sổ tay thiết kế cầu viết bằng tiếng anh hay

541 33 0
sổ tay thiết kế cầu viết bằng tiếng anh hay

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Bridge Design www.engreferencebooks.com Bridge Design Concepts and Analysis António J Reis IST – University of Lisbon and Technical Director GRID Consulting Engineers Lisbon Portugal José J Oliveira Pedro IST – University of Lisbon and GRID Consulting Engineers Lisbon Portugal www.engreferencebooks.com This edition first published 2019 © 2019 John Wiley & Sons Ltd All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions The right of António J Reis and José J Oliveira Pedro to be identified as the authors of this work has been asserted in accordance with law Registered Offices John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Office The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com Wiley also publishes its books in a variety of electronic formats and by print‐on‐demand Some content that appears in standard print versions of this book may not be available in other formats Limit of Liability/Disclaimer of Warranty While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make This work is sold with the understanding that the publisher is not engaged in rendering professional services The advice and strategies contained herein may not be suitable for your situation You should consult with a specialist where appropriate Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages Library of Congress Cataloging‐in‐Publication Data Names: Reis, António J., 1949– author | Oliveira Pedro, José J., 1968– author Title: Bridge design : concepts and analysis / António J Reis, IST – University of Lisbon and Technical Director GRID Consulting Engineers, Lisbon, José J Oliveira Pedro, IST – University of Lisbon and GRID Consulting Engineers, Lisbon Description: First edition | Hoboken, NJ : John Wiley & Sons, Ltd, 2019 | Identifiers: LCCN 2018041508 (print) | LCCN 2018042493 (ebook) | ISBN 9781118927656 (Adobe PDF) | ISBN 9781118927649 (ePub) | ISBN 9780470843635 (hardback) Subjects: LCSH: Bridges–Design and construction Classification: LCC TG300 (ebook) | LCC TG300 R45 2019 (print) | DDC 624.2/5–dc23 LC record available at https://lccn.loc.gov/2018041508 Cover Design: Wiley Cover Image: © Ana Isabel Silva Set in 10/12pt Warnock by SPi Global, Pondicherry, India Printed in the UK by Bell & Bain Ltd, Glasgow 10 9 8 7 6 5 4 3 2 1 www.engreferencebooks.com v Contents About the Authors  xiii Preface  xv Acknowledgements  xvii 1 Introduction  1.1 ­Generalities  1.2 ­Definitions and Terminology  1.3 ­Bridge Classification  1.4 ­Bridge Typology  1.5 ­Some Historical References  16 1.5.1 Masonry Bridges  16 1.5.2 Timber Bridges  18 1.5.3 Metal Bridges  18 1.5.4 Reinforced and Prestressed Concrete Bridges  24 1.5.5 Cable Supported Bridges  28 ­References  30 Bridge Design: Site Data and Basic Conditions  31 2.1 ­Design Phases and Methodology  31 2.2 ­Basic Site Data  32 2.2.1 Generalities  32 2.2.2 Topographic Data  32 2.2.3 Geological and Geotechnical Data  35 2.2.4 Hydraulic Data  36 2.2.5 Other Data  38 2.3 ­Bridge Location Alignment, Bridge Length and Hydraulic Conditions  38 2.3.1 The Horizontal and Vertical Alignments  42 2.3.2 The Transverse Alignment  46 2.4 ­Elements Integrated in Bridge Decks  49 2.4.1 Road Bridges  49 2.4.1.1 Surfacing and Deck Waterproofing  50 2.4.1.2 Walkways, Parapets and Handrails  50 2.4.1.3 Fascia Beams  53 2.4.1.4 Drainage System  54 www.engreferencebooks.com vi Contents 2.4.1.5 Lighting System  55 2.4.1.6 Expansion Joints  55 2.4.2 Railway Decks  58 2.4.2.1 Track System  59 2.4.2.2 Power Traction System (Catenary System)  61 2.4.2.3 Footways, Parapets/Handrails, Drainage and Lighting Systems  61 ­References  61 Actions and Structural Safety  63 3.1 ­Types of Actions and Limit State Design  63 3.2 ­Permanent Actions  65 3.3 ­Highway Traffic Loading – Vertical Forces  68 3.4 ­Braking, Acceleration and Centrifugal Forces in Highway Bridges  72 3.5 ­Actions on Footways or Cycle Tracks and Parapets, of Highway Bridges  74 3.6 ­Actions for Abutments and Walls Adjacent to Highway Bridges  75 3.7 ­Traffic Loads for Railway Bridges  76 3.7.1 General  76 3.7.2 Load Models  76 3.8 ­Braking, Acceleration and Centrifugal Forces in Railway Bridges: Nosing Forces  77 3.9 ­Actions on Maintenance Walkways and Earth Pressure Effects for Railway Bridges  78 3.10 ­Dynamic Load Effects  79 3.10.1 Basic Concepts  79 3.10.2 Dynamic Effects for Railway Bridges  82 3.11 ­Wind Actions and Aerodynamic Stability of Bridges  84 3.11.1 Design Wind Velocities and Peak Velocities Pressures  84 3.11.2 Wind as a Static Action on Bridge Decks and Piers  89 3.11.3 Aerodynamic Response: Basic Concepts  91 3.11.3.1 Vortex Shedding  94 3.11.3.2 Divergent Amplitudes: Aerodynamic Instability  95 3.12 ­Hydrodynamic Actions  98 3.13 ­Thermal Actions and Thermal Effects  99 3.13.1 Basic Concepts  99 3.13.2 Thermal Effects  102 3.13.3 Design Values  107 3.14 ­Shrinkage, Creep and Relaxation in Concrete Bridges  109 3.15 ­Actions Due to Imposed Deformations Differential Settlements  117 3.16 ­Actions Due to Friction in Bridge Bearings  119 3.17 ­Seismic Actions  119 3.17.1 Basis of Design  119 3.17.2 Response Spectrums for Bridge Seismic Analysis  121 3.18 ­Accidental Actions  124 3.19 ­Actions During Construction  124 3.20 ­Basic Criteria for Bridge Design  125 ­References  125 www.engreferencebooks.com Contents Conceptual Design and Execution Methods  129 4.1 ­Concept Design: Introduction  129 4.2 ­Span Distribution and Deck Continuity  131 4.2.1 Span Layout  131 4.2.2 Deck Continuity and Expansion Joints  132 4.3 ­The Influence of the Execution Method  134 4.3.1 A Prestressed Concrete Box Girder Deck  134 4.3.2 A Steel‐Concrete Composite Steel Deck  136 4.3.3 Concept Design and Execution: Preliminary Conclusions  136 4.4 ­Superstructure: Concrete Bridges  138 4.4.1 Options for the Bridge Deck  138 4.4.2 The Concrete Material – Main Proprieties  139 4.4.2.1 Concrete 139 4.4.2.2 Reinforcing Steel  140 4.4.2.3 Prestressing Steel  140 4.4.3 Slab and Voided Slab Decks  142 4.4.4 Ribbed Slab and Slab‐Girder Decks  144 4.4.5 Precasted Slab‐Girder Decks  152 4.4.6 Box Girder Decks  155 4.5 ­Superstructure: Steel and Steel‐Concrete Composite Bridges  160 4.5.1 Options for Bridge Type: Plated Structures  160 4.5.2 Steels for Metal Bridges and Corrosion Protection  166 4.5.2.1 