1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Xây dựng một hệ thống thông tin hỗ trợ đánh giá học sinh dùng lý thuyết tập mờ

70 15 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 70
Dung lượng 159,77 KB

Nội dung

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN - NGUYỄN VĂN THÔNG XÂY DỰNG MỘT HỆ THỐNG THÔNG TIN HỖ TRỢ ĐÁNH GIÁ HỌC SINH DÙNG LÝ THUYẾT TẬP MỜ Chuyên ngành: Bảo đảm toán học cho máy tính hệ thống tính tốn Mã số: 60 46 35 LUẬN VĂN THẠC SĨ KHOA HỌC NGƢỜI HƢỚNG DẪN KHOA HỌC: PGS.TSKH Bùi Công Cƣờng Hà Nội – Năm 2011 MỤC LỤC MỞ ĐẦU Chƣơng KIẾN THỨC CƠ SỞ VỀ LÝ THUYẾT TẬP MỜ VÀ SỐ MỜ 1.1 Tập mờ 1.1.1 Định nghĩa 1.1 1.1.2 Ví dụ 1.2 Số mờ 1.2.1 Định nghĩa 1.2 1.2.2 Ví dụ 1.3 Luật mờ 1.3.1 Định nghĩa 1.3 1.3.2 Ví dụ Chƣơng PHƢƠNG PHÁP MỚI ĐỂ ĐÁNH GIÁ BÀI LÀM CỦA HỌC SINH SỬ DỤNG TẬP MỜ 2.1 Phƣơng pháp Biswas để đánh giá làm học sinh 2.1.1 Thuật toán đánh giá làm học sinh theo trang điểm mờ 2.1.2 Ví dụ 2.1 10 2.2 Phƣơng pháp để đánh giá làm học sinh 12 2.2.1 Thuật toán đánh giá làm học sinh 14 2.2.2 Ví dụ 2.3 15 2.2.3 Chƣơng trình máy tính 17 2.3 Một phƣơng pháp đánh giá tổng quát 18 Chƣơng ĐÁNH GIÁ KẾT QUẢ HỌC TẬP CỦA HỌC SINH BẰNG CÁCH SỬ DỤNG HÀM THUỘC VÀ LUẬT MỜ 21 3.1 Đặt vấn đề 21 3.2 Thuật toán 21 3.3 Ví dụ 35 3.4 Chƣơng trình máy tính 40 KẾT LUẬN 49 TÀI LIỆU THAM KHẢO 50 MỞ ĐẦU Từ lí thuyết tập mờ đƣợc Zadeh đề xuất năm 1965, lí thuyết tập mờ logic mờ phát triển nhanh đa dạng Công nghệ mờ công nghệ mạng nơ-ron phát triển mạnh, áp dụng vào ngành công nghiệp làm nhiều sản phẩm thông minh, đáp ứng nhu cầu thị trƣờng Những năm gần đây, số nghiên cứu ứng dụng lý thuyết tập mờ vào giáo dục đào tạo đƣợc tiến hành có kết cụ thể nhƣ đánh giá học sinh, xếp hạng hệ thống giáo dục Việc chấm điểm làm học sinh nhƣ đạt độ xác chƣa cao, thực chất điểm mà học sinh đạt đƣợc kiểm tra có tính chất "mờ" Ví dụ số học sinh đƣợc điểm có học sinh đạt “cỡ điểm”, tức thấp hay cao điểm chút… Trên sở tìm hiểu kiến thức logic mờ, ngƣời trực tiếp làm nhiệm vụ quản lý giáo dục, chọn đề tài "Xây dựng hệ thống thông tin hỗ trợ đánh giá học sinh dùng lý thuyết tập mờ" cho luận văn mình, nhằm nghiên cứu cách để đánh giá học sinh xác hơn, khách quan hơn, cơng Tơi dùng phần mềm Matlab để cài đặt chƣơng trình tính đƣa kết đánh giá cụ thể Luận văn gồm chƣơng: Chƣơng 1: Kiến thức sở lý thuyết tập mờ số mờ Chƣơng 2: Phƣơng pháp để đánh giá làm học sinh sử dụng tập mờ Chƣơng 3: Đánh giá kết học tập học sinh cách sử dụng hàm thuộc luật mờ Do thời gian có hạn khả hạn chế nên luận văn khó tránh khỏi thiếu sót, tơi mong nhận đƣợc đóng góp ý kiến từ thầy giáo, bạn học viên để hoàn thiện luận văn Chương KIẾN THỨC CƠ SỞ VỀ LÝ THUYẾT TẬP MỜ VÀ SỐ MỜ 1.1 Tập mờ 1.1.1 Định nghĩa 1.1[3]: Cho tập X , ta gọi X không gian A tập mờ không gian X A đƣợc xác định hàm:  A : X [0,1] ( A ( x)  [0,1], x X )  A gọi hàm thuộc (membership function); A ( x) độ thuộc x vào tập mờ A Tập A đƣợc gọi