1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tổng hợp và nghiên cứu tính chất của một số b đixetonat kim loại có khả năng thăng hoa

87 12 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 87
Dung lượng 1,07 MB

Nội dung

́ ĐAỊ HOCC̣ QUÔC GIA HÀNÔỊ TRƯỜNG ĐAỊ HOCC̣ KHOA HOCC̣ TỰ NHIÊN Nguyễn Thị Vân Trang TỔNG HỢP VÀ NGHIÊN CỨU TÍNH CHẤT CỦA MỘT SỐ β – ĐIXETONAT KIM LOẠI CÓ KHẢ NĂNG THĂNG HOA Chuyên ngành: Hóa vơ Mã sớ: 60 44 25 LṆ VĂN THACC̣ SĨKHOA HOCC̣ ̃ NGƯỜI HƯỚNG DÂN KHOA HOC:C̣ PGS TS TRIỆU THỊ NGUYỆT Hà Nội – 2011 MỤC LỤC MỞ ĐẦU CHƢƠNG – TỔNG QUAN 1.1 KHẢ NĂNG TẠO PHỨC CỦA CÁC ION KIM LOẠI 1.1.1 Khả tạo phức ion Cu2+ .5 1.1.2 Khả tạo phức ion Cr3+ 1.1.3 Khả tạo phức ion Zn2+ .6 1.1.4 Khả tạo phức Ni2+ 1.2 β–ĐIXETON VÀ CÁC β-ĐIXETONAT 1.2.1 Đặc điểm cấu tạo khả tạo phức β-đixeton 1.2.2 Phƣơng pháp tổng hợp axetylaxetonat kim loại .10 1.2.3 Khả thăng hoa β-đixetonat kim loại ứng dụng .11 1.3 PHƢƠNG PHÁP CVD 16 1.3.1 Các phƣơng pháp chế tạo màng mỏng 16 1.3.2 Phƣơng pháp lắng đọng hoá học pha (Chemical Vapour Deposition – CVD) 18 1.3.3 Phƣơng pháp lắng đọng pha hợp chất kim (Metal-Organic Chemical Vapour Deposition - MOCVD) 20 1.4 GIỚI THIỆU MỘT SỐ PHƢƠNG PHÁP NGHIÊN CỨU MÀNG MỎNG 22 1.4.1 Phƣơng pháp nhiễu xạ tia X (XRD) .22 1.4.2 Kính hiển vi lực nguyên tử (AFM) 23 1.4.3 Phƣơng pháp phổ phát quang 27 1.4.4 Phƣơng pháp phổ tử ngoại khả kiến (UV - Vis) .29 1.4.5 Phƣơng pháp đo bề dày màng hình thái học bề mặt 30 CHƢƠNG – ĐỐI TƢỢNG, MỤC ĐÍCH, NỘI DUNG VÀ PHƢƠNG PHÁP NGHIÊN CỨU 30 2.1 ĐỐI TƢỢNG, MỤC ĐÍCH VÀ NỘI DUNG NGHIÊN CỨU 31 2.2 CÁC PHƢƠNG PHÁP NGHIÊN CỨU 31 2.2.1 Xác định hàm lƣợng kim loại phức chất .31 2.2.2 Phƣơng pháp phổ hấp thụ hồng ngoại 34 2.2.3 Phƣơng pháp phân tích nhiệt 34 2.2.4 Phƣơng pháp thăng hoa điều kiện áp suất thấp 35 2.2.5 Giản đồ nhiễu xạ tia X 36 2.2.6 Phổ tử ngoại – khả kiến (UV – Vis) 36 2.2.7 Phổ huỳnh quang .36 2.2.8 Đo bề dày hình thái học bề mặt 37 2.2.9 Ảnh AFM 37 CHƢƠNG –THỰC NGHIỆM, KẾT QUẢ VÀ THẢO LUẬN 37 3.1 DỤNG CỤ VÀ HÓA CHẤT 37 3.1.1 Dụng cụ 38 3.1.2 Hóa chất 38 3.1.3 Chuẩn bị hóa chất 39 3.2 TỔNG HỢP CÁC PHỨC CHẤT 40 3.2.1 Tổng hợp axetylaxetonat Ni2+, Cu2+ Zn2+ 40 3.2.2 Tổng hợp axetylaxetonat Cr3+ [29] 41 3.2.3 Xác định hàm lƣợng kim loại sản phẩm 42 3.3 NGHIÊN CỨU CÁC PHỨC CHẤT BẰNG PHƢƠNG PHÁP PHỔ HẤP THỤ HỒNG NGOẠI 43 3.4 NGHIÊN CỨU CÁC PHỨC CHẤT BẰNG PHƢƠNG PHÁP PHÂN TÍCH NHIỆT 48 3.5 KHẢO SÁT KHẢ NĂNG THĂNG HOA CỦA CÁC PHỨC CHẤT 53 3.6 CHẾ TẠO MÀNG MỎNG ĐỒNG (I) OXIT BẰNG PHƢƠNG PHÁP CVD TỪ TIỀN CHẤT ĐỒNG (II) AXETYLAXETONAT 56 3.6.1 Quy trình chế tạo màng đồng (I) oxit phƣơng pháp CVD .56 3.6.2 Nghiên cứu màng phƣơng pháp nhiễu xạ tia X 58 3.6.3 Nghiên cứu hình thái bề mặt màng 59 3.6.3 Nghiên cứu bề dày màng 61 3.6.4 Nghiên cứu tính chất quang màng 