1. Trang chủ
  2. » Giáo án - Bài giảng

Công thúc VL12

17 217 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 683,5 KB

Nội dung

CHNG II: DAO NG C I. DAO NG IU HO 1. P.trỡnh dao ng : x = Acos(t + ) 2. Vn tc tc thi : v = -Asin(t + ) 3. Gia tc tc thi : a = - 2 Acos(t + ) = - 2 x a r luụn hng v v trớ cõn bng 4. Vt VTCB : x = 0; |v| Max = A; |a| Min = 0 Vt biờn : x = A; |v| Min = 0; |a| Max = 2 A 5. H thc c lp: 2 2 2 ( ) v A x = + ; 2 2 2 2 2 a v A + = 6. C nng: 2 2 1 W W W 2 t m A = + = 2 2 2 2 2 1 1 W sin ( ) Wsin ( ) 2 2 mv m A t t = = + = + 2 2 2 2 2 2 1 1 W ( ) W s ( ) 2 2 t m x m A cos t co t = = + = + 7. Dao ng iu ho cú tn s gúc l , tn s f, chu k T. Thỡ ng nng v th nng bin thiờn vi tn s gúc 2, tn s 2f, chu k T/2. 8. T s gia ng nng v th nng: 2 1 d t E A E x = ữ 9. Vn tc, vị trí của vật tại đó : + đ.năng = n lần thế năng : ( ) 1 1 n A v A x n n = = + + + Thế năng = n lần đ.năng : 1 1 A n v x A n n = = + + 10. Khong thi gian ngn nht vt i t v trớ cú li x 1 n x 2 = t 11. Chiu di qu o: 2A 12. Quóng ng i trong 1 chu k luụn l 4A; trong 1/2 chu k luụn l 2A 13. Quóng ng vt i c t thi im t 1 n t 2 . Phõn tớch: t 2 t 1 = nT + t (n N; 0 t < T) - Quóng ng i c trong thi gian nT l S 1 = 4nA - Trong thi gian t l S 2 . Quóng ng tng cng l S = S 1 + S 2 Lu ý: + Nu t = T/2 thỡ S 2 = 2A + Tớnh S 2 bng cỏch nh v trớ x 1 , x 2 v v vũng trũn mi quan h + Tc trung bỡnh ca vt i t thi im t 1 n t 2 : 2 1 tb S v t t = 14. Bi toỏn tớnh quóng ng ln nht v nh nht vt i c trong khong thi gian 0 < t < T/2. - Vt cú vn tc ln nht khi qua VTCB, nh nht khi qua v trớ biờn nờn trong cựng mt khong thi gian quóng ng i c cng ln khi vt cng gn VTCB v cng nh khi cng gn v trớ biờn. - S dng mi liờn h gia dao ng iu ho v chuyn ng trũn u. + Gúc quột = t. + Quóng ng ln nht khi vt i t M 1 n M 2 i xng qua trc sin ax 2Asin 2 M S = -A A x 1 x 2 O + Quãng đường nhỏ nhất khi vật đi từ M 1 đến M 2 đối xứng qua trục cos 2 (1 os ) 2 Min S A c ϕ ∆ = − Lưu ý: + Trong trường hợp ∆t > T/2 Tách ' 2 T t n t∆ = + ∆ (trong đó * ;0 ' 2 T n N t∈ < ∆ < ) Trong thời gian 2 T n quãng đường luôn là 2nA Trong thời gian ∆t’ thì quãng đường lớn nhất, nhỏ nhất tính như trên. + Tốc độ trung bình lớn nhất và nhỏ nhất của trong khoảng thời gian ∆t: ax ax M tbM S v t = ∆ và Min tbMin S v t = ∆ với S Max ; S Min tính như trên. 14. Các bước lập phương trình dao động dao động điều hoà: * Tính ω * Tính A dựa vào phương trình độc lập * Tính ϕ dựa vào điều kiện đầu và vẽ vòng tròn (-π < ϕ ≤ π) 15. Các bước giải bài toán tính thời điểm vật đi qua vị trí đã biết x (hoặc v, a, W t , W đ , F) lần thứ n * Xác định M 0 dựa vào pha ban đầu * Xác định M dựa vào x (hoặc v, a, W t , W đ , F) * Áp dụng công thức ω ϕ ∆ = t (với OMM 0 = ϕ ) Lưu ý: Đề ra thường cho giá trị n nhỏ, còn nếu n lớn thì tìm quy luật để suy ra nghiệm thứ n 16. Các bước giải bài toán tìm li độ, vận tốc dao động sau (trước) thời điểm t một khoảng thời gian ∆t. * Xác định góc quét ϕ ∆ trong khoảng thời gian ∆t : t ∆=∆ . ωϕ * Từ vị trí ban đầu (OM 1 ) quét bán kính một góc lùi (tiến) một góc ϕ ∆ , từ đó xác định M 2 rồi chiếu lên Ox xác định x II. CON LẮC LÒ XO 1. 2 2 2 2 4 2 4 kT m m T k m k T π π π  =   = ⇒   =   m = m 1 + m 2 ----> T 2 = (T 1 ) 2 + (T 2 ) 2 m = m 1 - m 2 ----> T 2 = (T 1 ) 2 - (T 2 ) 2 * Ghép nối tiếp các lò xo 1 2 1 1 1 . k k k = + + ⇒ cùng treo một vật khối lượng như nhau thì: T 2 = T 1 2 + T 2 2 * Ghép song song các lò xo: k = k 1 + k 2 + … ⇒ cùng treo một vật khối lượng như nhau thì: 2 2 2 1 2 1 1 1 . T T T = + + m ti lê thuân v i T́̉ ̣ ̣ ơ 2 và k ti lê nghich v i T́̉ ̣ ̣ ơ 2 A -A M M 1 2 O P x x O 2 1 M M -A A P 2 1 P P 2 ϕ ∆ 2 ϕ ∆ Điều kiện dao động điều hoà: Bỏ qua ma sát, lực cản và vật dao động trong giới hạn đàn hồi 2. Cơ năng: 2 2 2 1 1 W 2 2 m A kA ω = = 3. * Độ biến dạng của lò xo thẳng đứng khi vật ở VTCB: mg l k ∆ = ⇒ 2 l T g π ∆ = * Độ biến dạng của lò xo khi vật ở VTCB với con lắc lò xo nằm trên mặt phẳng nghiêng có góc nghiêng α: sinmg l k α ∆ = ⇒ 2 sin l T g π α ∆ = + Chiều dài lò xo tại VTCB: l CB = l 0 + ∆ l (l 0 là chiều dài tự nhiên) + Chiều dài cực tiểu (khi vật ở vị trí cao nhất): l Min = l 0 + ∆ l – A + Chiều dài cực đại (khi vật ở vị trí thấp nhất): l Max = l 0 + ∆ l + A ⇒ l CB = (l Min + l Max )/2 + Khi A >∆l (Với Ox hướng xuống): - Thời gian lò xo nén 1 lần là thời gian ngắn nhất để vật đi từ vị trí x 1 = - ∆ l đến x 2 = -A. - Thời gian lò xo giãn 1 lần là thời gian ngắn nhất để vật đi từ vị trí x 1 = - ∆ l đến x 2 = A, Trong một dao động (một chu kỳ) lò xo nén 2 lần và giãn 2 lần! 4. Lực kéo về hay lực hồi phục F = -kx = -mω 2 x Đặc điểm: * Là lực gây dao động cho vật. * Luôn hướng về VTCB * Biến thiên điều hoà cùng tần số với li độ 5. Lực đàn hồi là lực đưa vật về vị trí lò xo không biến dạng. Có độ lớn F đh = kx * (x * là độ biến dạng của lò xo) * Với con lắc lò xo nằm ngang thì lực kéo về và lực đàn hồi là một (vì tại VTCB lò xo không biến dạng) * Với con lắc lò xo thẳng đứng hoặc đặt trên mặt phẳng nghiêng + Độ lớn lực đàn hồi có biểu thức: * F đh = k|∆l + x| với chiều dương hướng xuống * F đh = k|∆l - x| với chiều dương hướng lên + Lực đàn hồi cực đại (lực kéo): F Max = k(∆l + A) = F Kmax (lúc vật ở vị trí thấp nhất) + Lực đàn hồi cực tiểu: * Nếu A < ∆l ⇒ F Min = k(∆l - A) = F KMin * Nếu A ≥ ∆l ⇒ F Min = 0 (lúc vật đi qua vị trí lò xo không biến dạng) 6. Một lò xo có độ cứng k, chiều dài l được cắt thành các lò xo có độ cứng k 1 , k 2 , … và chiều dài tương ứng là l 1 , l 2 , … thì có: kl = k 1 l 1 = k 2 l 2 = … 7. Đo chu kỳ bằng phương pháp trùng phùng Để xác định chu kỳ T của một con lắc lò xo (con lắc đơn) người ta so sánh với chu kỳ T 0 (đã biết) của một con lắc khác (T ≈ T 0 ). Hai con lắc gọi là trùng phùng khi chúng đồng thời đi qua một vị trí xác định theo cùng một chiều. Thời gian giữa hai lần trùng phùng 0 0 TT T T θ = − Nếu T > T 0 ⇒ θ = (n+1)T = nT 0 . Nếu T < T 0 ⇒ θ = nT = (n+1)T 0 . với n ∈ N* III. CON LẮC ĐƠN 1. Con l¾c dao ®éng víi li ®é gãc bÐ (<10 0 - ®Ó ®îc coi nh mét D§§H) 2 2 2 4 l gT T l g = = tức l tỉ lệ thuận với T 2 nên l = l 1 + l 2 -----> T 2 = (T 1 ) 2 + (T 2 ) 2 2. Lc hi phc 2 sin s F mg mg mg m s l = = = = + Vi con lc n lc hi phc t l thun vi khi lng. + Vi con lc lũ xo lc hi phc khụng ph thuc vo khi lng. 3. Phng trỡnh dao ng: s = S 0 cos(t + ) hoc = 0 cos(t + ) vi s = l, S 0 = 0 l v = s = -S 0 sin(t + ) = -l 0 sin(t + ) a = v = - 2 S 0 cos(t + ) = - 2 l 0 cos(t + ) = - 2 s = - 2 l Lu ý: S 0 úng vai trũ nh A cũn s úng vai trũ nh x 4. H thc c lp: a = - 2 s = - 2 l 2 2 2 0 ( ) v S s = + 2 2 2 0 v gl = + 7. Cụng th c tinh g n đúng về s thay i chu ky tổng quát cua con l c n (chú ý là chỉ áp dụng cho sự thay đổi các yếu tố là nhỏ): 5. C nng: 2 2 2 2 2 2 2 0 0 0 0 1 1 1 1 W 2 2 2 2 = = = = mg m S S mgl m l l 6. Khi con lc n dao ng vi 0 bt k. C nng W = mgl(1-cos 0 ); Tc v 2 = 2gl(cos cos 0 ) Lc cng T = mg(3cos 2cos 0 ) Khi con lc n DH( << ) thỡ: += 2 0 2 2 3 1 mgT g g l l T T T TT T T ' . ' 1 ' 1 ' ' ' == = 0 ' 2 2 2 2 cao sau h h T t g l T R R g L = + + + với : R = 6400km, ' , ' , 'T T T g g g l l l = = = Nếu bài toán cho thay đổi yếu tố nào thì dùng yếu tố đó để tính còn các yếu còn lại coi nh bằng không Sự sai lệch đồng hồ trong một ngày đêm sẽ là : 86400 ' T T = 8. Khi con lc n chu thờm tỏc dng ca lc ph khụng i: Lc ph khụng i thng l: * Lc quỏn tớnh: F ma= ur r , ln F = ma ( F a ur r ) * Lc in trng: F qE= ur ur , ln F = |q|E (Nu q > 0 F E ur ur ; cũn nu q < 0 F E ur ur ) Khi ú: 'P P F= + uur ur ur gi l trng lc hiu dng hay trong lc biu kin (cú vai trũ nh trng lc P ur ) ' F g g m = + ur uur ur gi l gia tc trng trng hiu dng hay gia tc trng trng biu kin. Chu k dao ng ca con lc n khi ú: ' 2 ' l T g = Cỏc trng hp c bit: * F ur cú phng ngang: + Ti VTCB dõy treo lch vi phng thng ng mt gúc cú: tan F P = + 2 2 ' ( ) F g g m = + * F ur cú phng thng ng thỡ ' F g g m = + Nu F ur hng xung thỡ ' F g g m = + + Nu F ur hng lờn thỡ ' F g g m = IV. TNG HP DAO NG 1. Tng hp hai dao ng iu ho cựng phng cựng tn s x 1 = A 1 cos(t + 1 ) v x 2 = A 2 cos(t + 2 ) c mt dao ng iu ho cựng phng cựng tn s x = Acos(t + ). Trong ú: 2 2 2 1 2 1 2 2 1 2 os( )A A A A A c = + + 1 1 2 2 1 1 2 2 sin sin tan os os A A A c A c + = + vi 1 2 (nu 1 2 ) * Nu = 2k (x 1 , x 2 cựng pha) A Max = A 1 + A 2 ` * Nu = (2k+1) (x 1 , x 2 ngc pha) A Min = |A 1 - A 2 | |A 1 - A 2 | A A 1 + A 2 2. Thụng thng ta gp cỏc trng hp c bit sau: + 12 =0 0 thỡ A =A 1 +A 2 21 == + 12 =90 0 thỡ 2 2 2 1 AAA += + 12 =120 0 v A 1 =A 2 thỡ A=A 1 =A 2 + 12 =180 0 thỡ 21 AAA = VI. DAO NG TT DN-DAO NG CNG BC-CNG HNG 1. Dao ng tt dõn cua con l c lo xo + Độ giảm cơ năng sau một chu kì bằng công của lực ma sát cản trở trong chu kì đó, nên : k F A ms 4 = + S dao ng thực hiện đợc: A A N = + Thời gian kể từ lúc bắt đầu dao động cho đến khi dừng hẳn: k m NNTN 2. 2 . === + Gọi max S là quãng đờng đi đợc kể từ lúc chuyển động cho đến khi dừng hẳn. Cơ năng ban đầu bằng tổng công của lực ma sát trên toàn bộ quãng đờng đó, tức là: ms ms F kA SSFkA 2 . 2 1 2 maxmax 2 == 2. Dao động tắt dần của con lắc đơn + Suy ra, độ giảm biên độ dài sau một chu kì: 2 4 m F S ms = + Số dao động thực hiện đợc: S S N = 0 + Thời gian kể từ lúc chuyển động cho đến khi dừng hẳn: g l NTN 2 == + Gọi max S là quãng đờng đi đợc kể từ lúc chuyển động cho đến khi dừng hẳn. Cơ năng ban đầu bằng tổng công của lực ma sát trên toàn bộ quãng đờng đó, tức là: ?. 2 1 maxmax 2 0 2 == SSFSm ms 3. Hin tng cng hng xy ra khi: f = f 0 hay = 0 hay T = T 0 Vi f, , T v f 0 , 0 , T 0 l tn s, tn s gúc, chu k ca lc cng bc v c a h dao ng. CHNG III: SểNG C I. SểNG C HC 1. = vT = v/f 2. Phng trỡnh súng Ti im O: u O = Acos(t + ) Ti im M 1 : u M1 = Acos(t + - 1 2 d ) Ti im M 2 : u M2 = Acos(t + + 2 2 d ) 3. lch pha gia hai im trờn cựng mt phng truyn cỏch nhau mt khong d l : d 2 4. Trong hin tng truyn súng trờn si dõy, dõy c kớch thớch dao ng bi nam chõm in vi tn s dũng in l f thỡ tn s dao ng ca dõy l 2f. II. SểNG DNG 1. Mt s chỳ ý * u c nh hoc õm thoa l nỳt súng. * u t do l bng súng * 2im i xng vi nhau qua nỳt súng luụn dao ng ngc pha. * 2im i xng vi nhau qua bng súng luụn dao ng cựng pha. * Cỏc im trờn dõy u dao ng vi biờn khụng i nng lng khụng truyn i * Khong thi gian gia hai ln si dõy cng ngang (cỏc phn t i qua VTCB) l na chu k. 2. iu kin cú súng dng trờn si dõy di l: * Hai u l nỳt súng: * ( ) 2 l k k N = S bng súng = s bú súng = k S nỳt súng = k + 1 * Mt u l nỳt súng cũn mt u l bng súng: (2 1) ( ) 4 l k k N = + S bú súng nguyờn = k S bng súng = s nỳt súng = k + 1 III. GIAO THOA SểNG Phng trỡnh súng ti 2 ngun (cỏch nhau mt khong l) 1 1 Acos(2 )u ft = + ; 2 2 Acos(2 )u ft = + Phng trỡnh ti im M cỏch hai ngun ln lt d 1 , d 2 O x M 1 d 2 M 2 d 1 1 2 1 2 1 2 2 os os 2 2 2 M d d d d u Ac c ft ϕ ϕϕ π π π λ λ − + +∆     = + − +         * Số cực đại: (k Z) 2 2 l l k ϕ ϕ λ π λ π ∆ ∆ − + < < + + ∈ * Số cực tiểu: 1 1 (k Z) 2 2 2 2 l l k ϕ ϕ λ π λ π ∆ ∆ − − + < < + − + ∈ 1. Hai nguồn dao động cùng pha ( 1 2 0 ϕ ϕ ϕ ∆ = − = ) * Điểm dao động cực đại: d 1 – d 2 = kλ (k∈Z) Số đường hoặc số điểm (không tính hai nguồn): l l k λ λ − < < * Điểm dao động cực tiểu (không dao động): d 1 – d 2 = (2k+1) 2 λ Số đường hoặc số điểm (không tính hai nguồn): 1 1 2 2 l l k λ λ − − < < − 2. Hai nguồn dao động ngược pha:( 1 2 ϕ ϕ ϕ π ∆ = − = ) * Điểm dao động cực đại: d 1 – d 2 = (2k+1) 2 λ (k∈Z) Số đường hoặc số điểm (không tính hai nguồn): 1 1 2 2 l l k λ λ − − < < − * Điểm dao động cực tiểu (không dao động): d 1 – d 2 = kλ (k∈Z) Số đường hoặc số điểm (không tính hai nguồn): l l k λ λ − < < Chú ý: Với bài toán tìm số đường dao động cực đại và không dao động giữa hai điểm M, N cách hai nguồn lần lượt là d 1M , d 2M , d 1N , d 2N . Đặt ∆d M = d 1M - d 2M ; ∆d N = d 1N - d 2N và giả sử ∆d M < ∆d N . + Hai nguồn dao động cùng pha: • Cực đại: ∆d M < kλ < ∆d N • Cực tiểu: ∆d M < (k+0,5)λ < ∆d N + Hai nguồn dao động ngược pha: • Cực đại:∆d M < (k+0,5)λ < ∆d N • Cực tiểu: ∆d M < kλ < ∆d N Số giá trị nguyên của k thoả mãn các biểu thức trên là số đường cần tìm. IV. SÓNG ÂM 1. Cường độ âm: W P I= = tS S Với W (J), P (W) là năng lượng, công suất phát âm của nguồn S (m 2 ) là diện tích mặt vuông góc với phương truyền âm (với sóng cầu thì S là diện tích mặt cầu S=4πR 2 ) 2. Mức cường độ âm 0 ( ) lg I L B I = Hoặc 0 ( ) 10.lg I L dB I = Với I 0 = 10 -12 W/m 2 ở f = 1000Hz: cường độ âm chuẩn. 3. * Tần số do đàn phát ra (hai đầu dây cố định ⇒ hai đầu là nút sóng) ( k N*) 2 v f k l = ∈ Ứng với k = 1 ⇒ âm phát ra âm cơ bản có tần số 1 2 v f l = k = 2,3,4… có các hoạ âm bậc 2 (tần số 2f 1 ), bậc 3 (tần số 3f 1 )… * Tần số do ống sáo phát ra (một đầu bịt kín, một đầu để hở ⇒ một đầu là nút sóng, một đầu là bụng sóng) (2 1) ( k N) 4 v f k l = + ∈ Ứng với k = 0 ⇒ âm phát ra âm cơ bản có tần số 1 4 v f l = k = 1,2,3… có các hoạ âm bậc 3 (tần số 3f 1 ), bậc 5 (tần số 5f 1 )… CHƯƠNG IV: DAO ĐỘNG VÀ SÓNG ĐIỆN TỪ 1. Dao động điện từ * Điện tích tức thời q = q 0 cos(ωt + ϕ) * Hiệu điện thế (điện áp) tức thời 0 0 os( ) os( ) q q u c t U c t C C ω ϕ ω ϕ = = + = + * Dòng điện tức thời i = q’ = -ωq 0 sin(ωt + ϕ) = I 0 cos(ωt + ϕ + 2 π ) Với 1 LC ω = ; 0 0 0 q I q LC ω = = 0 0 0 0 0 q I L U LI I C C C ω ω = = = = * Năng lượng điện trường: 2 2 đ 1 1 W 2 2 2 q Cu qu C = = = 2 2 0 đ W os ( ) 2 q c t C ω ϕ = + * Năng lượng từ trường: 2 2 2 0 1 W sin ( ) 2 2 t q Li t C ω ϕ = = + * Năng lượng điện từ: đ W=W W t + 2 2 2 0 0 0 0 0 1 1 1 W 2 2 2 2 q CU q U LI C = = = = Chú ý: + Mạch dao động