1. Trang chủ
  2. » Giáo án - Bài giảng

Kỹ thuật điện: electric circuits + solution manual nilsson 7th ed (en)

1,8K 342 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1.797
Dung lượng 28,14 MB

Nội dung

17–26 CHAPTER 17 The Fourier Transform [b] In the phasor domain: Vo − 125 Vo Vo + + =0 j200 j800 120 12Vo − 1500 + 3Vo + j20Vo = Vo = Io = 1500 = 60/− 53.13◦ V 15 + j20 Vo = 75 × 10−3 /− 143.13◦ A j800 io (t) = 75 cos(40,000t − 143.13◦ ) mA P 17.30 [a] Vg s Vg s2 Vo = = 25 + (100/s) + s s + 25s + 100 H(s) = Vo s2 = ; Vg (s + 5)(s + 20) H(ω) = (jω)2 (jω + 5)(jω + 20) vg = 25ig = −450e10t u(−t) − 450e−10t u(t) V Vg = − 450 450 − −jω + 10 jω + 10 Vo (ω) = H(ω)Vg = −450(jω)2 (−jω + 10)(jω + 5)(jω + 20) + −450(jω)2 (jω + 10)(jω + 5)(jω + 20) = K2 K3 K4 K5 K6 K1 + + + + + −jω + 10 jω + jω + 20 jω + jω + 10 jω + 20 Problems K1 = 450(100) = −100 (15)(30) K2 = 450(25) = −50 (15)(15) K3 = 450(400) = 400 (30)(−15) Vo (ω) = K4 = K5 = 17–27 −450(25) = −150 (5)(15) −450(100) = 900 (−5)(10) K6 = −450(400) = −1200 (−15)(−10) −200 −800 900 −100 + + + −jω + 10 jω + jω + 20 jω + 10 vo = −100e10t u(−t) + [900e−10t − 200e−5t − 800e−20t ]u(t) V [b] vo (0− ) = −100 V [c] vo (0+ ) = 900 − 200 − 800 = −100 V [d] At t = 0− the circuit is Therefore, the solution predicts v1 (0− ) will be −350 V Now v1 (0+ ) = v1 (0− ) because the inductor will not let the current in the 25 Ω resistor change instantaneously, and the capacitor will not let the voltage across the 0.01 F capacitor change instantaneously At t = 0+ the circuit is From the circuit at t = 0+ we see that vo must be −100 V, which is consistent with the solution for vo obtained in part (c) CHAPTER 17 The Fourier Transform 17–28 P 17.31 Vo s Vo − Vg 100Vo + =0 + 25 s 100s + 125 × 104 · Vo = Io = s(100s + 125 × 104 )Vg 125(s2 + 12,000s + 25 × 106 ) sVo 100s + 125 × 104 Io s2 H(s) = = Vg 125(s2 + 12,000s + 25 × 106 ) −8 × 10−3 ω H(ω) = (25 × 106 − ω ) + j12,000ω Vg (ω) = 300π[δ(ω + 5000) + δ(ω − 5000)] Io (ω) = H(ω)Vg (ω) = io (t) = −2.4π 2π = −1.2 = 12 −2.4πω [δ(ω + 5000) + δ(ω − 5000)] (25 × 106 − ω ) + j12,000ω ω [δ(ω + 5000) + δ(ω − 5000)] jtω e dω −∞ (25 × 106 − ω ) + j12,000ω ∞ 25 × 106 ej5000t 25 × 106 e−j5000t + −j(12,000)(5000) j(12,000)(5000) e−j5000t ej5000t + −j j ◦ ◦ = 0.5[e−j(5000t+90 ) + ej(5000t+90 ) ] io (t) = cos(5000t + 90◦ ) A Problems 17–29 P 17.32 [a] From the plot of vg note that vg is −10 V for an infinitely long time before t = Therefore · vo (0− ) = −10 V There cannot be an instantaneous change in the voltage across a capacitor, so vo (0+ ) = −10 V [b] io (0− ) = A At t = 0+ the circuit is 30 − (−10) 40 = = 8A 5 [c] The s-domain circuit is io (0+ ) = Vo = Vg + (10/s) Vo = H(s) = Vg s+2 10 2Vg = s s+2 17–30 CHAPTER 17 The Fourier Transform H(ω) = jω + Vg (ω) = jω − 5[2πδ(ω)] + Vo (ω) = H(ω)Vg (ω) = 10 