=2,nl-l 94 m=2,ml-l sy=(j*dz-h)* (zO (m,n+l)-zO(m,n-l) ) / ( (h-zO(m,n) )*2*dy) sx=(zO(m+l,n)-zO (m-l,n))* (j*dz-h)/(2*dx*(h-zO (m, n) ) ) sz=(h/(h-zO(m,n)))**2 a(m,n,j)=-to te*(w(m,n, j)+ABS(w(m,n,j)))/(2*dz)(to*te*htz sz/(dz**2)) b(m,n, j ) =1 +to*te*ABS (w(m,n, j ) ) /dz+to*te*sz* (htz+htz) / 'dz c(m,n, j )=-to*te* (ABS (W (m, n, j ) ) -w (m, n, j ) ) / (2*dz J * to*te*htz*sz/(dz**2) d(m,n, j)=t23(m,n,j) + ((to*te)/(2*dz; ;* (t23(m,n,j + 1;94 * t2 3(m,n,j-l))*(u(m,n,j)*sx+v(m,n,j)*sy) 95 n=l,nl 95 m=l,ml al(m,n,j1)=1 ak(m,n,j1)=0 95 951 n=2,nl-l 951 m=2,ml-l 951 j=jl-l,2,-l al(m,n, j)=-a(m,n,])/ (b (m,n,j)-c :m,n,j: •a:(m,n,:*l)) ak(m,n, j) = (d(m,n,j)-c(m,n,j)*ak;m,n,:*l) ; / 951 & (b(m,n,j)+c(m,n,j)*ai(m,n,j-l) ) 94 952 • 96 962 963 964 965 966 967 968 969 970 953 961 97 952 n=l,nl 952 m=l,ml t (m,n,l)=tl(m,n,l 96 j=2,jl-l 96 n=2,nl-l 96 m=2,ml-l t (m,n,j)=al(m,n,j *t(m,n,j-l)+ak(m,n,j 962 j=2,jl-l 962 n=2,nl-l t(l,n,j)=t(2,n,j) 963 j=2,jl-l 963 n=2,nl-l t (ml,n,j)=t(ml-l,n, j) 964 j=2,jl-1 964 m=2,ml-l t(m,l,j)=t(m,2,j) 965 j=2,jl-l 965 m=2,ml-l t (m,.nl, j)=t (m,nl-l, j) 966 j=2,jl-1 t(l,l, j)=t(2,2, j) 967 j=2,jl-1 t(ml,1,j)=t(ml-1,1,j) 968 j=2,jl-l t(ml,nl,j)=t(ml-1,nl-1,j) 969 j=2,jl-1 t(l,nl,j)=t(l,nl-l,j) 970 n=l,nl 970 m=l,ml t(m,n,l)=t23(m,n,1) 953 n=l,nl 953 m=l,ml t (m,n, jl)=t (m,n, jl-1) 961 j=l,jl 961 n=l,nl 961 m=l,ml ro2(m,n,j)=rol(m,n,j) 97 j=l,jl 97 n=l,nl 97 m=l,ml ro(m,n,j)=p(m,n,j)/(ar*t(m,n, j) ) 98 j=l,jl 98 n=l,nl 98 m=l,ml ul (m, n,j)=u(m,n,j) vl (m, n, j ) =v (m, n, j ) wl(m,n,j)=w(m,n,j) pi(m, n, j)=p(m,n,j) 95 98 500 348 389 390 371 392 393 394 366 tl (m,n, j ) =t (m,n, j ) roi (m,n, j ) =ro (m,n, j ) continue 348 j=l,jl 348 n=2,nl-l 348 m=2,ml-l sx=(zO(m+l,n)-zO(m-l,n))*(j*dz-h)/ 2*dx h-z 0(m,n) ) sy=(z0(m,n+l)-z0 (m,n-l))*(j*dz-h)/ 2*dy h-z (m,n) ) sz=h/(h-zO(m,n)) w(m,n,j) = (l./sz)*(w(m,n,j)-u(m,n, j sx-v(m,n,j)*sy) 389 j=l,jl 389 m=l,ml w(m,1,j)=0 390 j=l,jl 390 m=l,ml w (m, nl, j ) =0 371 j=l,jl 371 n=l,nl w(l,n,j)=0 392 j=l,jl 392 n=l,nl w(ml,n,j)=w(ml-l,n, j ) 393 n=l,nl 393 m=l,ml