có tần số góc ω, tần số f và chu kỳ T thì W đ và W t biến thiên với tần số góc 2ω, tần số 2f và chu kỳ T/2 + Mạch dao động có điện trở thuần R ≠ 0 thì dao động sẽ tắt dần. Để duy trì dao động cần cung cấp cho mạch một năng lượng có công suất: 2 2 2 2 2 0 0 2 2 C U U RC I R R L ω = = = P 2. Sóng điện từ Vận tốc lan truyền trong không gian v = c = 3.10 8 m/s Máy phát hoặc máy thu sóng điện từ sử dụng mạch dao động LC thì tần số sóng điện từ phát hoặc thu được bằng tần số riêng của mạch. Bước sóng của sóng điện từ 2 v v LC f λ π = = Lưu ý: Mạch dao động có L biến đổi từ L Min → L Max và C biến đổi từ C Min → C Max thì bước sóng λ của sóng điện từ phát (hoặc thu) λ Min tương ứng với L Min và C Min λ Max tương ứng với L Max và C Max BÀI TẬP 1. Cho mạch dao động với L cố định. Mắc L với C 1 được tần số dao động là f 1 , mắc L với C 2 được tần số là f 2 . + Khi mắc nối tiếp C 1 với C 2 rồi mắc với L ta được tần số f thỏa : 2 2 2 1 2 fff += + Khi mắc song song C 1 với C 2 rồi mắc với L ta được tần số f thỏa : 2 2 2 1 2 111 fff += CHƯƠNG V: ĐIỆN XOAY CHIỀU 1. Biểu thức điện áp tức thời và dòng điện tức thời: u = U 0 cos(ωt + ϕ u ) và i = I 0 cos(ωt + ϕ i ) Với ϕ = ϕ u – ϕ i là độ lệch pha của u so với i, có 2 2 π π ϕ − ≤ ≤ 2. Dòng điện xoay chiều i = I 0 cos(2πft + ϕ i ) * Mỗi giây đổi chiều 2f lần * Nếu pha ban đầu ϕ i = 2 π − hoặc ϕ i = 2 π thì chỉ giây đầu tiên đổi chiều 2f-1 lần. 3. Dòng điện xoay chiều trong đoạn mạch R,L,C * Đoạn mạch chỉ có điện trở thuần R: u R cùng pha với i, (ϕ = ϕ u – ϕ i = 0) U I R = và 0 0 U I R = Lưu ý: Điện trở R cho dòng điện không đổi đi qua và có U I R = * Đoạn mạch chỉ có cuộn thuần cảm L: u L nhanh pha hơn i là π/2, (ϕ = ϕ u – ϕ i = π/2) L U I Z = và 0 0 L U I Z = với Z L = ωL là cảm kháng Lưu ý: Cuộn thuần cảm L cho dòng điện không đổi đi qua hoàn toàn (không cản trở). * Đoạn mạch chỉ có tụ điện C: u C chậm pha hơn i là π/2, (ϕ = ϕ u – ϕ i = -π/2) C U I Z = và 0 0 C U I Z = với 1 C Z C ω = là dung kháng Lưu ý: Tụ điện C không cho dòng điện không đổi đi qua (cản trở hoàn toàn). * Đoạn mạch RLC không phân nhánh 2 2 2 2 2 2 0 0 0 0 ( ) ( ) ( ) L C R L C R L C Z R Z Z U U U U U U U U = + − ⇒ = + − ⇒ = + − tan ;sin ; os L C L C Z Z Z Z R c R Z Z ϕ ϕ ϕ − − = = = với 2 2 π π ϕ − ≤ ≤ + Khi Z L > Z C thì u nhanh pha hơn i + Khi Z L < Z C thì u chậm pha hơn i + Khi Z L = Z C thì u cùng pha với i. Lúc đó Max U I = R gọi là hiện tượng cộng hưởng dòng điện 4. Công suất toả nhiệt trên đoạn mạch RLC: * Công suất tức thời: P = UIcosϕ + UIcos(2ωt + ϕ u +ϕ i ) * Công suất trung bình: P = UIcosϕ = I 2 R. 5. Tần số dòng điện do máy phát điện xoay chiều một pha có p cặp cực, rôto quay với vận tốc n