Materials and Weldability  166 4.5.2.2 Corrosion Protection  172 4.5.3 Slab Deck: Concrete Slabs and Orthotropic Plates  173 4.5.3.1 Concrete Slab Decks  174 4.5.3.2 Steel Orthotropic Plate Decks  176 4.5.4 Plate Girder Bridges  179 4.5.4.1 Superstructure Components  179 4.5.4.2 Preliminary Design of the Main Girders  182 4.5.4.3 Vertical Bracing System  188 4.5.4.4 Horizontal Bracing System  191 4.5.5 Box Girder Bridges  192 4.5.5.1 General 192 4.5.5.2 Superstructure Components  193 4.5.5.3 Pre‐Design of Composite Box Girder Sections  196 4.5.5.4 Pre‐Design of Diaphragms or Cross Frames  199 4.5.6 Typical Steel Quantities  201 4.6 ­Superstructure: Execution Methods  202 4.6.1 General Aspects  202 4.6.2 Execution Methods for Concrete Decks  203 4.6.2.1 General 203 4.6.2.2 Scaffoldings and Falseworks  203 4.6.2.3 Formwork Launching Girders  206 4.6.2.4 Incremental Launching  206 4.6.2.5 Cantilever Construction  212 4.6.2.6 Precasted Segmental Cantilever Construction  221 www.engreferencebooks.com vii viii Contents 4.6.2.7 Other Methods  222 4.6.3 Erection Methods for Steel and Composite Bridges  223 4.6.3.1 Erection Methods, Transport and Erection Joints  223 4.6.3.2 Erection with Cranes Supported from the Ground  224 4.6.3.3 Incremental Launching  224 4.6.3.4 Erection by the Cantilever Method  227 4.6.3.5 Other Methods  227 4.7 ­Substructure: Conceptual Design and Execution Methods  229 4.7.1 Elements and Functions  229 4.7.2 Bridge Piers  229 4.7.2.1 Structural Materials and Pier Typology  229 4.7.2.2 Piers Pre‐Design  232 4.7.2.3 Execution Method of the Deck and Pier Concept Design  233 4.7.2.4 Construction Methods for Piers  240 4.7.3 Abutments  241 4.7.3.1 Functions of the Abutments  241 4.7.3.2 Abutment Concepts and Typology  241 4.7.4 Bridge Foundations  245 4.7.4.1 Foundation Typology  245 4.7.4.2 Direct Foundations  245 4.7.4.3 Pile Foundations  246 4.7.4.4 Special Bridge Foundations  247 4.7.4.5 Bridge Pier Foundations in Rivers  250 ­References  251 Aesthetics and Environmental Integration  255 5.1 ­Introduction  255 5.2 ­Integration and Formal Aspects  256 5.3 ­Bridge Environment  256 5.4 ­Shape and Function  258 5.5 ­Order and Continuity  260 5.6 ­Slenderness and Transparency  262 5.7 ­Symmetries, Asymmetries and Proximity with Other Bridges  266 5.8 ­Piers Aesthetics  267 5.9 ­Colours, Shadows, and Detailing  268 5.10 ­Urban Bridges  272 ­References  277 Superstructure: Analysis and Design  279 6.1 ­Introduction  279 6.2 ­Structural Models  280 6.3 ­Deck Slabs  283 6.3.1 General  283 6.3.2 Overall Bending: Shear Lag Effects  283 6.3.3 Local Bending Effects: Influence Surfaces  287 6.3.4 Elastic Restraint of Deck Slabs  295 www.engreferencebooks.com Contents 6.3.5 Transverse Prestressing of Deck Slabs  297 6.3.6 Steel Orthotropic Plate Decks  300 6.4 ­Transverse Analysis of Bridge Decks  301 6.4.1 Use of Influence Lines for Transverse Load Distribution  301 6.4.2 Transverse Load Distribution Coefficients for Load Effects  302 6.4.3 Transverse Load Distribution Methods  303 6.4.3.1 Rigid Cross Beam Methods: Courbon Method  304 6.4.3.2 Transverse Load Distribution on Cross Beams  307 6.4.3.3 Extensions of the Courbon Method: Influence of Torsional