63 KẾT LUẬN 67 TÀI LIỆU THAM KHẢO .68 PHỤ LỤC 71 MỞ ĐẦU Phức chất kim loại chuyển tiếp với phối tử hữu đƣợc ý nghiên cứu tổng hợp chúng có tính chất q báu với khả ứng dụng nhiều lĩnh vực với mục đích khác nhƣ: phân tích, tách, làm giàu, làm nguyên tố, đặc biệt chế tạo loại màng mỏng với ƣu điểm kĩ thuật vƣợt trội độ cách điện hay tính dẫn điện, độ cứng hay độ bền nhiệt… Trong năm gần đây, với phát triển nhƣ vũ bão ngành công nghệ vật liệu nhƣ vật liệu siêu dẫn, vật liệu nano, vật liệu từ loại vật liệu có khả xúc tác hóa học phức chất β-đixetonat cacboxylat kim loại ngày đƣợc quan tâm nghiên cứu nhiều Các phức chất thƣờng đƣợc sử dụng làm chất đầu kĩ thuật phân hủy hóa học pha khí (CVD) để tạo màng mỏng, làm chất xúc tác cho phản ứng hữu nhƣ phản ứng polime hóa, chế tạo vật liệu nano, … phục vụ thiết thực cho khoa học đời sống Vì vậy, hƣớng nghiên cứu chủ yếu nhóm phức chất thuộc mơn Hóa Vơ – khoa Hóa học – Trƣờng đại học Khoa học Tự nhiên vài năm trở lại tổng hợp nghiên cứu tính chất, khảo sát khả thăng hoa β-điketonat cacboxylat kim loại, đặc biệt kim loại chuyển tiếp Để tiếp nối hƣớng nghiên cứu nhóm phức chất, chúng tơi tiến hành tổng hợp nghiên cứu tính chất số β-đixetonat kim loại có khả thăng hoa, sử dụng phức chất để chế tạo màng mỏng oxit kim loại Tôi hi vọng kết thu đƣợc đóng góp phần nhỏ vào lĩnh vực nghiên cứu phức chất kim loại chuyển tiếp với β-đixetonat CHƢƠNG – TỔNG QUAN 1.1 KHẢ NĂNG TẠO PHỨC CỦA CÁC ION KIM LOẠI 1.1.1 Khả tạo phức ion Cu 2+ Đồng ngun tố kim loại thuộc chu kì 4, nhóm IB, số thứ tự 29 với cấu 10 hình electron [Ar]3d 4s Đồng đơn chất kim loại màu đỏ, tự nhiên tồn chủ yếu dạng đồng vị bền 63 Cu (70,13%) 65 Cu (29,87%) [16] Đồng kim loại hoạt động hóa học Trong hợp chất đồng có số oxi hóa +I, +II, +II số oxi hóa đặc trƣng Ion Cu [Cu(H2O)6] 2+ 2+ có cấu hình electron: [Ar]3d , nƣớc tạo nên ion phức có màu xanh dung dịch hấp thụ mạnh ánh sáng có bƣớc sóng vùng 600-800 nm Ion Cu 2+ chất tạo phức mạnh Với cấu hình d phức chất Cu(II) ln phức chất thuận từ trƣờng phối tử Các phức chất Cu(II) đƣợc biết đến nhƣ trƣờng hợp điển hình mà cấu trúc ảnh hƣởng nhiều hiệu ứng Jan-Telơ, gặp phức có cấu trúc bát diện, tứ diện hay vng phẳng hồn hảo chúng ln có xu hƣớng biến dạng để giảm độ suy biến mức lƣợng electron 3d Khi thêm NH3 vào dung dịch nƣớc muối Cu(II), phân tử H 2O [Cu(H2O)6] 2+ lần lƣợt bị thay phân tử NH tạo nên ion phức khác nhau, nhƣng việc đƣa tiếp vào ion phức phân tử NH thứ năm thứ sáu gặp khó khăn Ion hexaammin [Cu(NH 3)6] 2+ tạo nên amoniac lỏng Tính chất bất thƣờng có liên quan với hiệu ứng Jan- Telơ Kết hiệu ứng ion Cu 2+ liên kết yếu với phối tử thứ phối tử thứ 6, kể phối tử H 2O Tƣơng tự nhƣ thêm dƣ etylenđiamin (en) vào dung dịch muối Cu(II) ngƣời ta 2+ thu đƣợc [Cu(en)2(H2O)2] Liên kết Cu với phân tử H 2O [Cu(NH3)4(H2O)2] 2+ [Cu(en)2(H2O)2] 2+ yếu ( yếu so với liên kết tƣơng 2+ ứng [Cu(H2O)6] ) đến mức coi nhƣ khơng có Bởi ion phức Cu 2+ với NH3 etylenđiamin thƣờng đƣợc biểu diễn cơng thức[Cu(NH3)4] 2+ [Cu(en)2] 2+ với cấu hình hình vuông [2] 1.1.2 Khả tạo phức ion Cr 3+ Crom kim loại thuộc nhóm VIB, chu kì 4, có cấu hình electron [Ar]3d 4s Ở trạng thái đơn chất, crom có màu trắng bạc, có ánh kim Ở điều kiện thƣờng, crom bền vững với khơng khí, ẩm khí cacbonic Ngun nhân crom đƣợc bảo vệ màng oxit mỏng bền bề mặt Trạng thái oxi hóa đặc trƣng crom +II, +III, +VI [5] Ion Cr 3+ có cấu hình electron [Ar]3d , trạng thái oxi hóa bền crom Dung dịch Cr(III) có màu tím đỏ nhiệt độ thƣờng nhƣng có màu lục đun nóng Màu tím muối Cr(III) dung dịch nhƣ tinh thể hiđrat 3+ màu đặc trƣng ion [Cr(H2O)6] 3+ 2+ Trong mơi trƣờng axit, ion Cr bị khử đến ion Cr kẽm hay hỗn hợp kẽm nhƣng mơi trƣờng kiềm bị oxi hóa đến cromat nƣớc oxi già, nƣớc clo, nƣớc brom PbO2 Do có bán kính bé điện tích lớn, ion Cr 3+ chất tạo phức mạnh, tạo phức chất với hầu hết phối tử biết Tuy nhiên, độ bền phức chất Cr 3+ biến đổi khoảng giới hạn rộng tùy theo chất phối tử 3+ 3- 3- cấu hình phức chất Một số phức chất bền [Cr(NH 3)6] , [CrF6] , [CrCl6] , 3- 3- [Cr(SCN)6] , [Cr(CN)6] , [Cr(C2O4)2] - phức chất vòng với axetylaxeton, với hiđroxi-8-quinolin Đa số phức phức bát diện số phức chất thƣờng gặp crom muối Reinecke NH4[Cr(SCN)4(NH3)2 1.1.3 Khả tạo phức ion Zn 10 2+ Kẽm có cấu hình electron [Ar] 3d 4s Khác với nguyên tố khác nhƣ Cu, Ag, Au hai electron d tạo nên trạng thái oxi hóa +II +III, kẽm khơng có khả đó, nghĩa electron hóa trị chúng electron thuộc phân lớp s Do theo định nghĩa kim loại chuyển tiếp nguyên tố mà nguyên tử trạng thái trung hịa trạng thái oxi hóa có obitan d f chƣa điền đủ electron kẽm khơng phải kim loại chuyển tiếp [8] Tuy nhiên, kẽm giống kim loại chuyển tiếp chỗ có khả tạo nên phức chất khả hơn.Trong dung dịch nƣớc, kẽm tạo ion phức bát diện [Zn(H2O)6] 2+ không màu Số phối trí đặc trƣng Zn hóa sp Ion Zn 2+ 2+ 4, ion Zn 2+ trạng thái lai có khả tạo nhiều phức chất có số phối trí với nhiều phối tử - - vô nhƣ: NH3, X (X: halogen), CN hợp chất vòng bền với phối tử hữu nhƣ: axetylaxeton, đioxanat, aminoaxit Trong đó, liên kết ion trung tâm với phối tử đƣợc thực qua nguyên tử oxi nitơ Các phức chất Zn 2+ có số phối trí gặp khơng đặc trƣng, ví dụ: [Zn(H2O)6](NO3)2, [Zn(H2O)6](BrO3)2 Các phức chất hiđroxo Zn 2+ có số phối - trí 4, chí tùy thuộc vào nồng độ OH : Na[Zn(OH)3], Na2[Zn(OH)4], Ba2[Zn(OH)6] [1] Ion Zn 2+ 10 có cấu hình bền 3d , tức obitan d đƣợc điền đủ electron nên khơng có chuyển dời electron obitan có phân mức lƣợng khác Vì vậy, phức chất Zn 2+ 2+ Cũng giống nhƣ ion Ni , ion Zn 2+ khơng có màu có khả tạo phức chất vòng cạnh bền với phối tử α-aminoaxit Liên kết đƣợc thực qua nguyên tử N nhóm –NH2 nguyên tử O nhóm –COOH Tuy nhiên khả tạo phức Zn 2+ 2+ so với Ni 1.1.4 Khả tạo phức Ni 2+ Niken kim loại thuộc nhóm VIIIB, chu kì 4, có cấu hình electron [Ar]3d 4s Ở trạng thái đơn chất niken có màu trắng bạc Trong tự nhiên có đồng vị bền là: 58 Ni (67,76%), 60 Ni(26,16%), 61 Ni(1,25%), 62 Ni(3,67%), 64 Ni(1,16%) Niken kim loại hoạt động hóa học trung bình Trong hợp chất, niken có số oxi hóa +II, +III, trạng thái oxi hóa +III bền [5] Ion Ni 2+ có cấu hình electron [Ar]3d , bền nƣớc, cho dung dịch màu lục 2+ 2+ sáng tạo nên phức aquơ [Ni(H2O)6] Cũng nhƣ ion Cu , ion Ni 2+ có khả tạo phức, phức chất từ lâu đƣợc biết với số phối trí đặc trƣng Các phối tử trƣờng mạnh thƣờng tạo với Ni 2+ phức vuông phẳng 2- nghịch từ nhƣ [Ni(CN)4] … cịn với phối tử trƣờng yếu trung bình thƣờng tạo với Ni 2+ phức chất có số phối trí với cấu hình bát diện thuận từ nhƣ 2+ 2+ [Ni(H2O)6] , [Ni(NH3)6] … Ngoài ra, số phối trí cịn đặc trƣng cho tinh thể hợp chất bậc hai Ni(II) nhƣ NiO, NiF2… Một phức chất vuông phẳng Ni(II) niken đimetylglioximat đƣợc tạo nên ion Ni 2+ đimetylglioxim dung dịch NH loãng Phức chất thu đƣợc dạng kết tủa màu đỏ, không tan nƣớc, tan dung dịch axit mạnh kiềm mạnh nhƣng không tan dung dịch amoniac lãng Niken đimetylglioximat phức chất vịng càng, trung hịa điện, có cấu hình vng phẳng: H3 C H3 C Phản ứng tạo phức đƣợc dùng để định tính định lƣợng ion Ni 2+ dung dịch 1.2 β–ĐIXETON VÀ CÁC β-ĐIXETONAT 1.2.1 Đặc điểm cấu tạo và khả tạo phức β-đixeton Các β- đixeton hay gọi hợp chất 1,3-đixeton có cơng thức tổng qt là: R1 5.00E+009 1.00E+009 4.00E+009 0.00E+000 3.00E+009 2.0 Photon Energy (Ev) 2.00E+009 Hình 3.21: Giản đồ Tauc màng Cu2O nhiệt độ khác Để nghiên cứu kĩ tính phát quang màng thu đƣợc, chọn 0 màng Cu2O đƣợc chế tạo 240 C, 260 C 280 C để ghi phổ huỳnh quang Hình 3.22 phổ huỳnh quang màng Cu 2O nhiệt độ khảo sát, đƣợc kích thích laze nitơ bƣớc sóng 337.1 nm, tần số lặp lại: 1-20Hz, độ rộng xung: 1ns, mật độ kích thích cao đạt 1MW/cm , phân giải phổ tốt 0.5 nm nhờ máy đơn sắc cách tử kép Jobin – Yvon HRD 1, đầu thu CCD làm lạnh pin nhiệt điện (đều sản phẩm Hamamatsu) Trên phổ huỳnh quang màng Cu2O đƣợc nghiên cứu xuất đỉnh phát xạ bƣớc sóng ~500nm, nằm biên vùng “green” 1: Cu2O (240oC) 2: Cu2O (260oC) PL intensity (a.u.) 3: Cu2O (280oC) 350 400 450 500 550 600 650 Wavelength (nm) Hình 3.22: Phổ huỳnh quang màng Cu2O nhiệt độ khác Phổ huỳnh quang màng có pic chứng tỏ màng có chất lƣợng tốt, cấu trúc đồng có khuyết tật mặt cấu trúc Phổ phát quang màng Cu2O đƣợc chế tạo cho thấy vật liệu ứng dụng vào việc chế tạo thiết bị quang tử nhƣ chế tạo đèn LED phát quang vùng “green” Từ giá trị đỉnh phát xạ tƣơng ứng với màng mối quan hệ: Eg  hc  o ta thu đƣợc giá trị lƣợng vùng cấm tƣơng ứng với màng Cu 2O 240 C o o 2.5eV, 260 C 2.53eV 280 C 2.56eV Kết phù hợp với kết thu đƣợc từ giản đồ Tauc KẾT LUẬN Từ kết nghiên cứu rút kết luận sau: 2+ 2+ Đã tổng hợp đƣợc phức chất Cu , Ni , Zn 2+ Cr 3+ với axetylaxeton CuA2, NiA2.2H2O, ZnA2.H2O CrA3 Đã nghiên cứu phức chất phƣơng pháp phổ hấp thụ hồng ngoại phân tích nhiệt kết cho thấy axetylaxetonat Cu(II) Cr(III) tồn dạng khan, axetylaxetonat Ni(II) Zn(II) tồn dạng hiđrat Đã nghiên cứu phức chất phƣơng pháp thăng hoa dƣới áp suất thấp, thấy axetylaxetonat kim loại có khả thăng hoa tốt phức chất dạng khan thăng hoa tốt phức chất dạng hiđrat Đã chế tạo thành công màng Cu2O từ tiền chất CuA2 khảo sát thành phần, hình thái bề mặt, độ dày màng tính chất quang màng đƣợc chế tạo o o 240 C – 300 C phƣơng pháp XRD, AFM, UV – Vis, PL, đo bề dày Kết cho thấy màng thu đƣợc Cu 2O đơn pha, gồm hạt có kích thƣớc 35 – 40nm, có bề mặt tƣơng đối đồng hấp thụ photon vùng 300 – 500nm TÀI LIỆU THAM KHẢO A TÀI LIỆU TIẾNG VIỆT B.V Neoraxop (1964), Hóa học đại cương – vô cơ, NXB Giáo dục Nguyễn Hùng Huy (2003), Tổng hợp nghiên cứu số phức chất đồng (II), niken(II), paladi(II) β-đixetonat phức chất hỗn hợp tạo thành chúng với O-phenantrolin, Luận văn thạc sĩ khoa học, Đại học Khoa học Tự nhiên – Đại học quốc gia Hà Nội Phạm Luận (1993), Sổ tay pha chế dung dịch, Khoa Hóa học – Đại học khoa học Tự nhiên – Đại học quốc gia Hà nội Nguyễn Hƣơng Ly (2007), Tổng hợp nghiên cứu khả thăng hoa số isobutyrat axetylaxetonat kim loại chuyển tiếp, Khóa luận tốt nghiệp đại học, Đại học khoa học Tự nhiên – Đại học quốc gia Hà Nội Hoàng Nhâm (2000), Hóa học vơ cơ, tập 3, Nhà xuất Giáo dục Nguyễn Thị Ninh (2004), Tổng hợp nghiên cứu axetylaxetonat 2+ 2+ 2+ Cu , Ni , Zn , Khoá luận tốt nghiệp đại học, Đại học Khoa học tự nhiên Đại học quốc gia Hà Nội Đỗ Đức Thọ (2000), Tổng hợp nghiên cứu axetylaxetonat đất sản phẩm cộng chúng với o-phenantrolin, Khoá luận tốt nghiệp đại học, Đại học Khoa học tự nhiên - Đại học quốc gia Hà Nội Nguyễn Đình Triệu (1999), Các phương pháp vật lí ứng dụng hóa học, Nhà xuất Đại học quốc gia Hà Nội Khoa Nguyễn Văn Ri, Tạ Thị Thảo (2003), Thực tập hóa học phân tích, Hóa học – Đại học Khoa học tự nhiên – Đại học quốc gia Hà Nội 10 Huỳnh Thị Miền Trung (2009) , Tổng hợp nghiên cứu tính chất phức chất axetylaxetonat số kim loại,Luận văn Thạc sĩ khoa học, Đại học Khoa học tự nhiên - Đại học quốc gia Hà Nội 11 Nguyễn Thị Trúc Vân (2002), Tổng hợp nghiên cứu tính chất phức hỗn hợp isobutirat đất với o-phenantrolin, Luận văn thạc sĩ khoa học, Đại học Khoa học tự nhiên - Đại học quốc gia Hà Nội B TÀI LIỆU TIẾNG ANH 12 Albert G.Nasibulin, Anna Moisala, David P Brown, Esko I.Kauppinen (2003), Carbon nanotubes and onion from carbon