w (m, n,1)=0 394 n=l,nl 394 m=l,ml w(m,n,j1)=0 365 j=l,jl-l 365 n=l,nl 365 m=l,ml al = j *dz-z0(m,n) if (al-dz)366,366, 367 J7=j 368 1=1,j5 ul (m, n, 1) =0 vl (m, n, 1) =0 wl (m, n, 1) =0 ql(m,n,1)=0 tl(m,n,1)=0 pi(m,n,1)=0 roi(m,n,1)=0 continue goto 365 r=al/dz il=int(r) i2=il+l ul(m,n,j)=u(m,n,il)+(u(m,n,i2)-u(m,n,il)) *(r-il 96 365 350 351 vl(m,n,j)=v(m,n,il)+(v(m,n,i2)-v(m,n,il))*(r-il) wl(m,n,j)=w(m,n,il)+(w(m,n,12)-w(m,n,il))*(r-il) ql(m,n,j)=q(m,n,il)+(q(m,n,12)-q(m,n,il))*(r-il) tl(m,n, j)=t(m,n,il) + (t(m,n,i2)-t(m,n,il))*(r-il) pi(m,n,j)=p(m,n,il)+(p(m,n,i2)-p(m,n,il))*(r-il) roi (m,n, j)=ro(m,n,il) + (ro (m,n,12)-ro(m,n,il))*(r-il) continue 350 j=l,jl 350 m=l,ml,2 y=(j-l)*dz x=(m-l)*dx write (30, ' (4fl4.3) ' )x,y,-ul (ml + l-m, 20, j ) ,wl (ml + l-m, 20, j ) 351 n=l,nl 351 m=l,ml x=(m-l)*dx y=(n-l)*dy write(31, ' (4fl4.3) ')x,y,-ul(ml + l-m,nl + l-n, ) , * vl(ml+l-m,nl + l-n,2) write(32, ' (4fl4.3) ')x,y,-ul(ml + l-m, nl + l-n, 3) , * vl(ml+l-m,nl+l-n,3) write(33, ' (4fl4.3) ')x,y,-ul(ml + l-m,nl + l-n, 4) , * vl(ml+l-m,nl+l-n,4) write(34, ' (4fl4.3) ')x,y,-ul(ml + l-m,nl + l-n, 5) , * vl(ml+l-m,nl+l-n,5) write(35, ' (4f14.3) ')x,y,-ul(ml + l-m, nl-l-n, 10 • , * vl(ml+l-m,nl+l-n,10) write(36, ' (4fl4.3) ' )x,y,-ul(ml + l-m,nl + l-n, 18 ) , * vl(ml+l-m,nl+l-n,18) close(30) close (31) close(32) close(33) close(34) close (35) close(36) stop end 97 ... chuye'n ddng cd trung binh ud len irong [3] - Trong du bao ap su^t y nghTa dac biet quan trgng ma su bien ddi ap gan lien vdi su bien ddi cua mat Trong trudng hgp phuang trinh lien tuc phai giff... ttiy thuoc vao bai toan cu the Trong phan tfch khach quan, mot thdng sd khf tugng nao dd thudng diing ham r(x,y) cd dang: f(x,y) = fo + a^x + a.x- + a.xy + a^y + ajytrong dd IQ la gia tri trung... ap Md hinh tinh cac yeu td tugng bien [10] 11 CHlfONG II XAY DUNG MO HINH TOAN 2.1 He toa tugng Trong tugng ngudi ta thudng chgn he tga oxyz nhu sau: Gdc tga dd la di^m nao dd tren trai da^t,

Ngày đăng: 05/12/2020, 18:53

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN