B GIO DC V O TO THI TUYN SINH I HC, CAO NG THAM KHO Mụn thi : TON, khi A Phần chung cho tất cả thí sinh CâuI:(2 diểm= 1đ+1đ) Cho hàm số : 2 ( ) 1 x y C x + = + 1. Khảo sát và vẽ đồ thị (C) của hàm số 2. Tìm m để đờng thẳng d: y = mx+ m+1 căt (C) tại hai điểm phân có hoành độ 1 2 ;x x thoả mãn: 1 2 2x x = Câu II. (2 diểm= 1đ+1đ) 1.Giải bất phơng tình sau: 2 4 1 2 x x x + 2. Giải phơng trình sau: ( ) 4 4 4cos 2 sin cos 3 sin(2 ) cos(2 ) 3 3 x x x x x + = + + + Câu III.(1 điểm) Tính tích phân sau: 2 3 cos sin cos 2 2 0 x x x A e dx = Câu IV .(1 điểm)Cho tứ diện ABCD có góc 0 0 90 ; 120ABC BAD CAD= = = .AB=a, AC=2a, AD=3a . Tính thể tích tứ diện ABCD đó Câu IV. (1 điểm) Với x,y là các số thực thuộc đoạn [ ] 0;1 . Tìm giá trị nhỏ nhất của biểu thức: ( ) 1 1 2 9 3 2 1 1 1 xy P xy x y xy x y + = + + + + + + + + + Phần riêng :Thí sinh chỉ đợc làm môt trong hai phần (phần 1 hoặc phần 2) Phần 1:Theo chơng trình chuẩn CâuVIa:(2 diểm= 1đ+1đ) 1.Trong mặt phẳng với hệ trục 0xy, cho tam giác ABC cóA(1;3). Đờng trung trực của cạnh AC có phơng trình (d): x y = 0 .Trung điểm K của cạnh BC thuộc đờng thẳng (d): x+ y -2 =0 Khoảng cách từ tâm I của đờng tròn ngoại tiêp tam giác ABC đến cạnh AC bằng 2 .Tìm toạ độ điểm B ;biết hoành độ của điểm I bé hơn 2. 2.Trong không gian với hệ tục toạ độ 0xy, cho điểm A(1;2;3) và hai đờng thẳng ( ) 1 3 1 : 1 1 1 2 x y z d = = và ( ) : 2 2 2 2 x d y z= = . Viêt phơng trình dờng (d) thẳng di qua A ,cắt ( ) 1 d và vuông góc với ( ) 2 d CâuVIIa.(1 điểm) Giải bất phơng trình sau : 1 1 log 3 4 log 13 4 2 2 3 x x x x ữ + ữ ữ Phần 2:Theo chơng nâng cao CâuVIb. (2 diểm= 1đ+1đ) 1.Trong mặt phẳng với hệ toạ độ 0xy ,cho hình thang ABCD có A(1;1),B(3;2).Điểm M(0;1) thuộc đáy lớn CD sao cho diện tích tam giác BMC bằng 3, biết C có hoành độ dơng .Viết Phơng trình cạnh AD. 2.Trong không gian với hệ trục toạ độ 0xyz , cho tam giác ABC cân đỉnh A, với A(1;3;2) . Mặt phẳng trung trực cạnh AC có phong trình ( ) :4x-2y+4z-15=0. đỉnh B thuộc đờng thẳng (d): 1 2 2 1 x y z+ = = .Tìm toạ độ đỉnh B. CâuVIIb.(1 điểm) Giải hệ phơng trình sau: ( ) 2 lg lg .lg 0 2 2 2 2lg lg 2lg x y x y x x y y + = + = -Hết- 10 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG ĐỀ THAM KHẢO Môn thi : TOÁN, khối A Câu 1(2 điểm): Cho hàm số: 1 1 x y x − = + . 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số . 2. Một nhánh của đồ thị (C) cắt Ox, Oy lần lượt tại A, B. Tìm điểm C thuộc nhánh còn lại sao cho diện tích tam giác ABC bằng 3. Câu 2(2 điểm): 1. Giải phương trình: x xx xx 2 32 2 cos 1coscos tan2cos −+ =− . 2. Giải hệ phương trình: 2 2 2 2 1 4 ( ) 2 7 2 x y xy y y x y x y + + + = + = + + , ( , )x y ∈ R . Câu 3(1 điểm): Tính tích phân 3 2 1 ln . 1 3ln e x dx I x x = + ∫ Câu 4(1 điểm): Cho hình lăng trụ ABC.A’B’C’ cá đáy là tam giác đều cạnh a, hình chiếu của A’ lên mặt phẳng (ABC) trùng với trọng tâm G của tam giác ABC. Một mặt phẳng (P) chứa BC và vuông góc với AA’ cắt lăng trụ theo một thiết diện có diện tích bằng 2 3 8 a . Hãy tính thể tích khối lăng trụ ABC.A’B’C’. Câu 5(1 điểm): Cho 1 z , 2 z là các nghiệm phức của phương trình 2 2 4 11 0z z− + = . Tính giá trị của biểu thức 2 2 1 2 2 1 2 ( ) z z z z + + . Câu 6(2 điểm): 1. Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC biết A(5; 2). Phương trình đường trung trực cạnh BC, đường trung tuyến CC’ lần lượt là x + y – 6 = 0 và 2x – y + 3 = 0. Tìm tọa độ các đỉnh của tam giác ABC. 2. Trong không gian với hệ tọa độ Oxyz, hãy xác định toạ độ tâm và bán kính đường tròn ngoại tiếp tam giác ABC, biết A(-1; 0; 1), B(1; 2; -1), C(-1; 2; 3). Câu 7(1 điểm): Cho 3 số dương a, b, c thỏa mãn hệ thức: . . 1a b c = . Tìm giá trị lớn nhất của biểu thức: 2 2 2 2 2 2 1 1 1 2 3 2 3 2 3 P a b b c c a = + + + + + + + + . 11 ========= Ht ======== B GIO DC V O TO THI TUYN SINH I HC, CAO NG THAM KHO Mụn thi : TON, khi A I.Phần chung cho tất cả thí sinh (7 điểm) Câu I (2 điểm). Cho hàm số 2 12 + + = x x y có đồ thị là (C) 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số 2.Chứng minh đờng thẳng d: y = -x + m luôn luôn cắt đồ thị (C) tại hai điểm phân biệt A, B. Tìm m để đoạn AB có độ dài nhỏ nhất. Câu II (2 điểm) 1.Giải phơng trình 9sinx + 6cosx 3sin2x + cos2x = 8 2.Giải bất phơng trình )3(log53loglog 2 4 2 2 2 2 > xxx Câu III (1 điểm). Tìm nguyên hàm = xx dx I 53 cos.sin Câu IV (1 điểm). Cho lăng trụ tam giác ABC.A 1 B 1 C 1 có tất cả các cạnh bằng a, góc tạo bởi cạnh bên và mặt phẳng đáy bằng 30 0 . Hình chiếu H của điểm A trên mặt phẳng (A 1 B 1 C 1 ) thuộc đờng thẳng B 1 C 1 . Tính khoảng cách giữa hai đờng thẳng AA 1 và B 1 C 1 theo a. Câu V (1 điểm). Cho a, b, c 0 v 2 2 2 3a b c+ + = . Tìm giá trị nhỏ nhất của biểu thức 3 3 3 2 2 2 1 1 1 a b c P b c a = + + + + + II.Phần riêng (3 điểm) 1.Theo chơng trình chuẩn Câu VIa (2 điểm). 1.Trong mặt phẳng với hệ tọa độ Oxy cho đờng tròn (C) có phơng trình (x-1) 2 + (y+2) 2 = 9 và đờng thẳng d: x + y + m = 0. Tìm m để trên đờng thẳng d có duy nhất một điểm A mà từ đó kẻ đợc hai tiếp tuyến AB, AC tới đờng tròn (C) (B, C là hai tiếp điểm) sao cho tam giác ABC vuông. 2.Trong không gian với hệ tọa độ Oxyz cho điểm A(10; 2; -1) và đờng thẳng d có phơng trình += = += tz ty tx 31 21 . Lập phơng trình mặt phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất. Câu VIIa (1 điểm). Có bao nhiêu số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ. 2.Theo chơng trình nâng cao (3 điểm) Câu VIb (2 điểm) 1.Trong mặt phẳng với hệ tọa độ Oxy cho đờng tròn (C): x 2 + y 2 - 2x + 4y - 4 = 0 và đờng thẳng d có phơng trình x + y + m = 0. Tìm m để trên đờng thẳng d có duy nhất một điểm A mà từ đó kẻ đợc hai tiếp tuyến AB, AC tới đờng tròn (C) (B, C là hai tiếp điểm) sao cho tam giác ABC vuông. 2.Trong không gian với hệ tọa độ Oxyz cho điểm A(10; 2; -1) và đờng thẳng d có phơng trình 3 1 12 1 == zyx . Lập phơng trình mặt phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất. Câu VIIb (1 điểm) Có bao nhiêu số tự nhiên có 5 chữ số khác nhau mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và ba chữ số lẻ. -Hết- 12 BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG ĐỀ THAM KHẢO Môn thi : TOÁN, khối A I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số y = x 3 – 3(m+1)x 2 + 9x – m (1), m là tham số thực 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1. 