monoxide using Ni(acac)2 and Cu(acac)2 as catalyst precursors, Carbon 41, pages 2711-2724 13 Al-Kuhaili M.F (2008), “Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu 2O)”, Vacuum 82, pp 623–629 14 Ahirrao P.B., Gosavi S.R., Patil D.R., Shinde M.S., Patil R.S (2011), “Photoluminescence properties of modified chemical bath deposited Copper Oxide thin film”, Applied Science Research, (2):288-291 15 Press Beyer H., Walter W (1996), Handbook of Organic Chemistry, T.J 16 Bush H.,Fink A.,Muller A (1991), J.App Phys., 70.4 17 Castano V.M and Apatiga L.M (2006), “Magnetic behavior of cobalt oxide films prepared by pulsed liquid injection chemical vapor deposition from a metal-organic precursor”, Thin Solid Films, Vol 469, Issues 2, p 576-579 18 Cotton F.A., Wilkinson G.M (1998), Advanced inorganic chemistry, John Wiley & Sons, New York 19 Eisentraut K.J., Sievers R.E.,J.Amer (1965), Chem.Soc., Vol 87, pages 5254-5256 20 Eisentraut K.J., Sievers R.E.,J.Amer (1965), Chem.Soc., Vol 87, pages 5254-5256 21 Fadhit Jasim and Insaf Hamid (1985), Thermoanalysis and catalytic study of transition metal acetylacetonates, Thermochimica Acta, Vol 93 – p 68 – 68 22 Fujino T., Hoshino Y., Iragashi S … (2004), “Prepare structure and properties of oxalate-bridged binuclear iron (III) complex”, Inorganic Chimica Acta, Vol 357, p.11-18 23 Gou L.F and Murphy C.J (2003), Nano Lett 3, 231 24 Hart, FA And Laming (1965), J Inorg Nucl, Chem, Vol 27, No 8, pp.1825 25 James W Moffett , Rod G.Zika (1987), Solvent extraction of copper acetylacetonate in studies of copper (II) spectiation on seawater, Marine Chemistry, Vol 21, pages 301-313 26 Lampman G.M., Pavia D.L., Kerz G (2000), Introduction to spetroscopy, Department of Chemistry, Western Washington University 27 Oh S.M., Lee J.E., Kim S.S (2003), “Effect of additives on photocatalytic activity of titanium dioxide powders systhesizeed by thermal plasma”, Thin Solid Films, Vol 435, p 252-258 28 Olivier Richard, Albert G.Nasibulin, P.Petri Ahonen, Esko I.Kauppinen(2000), Copper and copper oxide nanoparticle formation by chemical vapor nucleation from copper(II)acetylacetonate, J.Aerosol Science, Vol 31, pages 352-353 29 Painesville Taylor K., (1960), Preparation of chromium complexes of β-diketones, United States Patent Office, Ser No 35437 30 Rehan Ahmad Siddiqui (2009), Experimental investigations of thermodynamic properties of organometallic compounds, genehmigte Dissertation, Von der Fakultät für Ingenieurwissenschaften, Abteilung Maschinenbau und Verfahrenstechnik der Universität Duisburg-Essen, zur Erlangung des akademischen Grades 31 Singh S.C.R.K., Swarnkar and Gopal R (2009), “Optical characterizations of copper oxide nanomaterial”, ICOP 2009-International Conference on Optics and Photonics