vòng/giây phát ra: f = pn Hz Từ thông gửi qua khung dây của máy phát điện : Φ = NBScos(ωt +ϕ) = Φ 0 cos(ωt + ϕ) Với Φ 0 = NBS là từ thông cực đại gửi qua N vòng dây, B là cảm ứng từ của từ trường, S là diện tích của vòng dây, ω = 2πf Suất điện động trong khung dây: e = ωNSBcos(ωt + ϕ - 2 π ) = E 0 cos(ωt + ϕ - 2 π ) Với E 0 = ωNSB là suất điện động cực đại. 6. Dòng điện xoay chiều 3 pha là hệ thống ba dòng điện xoay chiều, gây bởi ba suất điện động xoay chiều cùng tần số, cùng biên độ nhưng độ lệch pha từng đôi một là 2 3 π 1 0 2 0 3 0 os( ) 2 os( ) 3 2 os( ) 3 e E c t e E c t e E c t ω π ω π ω   =   = −    = +    1 0 2 0 3 0 os( ) 2 os( ) 3 2 os( ) 3 i I c t i I c t i I c t ω π ω π ω   =   = −    = +   (tải đối xứng) Máy phát mắc hình sao: U d = 3 U p Máy phát mắc hình tam giác: U d = U p Tải tiêu thụ mắc hình sao: I d = I p Tải tiêu thụ mắc hình tam giác: I d = 3 I p 7. Công thức máy biến áp lý tưởng: 1 1 2 1 2 2 1 2 U E I N U E I N = = = 10. Công suất hao phí trong quá trình truyền tải điện năng: 2 cos         =∆ ϕ đi đi U P RP l R S ρ = là điện trở tổng cộng của dây tải điện (lưu ý: dẫn điện bằng 2 dây) Độ giảm điện áp trên đường dây tải điện: ∆U = IR Hiệu suất tải điện: đi đi đi nđê P PP P P H ∆− == 8. Đoạn mạch RLC có R thay đổi: * Khi R=Z L -Z C  thì 2 2 ax 2 2 M L C U U Z Z R = = − P * Khi R=R 1 hoặc R=R 2 thì P có cùng giá trị. Ta có R 1 , R 2 th.mãn phương trình bậc 2 ( ) 0 2 22 =−+− CL ZZPRUPR 2 2 1 2 1 2 ; ( ) L C U R R R R Z Z+ = = − P Và khi 1 2 R R R= thì 2 ax 1 2 2 M U R R =P 9. Đoạn mạch RLC có L thay đổi: * Khi Z L =Z C thì I Max ⇒ U Rmax ; P Max còn U LCMin * Khi 2 2 C L C R Z Z Z + = thì 2 2 ax C LM U R Z U R + = và 2 2 2 2 2 2 ax ax ax ; 0 LM R C LM C LM U U U U U U U U= + + − − = * Với    = = 2 1 LL LL thì U L có cùng giá trị thì U Lmax khi 21 21 2 LL LL L ZZ ZZ Z + = * Khi 2 2 4 2 C C L Z R Z Z + + = thì ax 2 2 2 R 4 RLM C C U U R Z Z = + − [...]... cách từ Trái Đất đến Mặt Trời xấp xỉ 150 triệu km, bằng 1 đơn vò thiên văn - Mặt Trời gồm quang cầu và khí quyển Mặt Trời Mặt Trời luôn bức xạ năng lượng ra xung quanh Hằng số Mặt Trời là H= 1360W/m 2 Công suất bức xạ năng lượng của Mặt Trời là P = 3,9.1026W Nguồn năng lượng của Mặt Trời chính là các phản ứng nhiệt hạch Ở thời kì hoạt động của Mặt Trời, trên Mặt Trời xuất hiện các vết đen, bùng sáng . tượng cộng hưởng dòng điện 4. Công suất toả nhiệt trên đoạn mạch RLC: * Công suất tức thời: P = UIcosϕ + UIcos(2ωt + ϕ u +ϕ i ) * Công suất trung bình: P =. thụ mắc hình tam giác: I d = 3 I p 7. Công thức máy biến áp lý tưởng: 1 1 2 1 2 2 1 2 U E I N U E I N = = = 10. Công suất hao phí trong quá trình truyền

Ngày đăng: 24/10/2013, 03:11

Xem thêm

w