2. Xác định các giá trị m để hàm số (1) nghịch biến trên một khoảng có độ dài bằng 2. Câu II (2,0 điểm) 1. Giải bất phương trình 2 4 4 16 3 2 x x x x + + − ≤ + − − ( x ∈ R). 2. Giải phương trình 2 2 3 cos 2sin 3 cos sin 4 3 1 3 sin cos x x x x x x + − − = + . Câu III (1,0 điểm) Cho I = ln 2 3 2 3 2 0 2 1 1 + − + − + ∫ x x x x x e e dx e e e . Tính e I Câu IV(1,0 điểm) Cho hình chóp S.ABC có SA = SB = SC = 2a . Đáy là tam giác ABC cân · 0 120BAC = , cạnh BC = 2a. Gọi M là trung điểm của SA, tính khoảng cách từ M đến mặt phẳng (SBC). Câu V (1,0 điểm) Tìm giá trị nhỏ nhất của biểu thức P = 4log1log1log 2 2 2 2 2 2 +++++ zyx trong đó x, y, z là các số dương thỏa mãn điều kiện xyz = 8. II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A.Theo chương trình Chuẩn Câu VI.a( 2,0 điểm) 1. Trong mp(Oxy) cho 4 điểm A(1; 0), B(-2; 4), C(-1; 4), D(3; 5). Tìm toạ độ điểm M thuộc đường thẳng ( ) :3 5 0x y∆ − − = sao cho hai tam giác MAB, MCD có diện tích bằng nhau. 2. Trong hệ trục Oxyz, viết phương trình tham số của đường thẳng đi qua trực tâm H của tam giác ABC và vuông góc với mặt phẳng (ABC); biết điểm A(1; 0; -1), B(2; 3; -1) và C(1; 3; 1). Câu VII.a (1,0 điểm) Trong mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn các điều kiện: 2 3z i z i− = − − . Trong các số phức thỏa mãn điều kiện trên, tìm số phức có mô đun nhỏ nhất. B. Theo chương trình Nâng cao. Câu VI.b(2,0 điểm) 1.Trong hệ trục Oxy, cho 2 đường tròn (C) và (C’) có phương trình(C): x 2 + y 2 = 4 và (C’): x 2 + y 2 = 1; Các điểm A, B lần lượt di động trên (C) và (C’) sao cho Ox là phân giác của góc AOB. Gọi M là trung điểm của đoạn AB, lập phương trình quỹ tích của M. 2. Trong hệ trục Oxyz, cho đường thẳng (d): 3 2 1 2 1 1 x y z− + + = = − và mặt phẳng (P) có phương trình: x + y + z + 2 = 0. Viết phương trình đường thẳng (Δ) thuộc (P) sao cho (Δ) vuông góc với (d) và khoảng cách từ giao điểm của (d) và (P) đến (Δ) bằng 42 . Câu VII.b (1,0 điểm) Khai triển đa thức: 20 2 20 0 1 2 20 (1 3 ) . .x a a x a x a x− = + + + + Tính tổng: 0 1 2 20 2 3 . 21S a a a a= + + + + . -----------------Hết--------------- BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG 13 ĐỀ THAM KHẢO Môn thi : TOÁN, khối A PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm) Câu I. (2.0 điểm) Cho hàm số y = (C) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) 2. Viết phương trình tiếp tuyến với đồ thị (C), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. Câu II. (2.0 điểm) 1.Tìm nghiệm của phương trình 2cos4x - ( - 2)cos2x = sin2x + biết x∈ [ 0 ; π ]. 2. Giải hệ phương trình 3 2 3 2 2 3 5.6 4.2 0 ( 2 )( 2 ) x y x x y x y y y x y x − − − + = − = + − + Câu III. (1.0 điểm) Tính tích phân 3 1 4 2 0 ( ) 1 x x x e dx x + + ∫ Câu IV. (1.0 điểm) Cho x, y, z là các số thực dương lớn hơn 1 và thoả mãn điều kiện xy + yz + zx ≥ 2xyz Tìm giá trị lớn nhất của biểu thức A = (x - 1)(y - 1)(z - 1). Câu V. (1.0 điểm) Cho tứ diện ABCD biết AB = CD = a, AD = BC = b, AC = BD = c. Tính thể tích của tứ diện ABCD. PHẦN RIÊNG ( 3.0 điểm) A. Theo chương trình nâng cao Câu VIa. (2.0 điểm) 1. Trong mặt phẳng toạ độ Oxy cho hai đường thẳng (d 1 ) : 4x - 3y - 12 = 0 và (d 2 ): 4x + 3y - 12 = 0. Tìm toạ độ tâm và bán kính đường tròn nội tiếp tam giác có 3 cạnh nằm trên (d 1 ), (d 2 ), trục Oy. 2. Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2. Gọi M là trung điểm của đoạn AD, N là tâm hình vuông CC’D’D. Tính bán kính mặt cầu đi qua các điểm B, C’, M, N. Câu VIIa. (1.0 điểm) Giải bất phương trình 2 3 3 4 2 log ( 1) log ( 1) 0 5 6 x x x x + − + > − − B. Theo chương trình chuẩn Câu VIb. (2.0 điểm) 1. Cho elip (E) : 4x 2 + 16y 2 = 64.Gọi F 1 , F 2 là hai tiêu điểm. M là điểm bất kì trên (E).Chứng tỏ rằng tỉ số khoảng cách từ M tới tiêu điểm F 2 và tới đường thẳng x = 8 3 có giá trị không đổi. 2. Trong không gian với hệ trục toạ độ Oxyz cho điểm A(1 ;0 ; 1), B(2 ; 1 ; 2) và mặt phẳng (Q): x + 2y + 3z + 3 = 0. Lập phương trình mặt phẳng (P) đi qua A, B và vuông góc với (Q). Câu VIIb. (1.0 điểm) Giải bất phương trình 2 2 3 2 1 6 10 2 x x x A A C x − ≤ + ( k n C , k n A là tổ hợp, chỉnh hợp chập k của n phần tử) BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG ĐỀ THAM KHẢO Môn thi : TOÁN, khối A 14 PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7.0 điểm) C©u I (2.0 ®iÓm) Cho hàm số 23 23 +−= xxy 1. Khảo sát và vẽ đồ thị (C) của hàm số. 2. Biện luận số nghiệm của phương trình 1 22 2 − =−− x m xx theo tham số m. C©u II (2.0 ®iÓm ) 1. Giải phương trình: ( ) 2 3 4 2 2 2 1 2sin x cos x sin x− = + 2. Giải phương trình: 2 3 16 4 2 14 40 0 x x x log x log x log x .− + = C©u III (1.0 ®iÓm) Tính tích phân 3 2 3 x sin x I dx. cos x π π − = ∫ C©u IV(1.0®iÓm) Trong không gian Oxyz cho đường thẳng d: 3 2 12 1 − + == − zyx và mặt phẳng 012:)( =−++ zyxP .Tìm tọa độ giao điểm A của đường thẳng d với mặt phẳng )(P . Viết phương trình của đường thẳng ∆ đi qua điểm A vuông góc với d và nằm trong )(P . C©u V:(1.0®iÓm) Trong không gian với hệ toạ độ Oxyz , cho hai điểm )2;1;1(A , )2;0;2(B . Tìm quỹ tích các điểm cách đều hai mặt phẳng )(OAB và )(Oxy . PHẦN RIÊNG ( 3.0 điểm): A.Theo chương trình Chuẩn C©u VI.a(2.0 ®iÓm) 1. Cho hàm số 3 2 sin)( 2 −+−= x xexf x . Tìm giá trị nhỏ nhất của )(xf và chứng minh rằng 0)( = xf có đúng hai nghiệm. 2. Giải hệ phương trình sau trong tập hợp số phức: +−=+ −−= izz izz .25 .55. 2 2 2 1 21 C©u VII.a(1.0 ®iÓm) Trong mặt phẳng Oxy cho ABC ∆ có ( ) 0 5A ; . Các đường phân giác và trung tuyến xuất phát từ đỉnh B có phương trình lần lượt là 1 2 1 0 2 0d : x y ,d : x y .− + = − = Viết phương trình ba cạnh của tam giác ABC. B.Theo chương trình Nâng cao C©u VI.b (2.0 ®iÓm) 1. Giải phương trình 12 9. 4 1 4.69. 3 1 4.3 ++ −=+ xxxx . 2. Tính diện tích hình phẳng giới hạn bởi các đường sau: y = x.sin2x, y = 2x, x = 2 π C©u VII.b (1.0 ®iÓm) Cho hình chóp tứ giác đều SABCD có cạnh bên bằng a và mặt chéo SAC là tam giác đều. Qua A dựng mặt phẳng )(P vuông góc với SC .Tính diện tích thiết diện tạo bởi mặt phẳng )(P và hình chóp. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG ĐỀ THAM KHẢO Môn thi : TOÁN, khối A 15 A. PHẦN CHUNG ( 7 điểm) Câu 1: (2đ’) Cho hàm số y = 2 3 2 x x + + ( ) C 1) Khảo sát vẽ đồ thị ( ) C của hàm số: 2) Một đường thẳng d), có hệ số góc k = -1 đi qua M(o,m). Chứng minh với mọi m, đường thẳng (d) luôn cắt đồ thị ( ) C tại 2 điểm phân biệt A và B. Tìm giá trị của m để khoảng cách AB nhỏ nhất. Câu 2: (2đ’) 1) Giải phương trình: 8 – x.2 x + 2 3-x - x = 0. 2) Giải phương trình: tan( 5 2 π -x) + sinx 1 + cosx = 2 Câu 3: ( 1 đ’)Tính thể tích khối tròn xoay do miền phẳng : y = 0; y = 2x + ; y = 8 x− quay một vòng quanh Ox Câu 4: ( 2đ’). Cho hình chóp SABCD; đáy ABCD là hình vuông cạnh a; cạnh bên SA vuông góc với mặt phẳng đáy và SA = 2a. M là một điểm bất kỳ trên SA và AM = x. (0<x<2a). Mặt phẳng P qua M và song song với mặt phẳng đáy và cắt SB, SC, SD lần lượt tại N, E, F. 1) Tính thể tích khối trụ tròn xoay có đường sinh AM; và dáy là hình tròn ngoại tiếp tứ giác MNEF. 2) Tìm x để thể tích khối trụ đạt giá trị lớn nhất. B. PHẦN RIÊNG. ( Mỗi thí sinh chỉ làm một trong 2 phần a hoặc b ) PHẦN a) Câu 5a: (3đ’). 1) Giải phương trình 5x − + x + 7x + + 16x + = 14. 2) Tìm các cặp số (x, y) để 2 số phức sau đây bằng nhau:Z= x+ y+ 41i; z’ = 9 +( x 2 +y 2 )i 3) Trong không gian Oxyz cho mặt phẳng (P): x- 3y + 2z – 5 = 0 và đường thẳng ∆ : x = -1 + 2t; y = 1 + t; z = 2 + 3t. Lập phương trình đường thẳng ' ∆ là hình chiếu vuông góc của đường thẳng ∆ trên mặt phẳng (P) PHẦN b) Câu 5b(3đ) 1)Tìm m để ptrình sau đâycó đúng 2 nghiệm: 2 3 2 2 ( 2 2) 4 2 2 2 4x x x x x x m− + − − + = − + . 2)Cho x, y, z lµ 3 sè tho¶ m·n x + y + z = 0. Chøng minh r»ng: 3 4 3 4 3 4 6 x y z + + + + + ≥ 3) Trong không gian Oxyz cho mặt phẳng( P )có phương trình: x – y + 2z + 6 = 0 và hai đường thẳng: d 1 2 1 2 3 x t y t z = + = − + = − ; d 2 ' ' ' 5 9 10 2 1 x t y t z t = + = − = − Lập phương trình đường thẳng ∆ cắt d 1 tại A, cắt d 2 tại B, sao cho đường thẳng AB//(P) và khoảng cách từ ∆ đến P bằng 2 6 . BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG ĐỀ THAM KHẢO Môn thi : TOÁN, khối A 16 I. PHẦN CHUNG DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2,0 điểm) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 3 2 1 2 3 . 3 y x x x= − + 2. Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến này đi qua gốc tọa độ O. Câu II: (2,0 điểm) 1. Giải phương trình 2 sin 2 3sin cos 2 4 x x x π + = + + ÷ . 2. Giải hệ phương trình 2 2 3 3 2 1 2 2 y x x y y x − = − = − . Câu III: (2,0 điểm) 1. Tìm các giá trị của tham số m để phương trình 2 2 2 2m x x x− + = + có 2 nghiệm phân biệt. 2. Với mọi số thực x, y thỏa điều kiện ( ) 2 2 2 1x y xy+ = + . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 4 4 2 1 x y P xy + = + . Câu IV: (1,0 điểm) Cho hình chóp tứ giác đều .S ABCD có tất cả các cạnh đều bằng a. Tính theo a thể tích khối chóp .S ABCD và tính bán kính mặt cầu tiếp xúc với tất cả các mặt của hình chóp đó. II. PHẦN RIÊNG (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn Câu Va: (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm ( ) 1; 2;3I − . Viết phương trình mặt cầu tâm I và tiếp xúc với trục Oy. Câu VI.a: (2,0 điểm) 1. Giải phương trình 2.27 18 4.12 3.8 x x x x + = + . 2. Tìm nguyên hàm của hàm số ( ) 2 tan 1 cos x f x x = + . B. Theo chương trình Nâng cao Câu Vb:(1,0 điểm) Trong mặt phẳng tọa độ Oxy, cho đường tròn ( ) 2 2 : 2 0C x y x+ + = . Viết phương trình tiếp tuyến của ( ) C , biết góc giữa tiếp tuyến này và trục tung bằng 30 o . Câu VI.b: (2,0 điểm) 1. Giải bất phương trình 4 log 3 243 x x + > . 2. Tìm m để hàm số 2 1mx y x − = có 2 điểm cực trị A, B và đoạn AB ngắn nhất. -----Hết----- BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG ĐỀ THAM KHẢO Môn thi : TOÁN, khối A 17 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm) Câu I. (2.0 điểm) Cho hàm số y = (C) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) 2. Viết phương trình tiếp tuyến với đồ thị (C), biết rằng khoảng cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. Câu II. (2.0 điểm) 1.Tìm nghiệm của phương trình 2cos4x - ( - 2)cos2x = sin2x + biết x∈ [ 0 ; π ]. 2. Giải hệ phương trình 3 2 3 2 2 3 5.6 4.2 0 ( 2 )( 2 ) x y x x y x y y y x y x − − − + = − = + − + Câu III. (1.0 điểm) Tính tích phân 3 1 4 2 0 ( ) 1 x x x e dx x + + ∫ Câu IV. (1.0 điểm) Cho x, y, z là các số thực dương lớn hơn 1 và thoả mãn điều kiện xy + yz + zx ≥ 2xyz Tìm giá trị lớn nhất của biểu thức A = (x - 1)(y - 1)(z - 1). Câu V. (1.0 điểm) Cho tứ diện ABCD biết AB = CD = a, AD = BC = b, AC = BD = c. Tính thể tích tứ diện ABCD PHẦN RIÊNG ( 3.0 điểm) A. Theo chương trình nâng cao Câu VIa. (2.0 điểm) 1. Trong mặt phẳng toạ độ Oxy cho hai đường thẳng (d 1 ) : 4x - 3y - 12 = 0 và (d 2 ): 4x + 3y - 12 = 0. Tìm toạ độ tâm và bán kính đường tròn nội tiếp tam giác có 3 cạnh nằm trên (d 1 ), (d 2 ), trục Oy. 2. Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2. Gọi M là trung điểm của đoạn AD, N là tâm hình vuông CC’D’D. Tính bán kính mặt cầu đi qua các điểm B, C’, M, N. Câu VIIa. (1.0 điểm) Giải bất phương trình 2 3 3 4 2 log ( 1) log ( 1) 0 5 6 x x x x + − + > − − B. Theo chương trình chuẩn Câu VIb. (2.0 điểm) 1. Cho elip (E) : 4x 2 + 16y 2 = 64.Gọi F 1 , F 2 là hai tiêu điểm. M là điểm bất kì trên (E).Chứng tỏ rằng tỉ số khoảng cách từ M tới tiêu điểm F 2 và tới đường thẳng x = 8 3 có giá trị không đổi. 2. Trong không gian với hệ trục toạ độ Oxyz cho điểm A(1 ;0 ; 1), B(2 ; 1 ; 2) và mặt phẳng (Q): x + 2y + 3z + 3 = 0. Lập phương trình mặt phẳng (P) đi qua A, B và vuông góc với (Q). Câu VIIb. (1.0 điểm) Giải bất phương trình 2 2 3 2 1 6 10 2 x x x A A C x − ≤ + ( k n C , k n A là tổ hợp, chỉnh hợp chập k của n phần tử) .HẾT BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG ĐỀ THAM KHẢO Môn thi : TOÁN, khối A I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7,0 điểm ) 18 Câu I (2,0 điểm). Cho hàm số y = -x 3 +3x 2 +1 1. Khảo sát và vẽ đồ thị của hàm số 2. Tìm m để phương trình x 3 -3x 2 = m 3 -3m 2 có ba nghiệm phân biệt. Câu II (2,0 điểm ). 1. Giải bất phương trình: 2 4 4 16 6 2 x x x x + + − ≤ + − − 2.Giải phương trình: 2 1 3 sin sin 2 tan 2 x x x+ = Câu III (1,0 điểm). Tính tích phân: ln3 2 ln2 1 2 x x x e dx I e e = − + − ∫ Câu IV (1,0 điểm). Cho hình chóp S.ABC có SA=SB=SC= 2a . Đáy là tam giác ABC cân · 0 120BAC = , cạnh BC=2a Tính thể tích của khối chóp S.ABC.Gọi M là trung điểm của SA.Tính khoảng cách từ M đến mặt phẳng (SBC). Câu V (1,0 điểm). Cho a,b,c là ba số thực dương. Chứng minh: ( ) 3 3 3 3 3 3 1 1 1 3 2 b c c a a b a b c a b c a b c + + + + + + + ≥ + + ÷ ÷ II. PHẦN RIÊNG ( 3,0 điểm ) Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B). A. Theo chương trình Chuẩn : Câu VI.a(2,0 điểm). 1. Trong mặt phẳng tọa độ Oxy. Cho đường tròn (C) : 2 2 4 2 1 0x y x y+ − − + = và điểm A(4;5). Chứng minh A nằm ngoài đường tròn (C) . Các tiếp tuyến qua A tiếp xúc với (C) tại T 1 , T 2 , viết phương trình đường thẳng T 1 T 2 . 2. Trong không gian Oxyz. Cho mặt phẳng (P): x+y-2z+4=0 và mặt cầu (S): 2 2 2 2 4 2 3 0x y z x y z+ + − + + − = Viết phương trình tham số đường thẳng (d) tiếp xúc với (S) tại A(3;-1;1) và song song với mặt phẳng (P). Câu VII.a(1,0 điểm) Trong mặt phẳng tọa độ. Tìm tập hợp điểm biểu diễn các số phức z thỏa mãn các điều kiện: 2 3z i z i− = − − . Trong các số phức thỏa mãn điều kiện trên, tìm số phức có mô đun nhỏ nhất. B. Theo chương trình Nâng cao : Câu VI.b(2,0 điểm) 1. Trong mặt phẳng toạ độ Oxy. Cho tam giác ABC cân tại A có chu vi bằng 16, A,B thuộc đường thẳng d: 2 2 2 2 0x y− − = và B, C thuộc trục Ox . Xác định toạ độ trọng tâm của tam giác ABC. 2. Trong không gian với hệ trục toạ độ Oxyz. Cho tam giác ABC có: A(1;-2;3), B(2;1;0), C(0;- 1;-2). Viết phương trình tham số đường cao tương ứng với đỉnh A của tam giác ABC. Câu VII.b(1,0 điểm). Cho hàm số (C m ): 2 1 x x m y x − + = − (m là tham số). Tìm m để (C m ) cắt Ox tại hai điểm phân biệt A,B sao cho tiếp tuyến của (C m ) tại A, B vuông góc. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG ĐỀ THAM KHẢO Môn thi : TOÁN, khối A 19 [...]... trong mt phng (P), vuụng gúc vi d ng thi tho món khong cỏch t M ti bng 42 1 log 1 ( y x ) log 4 y = 1 Cõu VII.b (1,0 im) Gii h phng trỡnh 4 x 2 + y 2 = 25 B GIO DC V O TO ( x, y Ă ) THI TUYN SINH I HC, CAO NG 24 THAM KHO Mụn thi : TON, khi A I PHN CHUNG DNH CHO TT C TH SINH (7,0 im) Cõu I: (2,0 im) Cho hm s y = x3 + 3x2 + (m - 1)x + 2 1 Kho sỏt s bin thi n v v th với m =1 2.Tỡm m hm s... y = 2t v im z= 1 A(1, 0 , ) 1 Tỡm ta cỏc im E v F thuc ng thng tam giỏc AEF l tam giỏc u Cõu VII.b (1,0 im) 2 z i = z z + 2i Tỡm s phc z tha món : 2 2 z ( z) = 4 23 B GIO DC V O TO THI TUYN SINH I HC, CAO NG THAM KHO Mụn thi : TON, khi A I PHN CHUNG CHO TT C TH SINH (7,0 im) m Cõu I (2,0 im) Cho hm s y = x + m + x2 1 Kho sỏt s bin thi n v v th hm s ó cho vi m = 1 2 Tỡm m hm s cú cc... ngn nht Tỡm M thuc (P) sao cho 8 v khong cỏch gia hai ng chun bng x2 + x + 1 Cõu VIIb (1.0 im) Cho hm s y = (C) Chng minh rng t im M(1;-1) x +1 luụn k c hai tip tuyn vuụng gúc n th (C) B GIO DC V O TO THAM KHO THI TUYN SINH I HC, CAO NG Mụn thi : TON, khi A 21 PHN CHUNG CHO TT C TH SINH(7 im) Cõu I ( 2 im) Cho hm s y = x 3 + (1 2m) x 2 + (2 m) x + m + 2 (1) m l tham s 1 Kho sỏt s bin thi n v v th... ct c hai ng thng v 1 2 Cõu VII.b (1,0 im) 26 Gii h phng trỡnh 1 log 1 ( y x) log 4 = 1 y 4 x 2 + y 2 = 25 ( x,y thuc R) B GIO DC V O TO THAM KHO THI TUYN SINH I HC, CAO NG Mụn thi : TON, khi A I PHN CHUNG DNH CHO TT C TH SINH (7,0 im) Cõu I: (2,0 im) 1 1 3 Kho sỏt s bin thi n v v th (C) ca hm s y = x3 2 x 2 + 3x 2 Vit phng trỡnh tip tuyn ca th (C), bit tip tuyn ny i qua gc ta O Cõu II:... v parabol (P): y2 = 12x (E): + 8 6 12 1 4 8 2 Tỡm h s ca s hng cha x trong khai trin Newton: 1 x ữ x o0o 28 B GIO DC V O TO THAM KHO THI TUYN SINH I HC, CAO NG Mụn thi : TON, khi A PHN CHUNG CHO TT CA CAC THI SINH (7,0 iờm) Cõu I (2 iờm) 1 Kho sỏt s bin thi n v v th (C) ca ham sụ y = 2x 1 x 1 2 Vit phng trỡnh tip tuyn ca (C), bit khong cỏch t im I(1;2) n tip tuyn bng 2 sin(2x + Cõu II (2... 3y + 4 = 0 Tim ta im B thuc ng thng sao cho ng thng AB v hp vi nhau gúc 450 Cõu VII.a (1 iờm): Trong khụng gian vi hờ toa ụ Oxyz, cho iờm M(1;-1;1) x 1 va hai ng thng (d) : = y +1 z = 2 3 x 1 v (d ') : = y 1 z 4 = Chng minh: iờm M, 2 5 (d), (d) cung nm trờn mụt mt phng Viờt phng trinh mt phng o 2 Cõu VIII.a (1 iờm) Gii phng trinh: Log x(24x +1) x + log x (24x +1) x = log (24x +1) x Theo chng trinh... im) Cho hm s y = x 2 3x + 2 (C) Tỡm trờn ng thng x = 1 nhng im x m t ú k c 2 tip tuyn n th ( C) B GIO DC V O TO THAM KHO THI TUYN SINH I HC, CAO NG Mụn thi : TON, khi A 20 A PHN CHUNG CHO CC TH SINH (7im): Cõu I(2.0 im) Cho hm s y = x 4 (m + 1) x 2 + m (Cm) 1 Kho sỏt s bin thi n v v th hm s khi m = 2 2 Tỡm m (Cm) ct Ox ti bn im phõn bit to thnh ba on thng cú di bng nhau Cõu II(2.0 im) (sin 2... Vit phng trỡnh tip tuyn ca ( C ) , bit gúc gia tip tuyn ny v trc tung bng 30o Cõu VI.b: (2,0 im) 27 1 Gii bt phng trỡnh x 4+log3 x > 243 2 Tỡm m hm s y = mx 2 1 cú 2 im cc tr A, B v on AB ngn nht x -Ht B GIO DC V O TO THAM KHO THI TUYN SINH I HC, CAO NG Mụn thi : TON, khi A Cõu 1 (2.0 im): Cho hm s y = x 3 3mx 2 + 4m3 (m l tham s) cú th l (Cm) 1 Kho sỏt v v th hm s khi m = 1 2 Xỏc nh m... tõm G thuc ng thng d: 3 x + y 4 = 0 Tỡm ta nh C 2.Trong khụng gian vi h trc Oxyz, cho mt phng (P) x + y z +1 = 0 ,ng thng d: x 2 y 1 z 1 = = 1 1 3 Gi I l giao im ca d v (P) Vit phng trỡnh ca ng thng nm trong (P), vuụng gúc vi d v cỏch I mt khong bng 3 2 Cõu VII.b (1 im) 3 z +i = 1 i z Gii phng trỡnh ( n z) trờn tp s phc: B GIO DC V O TO THAM KHO THI TUYN SINH I HC, CAO NG Mụn thi : TON,... CõuVIb.(1điểm)Tìm phn thc ca s phc z = (1 + i ) n Trong ó nN v tha mãn: log 4 ( n 3) + log 5 ( n + 6 ) = 4 25 B GIO DC V O TO THAM KHO THI TUYN SINH I HC, CAO NG Mụn thi : TON, khi A PHN CHUNG CHO TT C TH SINH ( 7,0 im) 2x + 3 cú th l (C) x 1 1 Kho sỏt s bin thi n v v th hm s ó cho 2 Vit phng trỡnh tip tuyn vi th hm s (C) , bit khong cỏch t tõm i xng ca th hm s Cõu I (2,0 im) Cho hm s y = n . ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG ĐỀ THAM KHẢO Môn thi : TOÁN, khối A Câu 1(2 điểm): Cho hàm số: 1 1 x y x − = + . 1. Khảo sát sự biến thi n và. .Tính diện tích thi t diện tạo bởi mặt phẳng )(P và hình chóp. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG ĐỀ THAM KHẢO Môn thi : TOÁN, khối