CSIO, Chandigarh, India 32 Stroobant V., Hoffman E D., (2001), Mass Spectroscopy - Principles and Application 33 Wang W.Z., Wang G.H., Wang X.S., Zhan Y.J., Liu Y.K., and Zheng C.L (2002), Adv Mater (Weinheim, Ger) 14,67 34 Wong S.F, Fenn J.B., Mann M., Meng C.K, (1990), “Electrospray Ionization – Principles and Practice”, Mass Spectrometry Reviews, Vol 9, pp 37 70 35 Xiangcheng Li, Aiping Chen, Hua Long, Yuhua Li, Guang Yang*, Peixiang Lu (2009), “Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition”, Vacuum 83, pp 927–930 36 Yu-Lin Kuo, Hsin-Hung Lee, Chiapyng Lee, Yee-Wen Yen (2005), “A novel two-step MOCVD for producing thin copper films with a mixture of ethyl alcohol and water as the additive”, Thin Solid Films, 498 (2006), pp 43 – 49 37 Yu-Lin Kuo, Hsin-Hung Lee, Chiapyng Lee, Yee-Wen Yen (2005), “A novel two-step MOCVD for producing thin copper films with a mixture of ethyl alcohol and water as the additive”, Thin Solid Films, 498 (2006), pp 43 – 49 38 B Zhou Yu, Zhang Gui – Zhong, Xiang Wang – hua, Ketterson J (2006), “Measurement of Photoluminescence of Cu2O at 2K”, Chinese Phys Lett 23 1276 PHỤ LỤC A Giản đồ nhiễu xạ tia X màng Cu2O Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - Mau Cu2O-H2O2-240C d=2.449 200 d=1.506 d=2.129 Lin (Cps) 300 100 20 30 40 50 60 70 2-Theta - Scale File: Trang VC mau Cu2O-H2O-240C.raw - Type: Detector Scan - Start: 20.000 ° - End: 70.000 ° - Step: 0.020 ° - Step time: 0.8 s - Temp.: 25 °C (Room) - Time Started: 11 s - 2-Theta: 20.000 ° - Theta: 0.70 1) Left Angle: 35.380 ° - Right Angle: 38.180 ° - Left Int.: 131 Cps - Right Int.: 122 Cps - Obs Max: 36.660 ° - d (Obs Max): 2.449 - Max Int.: 259 Cps - Net Height: 133 Cps - FWHM: 1.161 ° - Chord Mid.: 36 01-077-0199 (C) - Cuprite, syn - Cu2O - Y: 83.81 % - d x by: - WL: 1.5406 - Cubic - a 4.25800 - b 4.25800 - c 4.25800 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - Pn-3m (224) - - 77.1999 - o A1.: Giản đồ nhiễu xạ tia X màng 240 C Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - Mau Cu2O-H2O2-260C 400 Lin (Cps) 300 200 100 20 2-Theta - Scale File: Trang VC mau Cu2O-H2O-260C.raw - Type: Detector Scan - Start: 20.000 ° - End: 70.000 ° - Step: 0.020 ° - Step time: 0.8 s - Temp.: 25 °C (Room) - Time Started: 17 s - 2-Theta: 20.000 ° - Theta: 0.70 1) Left Angle: 35.140 ° - Right Angle: 38.260 ° - Left Int.: 139 Cps - Right Int.: 133 Cps - Obs Max: 36.807 ° - d (Obs Max): 2.440 - Max Int.: 304 Cps - Net Height: 168 Cps - FWHM: 1.155 ° - Chord Mid.: 36 01-077-0199 (C) - Cuprite, syn - Cu2O - Y: 91.01 % - d x by: - WL: 1.5406 - Cubic - a 4.25800 - b 4.25800 - c 4.25800 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - Pn-3m (224) - - 77.1999 - o Lin (Cps) A2 Giản đồ nhiễu xạ tia X màng 260 C 290 280 270 