Stiffness of Main Girders and Deformability of Cross Beams  307 6.4.3.4 The Orthotropic Plate Approach  308 6.4.3.5 Other Transverse Load Distribution Methods  313 6.5 ­Deck Analysis by Grid and FEM Models  313 6.5.1 Grid Models  313 6.5.1.1 Fundamentals 313 6.5.1.2 Deck Modelling  315 6.5.1.3 Properties of Beam Elements in Grid Models  317 6.5.1.4 Limitations and Extensions of Plane Grid Modelling  318 6.5.2 FEM Models  318 6.5.2.1 Fundamentals 318 6.5.2.2 FEM for Analysis of Bridge Decks  323 6.6 ­Longitudinal Analysis of the Superstructure  329 6.6.1 Generalities – Geometrical Non‐Linear Effects: Cables and Arches  329 6.6.2 Frame and Arch Effects  332 6.6.3 Effect of Longitudinal Variation of Cross Sections  334 6.6.4 Torsion Effects in Bridge Decks – Non‐Uniform Torsion  336 6.6.5 Torsion in Steel‐Concrete Composite Decks  343 6.6.5.1 Composite Box Girder Decks  343 6.6.5.2 Composite Plate Girder Decks  345 6.6.5.3 Transverse Load Distribution in Open Section Decks  348 6.6.6 Curved Bridges  350 6.6.6.1 Statics of Curved Bridges  350 6.6.6.2 Simply Supported Curved Bridge Deck  352 6.6.6.3 Approximate Method  353 6.6.6.4 Bearing System and Deck Elongations  353 6.7 ­Influence of Construction Methods on Superstructure Analysis  355 6.7.1 Span by Span Erection of Prestressed Concrete Decks  356 6.7.2 Cantilever Construction of Prestressed Concrete Decks  357 6.7.3 Prestressed Concrete Decks with Prefabricated Girders  360 6.7.4 Steel‐Concrete Composite Decks  361 6.8 ­Prestressed Concrete Decks: Design Aspects  364 6.8.1 Generalities  364 6.8.2 Design Concepts and Basic Criteria  364 6.8.3 Durability  364 6.8.4 Concept of Partial Prestressed Concrete (PPC)  364 6.8.5 Particular Aspects of Bridges Built by Cantilevering  365 6.8.6 Ductility and Precasted Segmental Construction  366 www.engreferencebooks.com ix x Contents 6.8.6.1 Internal and External Prestressing  367 6.8.7 Hyperstatic Prestressing Effects  367 6.8.8 Deflections, Vibration and Fatigue  368 6.9 ­Steel and Composite Decks  373 6.9.1 Generalities  373 6.9.2 Design Criteria for ULS  373 6.9.3 Design Criteria for SLS  375 6.9.3.1 Stress Limitations and Web Breathing  376 6.9.3.2 Deflection Limitations and Vibrations  377 6.9.4 Design Criteria for Fatigue Limit State  377 6.9.5 Web Design of Plate and Box Girder Sections  383 6.9.5.1 Web Under in Plane Bending and Shear Forces  383 6.9.5.2 Flange Induced Buckling  385 6.9.5.3 Webs Under Patch Loading  387 6.9.5.4 Webs under Interaction of Internal Forces  389 6.9.6 Transverse Web Stiffeners  390 6.9.7 Stiffened Panels in Webs and Flanges  391 6.9.8 Diaphragms  394 6.10 ­Reference to Special Bridges: Bowstring Arches and Cable‐Stayed Bridges  395 6.10.1 Generalities  395 6.10.2 Bowstring Arch Bridges  396 6.10.2.1 Geometry, Slenderness and Stability  396 6.10.2.2 Hanger System and Anchorages  402 6.10.2.3 Analysis of the Superstructure  403 6.10.3 Cable‐Stayed Bridges  404 6.10.3.1 Basic Concepts  404 6.10.3.2 Total and Partial Adjustment Staying Options  408 6.10.3.3 Deck Slenderness, Static and Aerodynamic Stability  411 6.10.3.4 Stays and Stay Cable Anchorages  414 6.10.3.5 Analysis of the Superstructure  416 ­References  418 Substructure: Analysis and Design  423 7.1 ­Introduction  423 7.2 ­Distribution of Forces Between Piers and Abutments  423 7.2.1 Distribution of a Longitudinal Force  423 7.2.2 Action Due to Imposed Deformations  424 7.2.3 Distribution of a Transverse Horizontal Force  425 7.2.4 Effect of Deformation of Bearings and Foundations  429 7.3 ­Design of Bridge Bearings  430 7.3.1 Bearing Types  430 7.3.2 Elastomeric Bearings  430 7.3.3 Neoprene‐Teflon Bridge Bearings  434 7.3.4 Elastomeric ‘Pot Bearings’  435 7.3.5 Metal Bearings  437 Concrete Hinges  439 7.3.6 www.engreferencebooks.com Contents 7.4 ­Reference to Seismic Devices  441 7.4.1 Concept  441 7.4.2 Seismic Dampers  441 7.5 ­Abutments: Analysis and Design  444 7.5.1 Actions and Design Criteria  444 7.5.2 Front and Wing Walls  446 7.5.3 Anchored Abutments  448 7.6 ­Bridge Piers: Analysis and Design  449 7.6.1 Basic Concepts  449 7.6.1.1 Pre‐design 449 7.6.1.2 Slenderness and Elastic Critical Load  449 7.6.1.3 The Effect of Geometrical Initial Imperfections  450 7.6.1.4 The Effect of Cracking in Concrete Bridge Piers  450 7.6.1.5 Bridge Piers as ‘Beam Columns’  451 7.6.1.6 The Effect of Imposed Displacements  452 7.6.1.7 The Overall Stability of a Bridge Structure  453 7.6.1.8 Design Bucking Length of Bridge Piers  453 7.6.2 Elastic Analysis of Bridge Piers  454 7.6.3 Elastoplastic Analysis of Bridge Piers: Ultimate Resistance  459 7.6.4 Creep Effects on Concrete Bridge Piers  465 7.6.5 Analysis of Bridge Piers by Numerical Methods  465 7.6.6 Overall Stability of a Bridge Structure  471 ­References  473 Design Examples: Concrete and Composite Options  475 8.1 ­Introduction  475 8.2 ­Basic Data and Bridge Options  475 8.2.1 Bridge Function and Layout  475 8.2.2 Typical Deck Cross Sections  476 8.2.3 Piers, Abutments and Foundations  477 8.2.4 Materials Adopted  477 8.2.4.1 Prestressed Concrete Deck  478 8.2.4.2 Steel‐concrete Composite Deck  481 8.2.5 Deck Construction  481 8.3 ­Hazard Scenarios and Actions  481 8.3.1 Limit States and Structural Safety  482 8.3.2 Actions  482 8.3.2.1 Permanent Actions and Imposed Deformations  482 8.3.2.2 Variable Actions  484 8.4 ­Prestressed Concrete Solution  486 8.4.1 Preliminary Design of the Deck  486 8.4.2 Structural Analysis and Slab Checks  486 8.4.3 Structural Analysis of the Main Girders  492 8.4.3.1 Traffic Loads: Transverse and Longitudinal Locations  493 8.4.3.2 Internal Forces  497 8.4.3.3 Prestressing Layout and Hyperstatic Effects  497 8.4.3.4 Influence of the Construction Stages  498 www.engreferencebooks.com xi ... Cable‐Stayed Bridges  404 6.10.3.1 Basic Concepts  404 6.10.3.2 Total and Partial Adjustment Staying Options  408 6.10.3.3 Deck Slenderness, Static and Aerodynamic Stability  411 6.10.3.4 Stays... (b) (c) Figure 1.13  Stay arrangements for cable‐stayed bridges: (a) fan, (b) semi‐fan and (c) harp systems longest span is about 300 m Even for spans bellow 100 m, cable‐stayed bridges have been... for the stay arrangement in cable‐stayed bridges are shown in Figure  1.13  –  the fan, semi‐fan or harp arrangement The semi‐fan arrangement is the most adopted one for economy of stay cable

Ngày đăng: 14/10/2020, 21:27

Tài liệu cùng người dùng

Tài liệu liên quan