tập rỗng khơng có phần tử Kí hiệu là: A   1.1.2 Ví dụ [3]: - Ví dụ 1.1: Cho khơng gian X = [0, 150] tập tốc độ ngƣời xe máy (km/h) Tập mờ A = ”Đi nhanh” xác định hàm thuộc A : X [0,1] nhƣ đồ thị sau:  A ( x) 0.8 Nhƣ vậy: - Với x ≥ 50 (tốc độ từ 50km/h trở lên) A (x) = (đi nhanh); - Với x = 45 (km/h) A (x) = 0.8 (đi nhanh); … - Ví dụ 1.2 : Vết vân tay tội phạm trƣờng ví dụ tập mờ đƣợc cho hình sau: X A ( x1 ) 1 A ( x2 )  0.7 Để cho gọn, ta kí hiệu độ thuộc A(x) thay cho A ( x) Ta kí hiệu A = {(x, A ( x) ) | xX} A = {( A ( x) /x): xX} - Ví dụ 1.3: A0 = Một vài (quả cam) = {(0/0),(0/1),(0.6/2),(1/3),(1/4),(0.8/5),(0.2/6)} Ta kí hiệu: F(X) = {A tập mờ X} 1.2 Số mờ 1.2.1 Định nghĩa 1.2 [3]: Tập M đƣờng thẳng số thực R số mờ : a) M chuẩn hóa, tức có điểm x’ cho M ( x ') =1; b) Ứng với  R , tập mức { x:  M ( x)   } đoạn đóng 1 R; c) M (x) hàm liên tục 1.2.2 Ví dụ: - Ví dụ 1.4 [3] : Số mờ tam giác: Số mờ tam giác đƣợc xác định tham số Khi hàm thuộc số mờ tam giác M(a,b,c) cho bởi: 0  ( z  a ) / (b  a) M  ( z) 1  ( c  z ) / ( c  b) 0  M ( z) a z b c Z Hình 1.1 Số mờ tam giác - Ví dụ 1.5 [3]: Số mờ hình thang M(a,b,c,d) đƣợc xác định tham số, có hàm thuộc dạng sau: 0  ( z  z ≤ a  a ) / (b  a ≤ z ≤ b a) b ≤z ≤ c ( d  z ) / ( d  c) c ≤ z ≤ d d ≤ z  M (z) a b d c Z Hình 1.2 Số mờ hình thang - Ví dụ 1.6 : Số mờ ’Bờ vai’ M(t1,t2) (t1 SOD3 > SOD2 nên thứ tự học sinh S4 >S10 > S5 Vậy thứ tự 10 học sinh là: S9> S2> S8> S4 > S10 > S5> S6> S7> S3 Vì phƣơng pháp đánh giá xét đến độ khó, độ quan trọng, độ phức tạp câu hỏi nên việc đánh giá học sinh cách xác, khách quan, cơng phân biệt thứ tự xếp hạng học sinh có điểm nhƣ cịn đƣợc dùng để đánh giá đề kiểm tra, giúp ta biết đƣợc đề kiểm tra có khó - dễ - hay phù hợp để có điều chỉnh cần thiết Tùy theo yêu cầu loại đề kiểm tra, mức điểm học sinh điểm mà chọn trọng số cho phù hợp Ví dụ để phân biệt học sinh điểm nhƣng mức bƣớc ta chọn trọng số độ quan trọng 0.4 trọng số tổn phí 0.6 38 Việc nhập tính điểm thực theo chƣơng trình dƣới 3.4 Chương trình máy tính Tệp liệu vào : dlvao_C3.m m=5; % So cau hoi n=10; % So hoc sinh % Ma tran chinh xác A=[0.59 0.35 0.66 0.11 0.08 0.84 0.23 0.4 0.24; 0.01 0.27 0.14 0.04 0.88 0.16 0.04 0.22 0.81 0.53; 0.77 0.69 0.97 0.71 0.17 0.86 0.87 0.42 0.91 0.74; 0.73 0.72 0.18 0.16 0.50 0.02 0.32 0.92 0.90 0.25; 0.93 0.49 0.08 0.81 0.65 0.93 0.39 0.51 0.97 0.61]; % Ma tran thoi gian tra loi T=[0.7 0.4 0.1 0.7 0.2 0.7 0.6 0.4 0.9; 0.9 0.3 0.3 0.2 0.8 0.3; 0.1 0.1 0.9 0.2 0.3 0.1 0.4; 0.2 0.1 1 0.3 0.4 0.8 0.7 0.5; 0.1 1 0.6 0.8 0.2 0.8 0.2]; % Ma tran diem cho moi cau hoi G=[10; 15; 20; 25; 30]; % Ma tran quan IM=[0 0 1; 0.33 0.67 0; 0 0.15 0.85; 10000; 0.07 0.93 0]; 39 % Ma tran phuc tap C=[0 0.85 0.15 0; 0 0.33 0.67 0; 0 0.69 0.31; 0.56 0.44 0 0; 0 0.67 0.3 0]; Hàm timmax.m function [max]=timmax(x1,x2,x3,x4,x5,x6,x7) max=x1; if max

Ngày đăng: 20/11/2020, 08:43

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w