260 250 240 230 220 210 d=1.511 Faculty of Chemistry, HUS, VNU, D8 ADVANCEBruker Mau Cu2O20 H2O2-280C 300 30 40 50 60 70 2-Theta - Scale File: Trang VC mau Cu2O-H2O-280C.raw - Type: Detector Scan - Start: 20.000 ° - End: 70.000 ° - Step: 0.020 ° - Step time: 0.8 s - Temp.: 25 °C (Room) - Time Started: 17 s - 2-Theta: 20.000 ° - Theta: 0.70 200 190 1) 180 Left Angle: 35.180 ° - Right Angle: 37.400 ° - Left Int.: 92.3 Cps - Right Int.: 86.4 Cps - Obs Max: 36.400 ° - d (Obs Max): 2.466 - Max Int.: 135 Cps - Net Height: 46.1 Cps - FWHM: 1.019 ° - Chord Mid.: 170 160 01-077-0199 (C) - Cuprite, syn - Cu2O - Y: 62.71 % - d x by: - WL: 1.5406 - Cubic - a 4.25800 - b 4.25800 - c 4.25800 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - Pn-3m (224) - - 77.1999 - 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 o A3 Giản đồ nhiễu xạ tia X màng 280 C Faculty of Chemistry, HUS, VNU, D8 ADVANCE-Bruker - Mau Cu2O-H2O2-300C 400 d=2.997 Lin (Cps) 300 200 100 20 2-Theta - Scale File: Trang VC mau Cu2O-H2O-300C.raw - Type: Detector Scan - Start: 20.000 ° - End: 70.000 ° - Step: 0.020 ° - Step time: 0.8 s - Temp.: 25 °C (Room) - Time Started: 17 s - 2-Theta: 20.000 ° - Theta: 0.70 1) Left Angle: 34.500 ° - Right Angle: 38.060 ° - Left Int.: 138 Cps - Right Int.: 131 Cps - Obs Max: 36.520 ° - d (Obs Max): 2.458 - Max Int.: 293 Cps - Net Height: 159 Cps - FWHM: 1.198 ° - Chord Mid.: 36 01-077-0199 (C) - Cuprite, syn - Cu2O - Y: 93.63 % - d x by: - WL: 1.5406 - Cubic - a 4.25800 - b 4.25800 - c 4.25800 - alpha 90.000 - beta 90.000 - gamma 90.000 - Primitive - Pn-3m (224) - - 77.1999 - o A4 Giản đồ nhiễu xạ tia X màng 300 C Giản đồ Tauc màng Cu2O 5.00E+009 Sample: Cu2O_H2O2, 240oC Glass substrate 4.00E+009 2 (cm-2) 3.00E+009 2.00E+009 1.00E+009 0.00E+000 Photon Energy E (eV) o B1 Giản đồ Tauc màng 240 C B 1.00E+010 8.00E+009 2(cm-2) B 6.00E+009 4.00E+009 2.00E+009 0.00E+000 Photon Energy E (eV) o B2 Giản đồ Tauc màng 260 C 6.00E+009 5.00E+009 3.00E+009  (cm -2 ) 4.00E+009 2.00E+009 1.00E+009 0.00E+000 2.4 Photon Energy E (eV) o B3 Giản đồ Tauc màng 280 C ... Khoa học Tự nhiên vài năm trở lại tổng hợp nghiên cứu tính chất, khảo sát khả thăng hoa β-điketonat cacboxylat kim loại, đặc biệt kim loại chuyển tiếp Để tiếp nối hƣớng nghiên cứu nhóm phức chất, ... hành tổng hợp nghiên cứu tính chất số β -đixetonat kim loại có khả thăng hoa, sử dụng phức chất để chế tạo màng mỏng oxit kim loại Tôi hi vọng kết thu đƣợc đóng góp phần nhỏ vào lĩnh vực nghiên cứu. .. tert-butyl tạo nên β -đixetonat có khả thăng hoa tốt, floro ? ?đixetonat có khả thăng hoa tốt β -đixetonat tƣơng ứng Với phong phú, đa dạng tính chất hóa lí q giá, đặc biệt khả thăng hoa, khả xúc

Ngày đăng: 20/11/2020, 09:43

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w