30 30 = − 10πδ(ω) + jω + jω jω + 10 30 − 10πδ(ω) + jω + jω jω + = 20πδ(ω) 60 20 − + jω(jω + 2) jω + (jω + 2)(jω + 5) = K0 K1 K2 K3 20πδ(ω) + + + − jω jω + jω + jω + jω + K0 = 20 = 10; Vo (ω) = K1 = 20 = −10; −2 K2 = 60 = 20; K3 = 60 = −20 −3 10 20 20πδ(ω) 10 10 20 10 + − − = + + − 10πδ(ω) jω jω + jω + jω + jω jω + jω + vo (t) = 5sgn(t) + [10e−2t − 20e−5t ]u(t) − V P 17.33 [a] Vo (Vo − Vg )s Vo + =0 + 10 4s 800 · Vo = s2 Vg s2 + 1250s + 25 × 104 Vo s2 = H(s) = Vg (s + 250)(s + 1000) H(ω) = (jω)2 (jω + 250)(jω + 1000) vg = 45e−500|t| ; Vg (ω) = · Vo (ω) = H(ω)Vg (ω) = = 45,000 (jω + 500)(−jω + 500) 45,000(jω)2 (jω + 250)(jω + 500)(jω + 1000)(−jω + 500) K2 K3 K4 K1 + + + jω + 250 jω + 500 jω + 1000 −jω + 500 Problems K1 = 45,000(−250)2 = 20 (250)(750)(750) K2 = 45,000(−500)2 = −90 (−250)(500)(1000) K3 = 45,000(−1000)2 = 80 (−750)(−500)(1500) K4 = 45,000(500)2 = 10 (750)(1000)(1500) · vo (t) = [20e−250t − 90e−500t + 80e−1000t ]u(t) + 10e500t u(−t) V [b] vo (0− ) = 10 V; Vo (0+ ) = 20 − 90 + 80 = 10 V vo (∞) = V [c] IL = 0.25sVg Vo = 4s (s + 250)(s + 1000) H(s) = 0.25s IL = Vg (s + 250)(s + 1000) H(ω) = 0.25(jω) (jω + 250)(jω + 1000) IL (ω) = 0.25(jω)(45,000) (jω + 250)(jω + 500)(jω + 1000)(−jω + 500) = K4 = K1 K2 K3 K4 + + + jω + 250 jω + 500 jω + 1000 −jω + 500 (0.25)(500)(45,000) = mA (750)(1000)(1500) iL (t) = 5e500t u(−t); · iL (0− ) = mA K1 = (0.25)(−250)(45,000) = −20 mA (250)(750)(750) K2 = (0.25)(−500)(45,000) = 45 mA (−250)(500)(1000) K3 = (0.25)(−1000)(45,000) = −20 mA (−750)(−500)(1500) · iL (0+ ) = K1 + K2 + K3 = −20 + 45 − 20 = mA Checks, i.e., iL (0+ ) = iL (0− ) = mA 17–31 17–32 CHAPTER 17 The Fourier Transform At t = 0− : vC (0− ) = 45 − 10 = 35 V At t = 0+ : vC (0+ ) = 45 − 10 = 35 V [d] We can check the correctness of our solution for t ≥ 0+ by using the Laplace transform Our circuit becomes Vo (Vo − Vg )s Vo × 10−3 −6 + =0 + + 35 × 10 + 106 s 800 4s · (s2 + 1250s + 25 × 104 )Vo = s2 Vg − (35s + 5000) vg (t) = 45e−500t u(t) V; Vg = · (s + 250)(s + 1000)Vo = 45 s + 500 45s2 − (35s + 5000)(s + 500) (s + 500) 10s2 − 22,500s − 250 × 104 · Vo = (s + 250)(s + 500)(s + 1000) = 90 80 20 − + s + 250 s + 500 s + 1000 · vo (t) = [20e−250t − 90e−500t + 80e−1000t ]u(t) V This agrees with our solution for vo (t) for t ≥ 0+ P 17.34 [a] Vg (ω) = 36 36 72jω − = − jω + jω (4 − jω)(4 + jω) Problems Vo (s) = (16/s) Vg (s) 10 + s + (16/s) H(s) = 16 16 Vo (s) = = Vg (s) s + 10s + 16 (s + 2)(s + 8) H(ω) = 16 (jω + 2)(jω + 8) Vo (ω) = H(ω) · Vg (ω) = = 17–33 1152jω (4 − jω)(4 + jω)(2 + jω)(8 + jω) K2 K3 K4 K1 + + + − jω + jω + jω + jω K1 = 1152(4) =8 (8)(6)(12) K2 = 1152(−4) = 72 (8)(−2)(4) K3 = 1152(−2) = −32 (6)(2)(6) K4 = 1152(−8) = −32 (12)(−4)(−6) · Vo (jω) = 72 32 32 + − − − jω + jω + jω + jω · vo (t) = 8e4t u(−t) + [72e−4t − 32e−2t − 32e−8t ]u(t)V [b] vo (0− ) = V [c] vo (0+ ) = 72 − 32 − 32 = V The voltages at 0− and 0+ must be the same since the voltage cannot change instantaneously across a capacitor P 17.35 Vo (s) = 30 40 600(s + 10) 10 + − = s s + 20 s + 30 s(s + 20)(s + 30) Vo (s) = H(s) · 15 s · H(s) = 40(s + 10) (s + 20)(s + 30) · H(ω) = 40(jω + 10) (jω + 20)(jω + 30) 17–34 CHAPTER 17 The Fourier Transform · Vo (ω) = vo (ω) = 40(jω + 10) 1200(jω + 10) 30 · = jω (jω + 20)(jω + 30) jω(jω + 20)(jω + 30) 60 80 20 + − jω jω + 20 jω + 30 vo (t) = 10sgn(t) + [60e−20t − 80e−30t ]u(t) V P 17.36 [a] f (t) = [b] W = [c] W = [d] π π 2π −∞ eω ejtω dω + ∞ (1/π) dt = 2 (1 + t ) π ∞ −2ω 0 ∞ ∞ e−2ω dω = 1e π −2 e−ω ejtω dω = ∞ 1/π + t2 dt J = 2 (1 + t ) 2π = J 2π 0.9 , − e−2ω1 = 0.9, e−2ω dω = 2π ω1 = (1/2) ln 10 ∼ = 1.15 rad/s ω1 e2ω1 = 10 P 17.37 Io = Ig R RCsIg = R + (1/sC) RCs + H(s) = s Io = Ig s + (1/RC) RC = (100 × 103 )(1.25 × 10−6 ) = 125 × 10−3 ; H(s) = s ; s+8 Ig (ω) = 30 × 10−6 jω + H(ω) = Io (ω) = H(ω)Ig (ω) = jω jω + 30 × 10−6 jω (jω + 2)(jω + 8) 1 = =8 RC 0.125 Problems 17–35 ω(30 × 10−6 ) √ |Io (ω)| = √ ( ω + 4)( ω + 64) |Io (ω)|2 = K1 K2 900 × 10−12 ω = + 2 (ω + 4)(ω + 64) ω + ω + 64 K1 = (900 × 10−12 )(−4) = −60 × 10−12 (60) K2 = (900 × 10−12 )(−64) = 960 × 10−12 (−60) |Io (ω)|2 = W1Ω = = = π 960 × 10−12 60 × 10−12 − ω + 64 ω2 + ∞ |Io (ω)|2 dω = 120 × 10−12 ω tan−1 π 960 × 10−12 π ∞ − ∞ 60 × 10−12 dω − ω + 64 π ω 30 × 10−12 tan−1 π %= 120 π 30 π × 10−12 = (60 − 15) × 10−12 = 45 pJ · − · π π Between and rad/s W1Ω = ∞ 120 30 tan−1 − tan−1 × 10−12 = 7.14 pJ π π 7.14 (100) = 15.86% 45 P 17.38 [a] Vg (ω) = 60 (jω + 1)(−jω + 1) 0.4 (jω + 0.5) H(s) = Vo 0.4 ; = Vg s + 0.5 Vo (ω) = 24 (jω + 1)(jω + 0.5)(−jω + 1) Vo (ω) = 32 −24 + + jω + jω + 0.5 −jω + H(ω) = vo (t) = [−24e−t + 32e−t/2 ]u(t) + 8et u(−t) V ∞ dω +4 ω2 17–36 CHAPTER 17 The Fourier Transform [b] |Vg (ω)| = [c] |Vo (ω)| = [d] Wi = [e] Wo = 60 + 1) (ω 24 √ (ω + 1) ω + 0.25 ∞ 0 −∞ = 32 + −2t 900e e−2t dt = 1800 −2 64e2t dt + ∞ −2t [576e ∞ ∞ = 900 J (−24e−t + 32e−t/2 )2 dt − 1536e−3t/2 + 1024e−t ] dt = 32 + 288 − 1024 + 1024 = 320 J Problems [f] |Vg (ω)| = 60 , +1 ω2 |Vg2 (ω)| = 3600 (ω + 1)2 Wg = 3600 π = 3600 π ω + tan−1 ω 2 ω +1 = 1800 + tan−1 = 863.53 J π = Wo = + 1)2 (ω + 0.25) 768 1024 1024 − − ω + 0.25 (ω + 1)2 (ω + 1) 1024 · · tan−1 2ω π −768 P 17.39 Io = ω + tan−1 ω ω +1 2048 384 1024 tan−1 − + tan−1 − tan−1 π π π 319.2 × 100 = 99.75% 320 sIg 0.5sIg = 0.5s + 25 s + 50 H(s) = s Io = Ig s + 50 H(ω) = jω jω + 50 I(ω) = 2 = 319.2 J %= 576 (ω −1024 tan−1 ω = 863.53 × 100 = 95.95% 900 · % = [g] |Vo (ω)|2 = dω (ω + 1)2 12 jω + 10 Io (ω) = H(ω)I(ω) = 12(jω) (jω + 10)(jω + 50) 17–37 17–38 CHAPTER 17 The Fourier Transform 12ω |Io (ω)| = (ω + 100)(ω + 2500) |Io (ω)|2 = = 144ω (ω + 100)(ω + 2500) ω2 Wo (total) = = 150 −6 + + 100 ω + 2500 π 150dω − + 2500 π ∞ ω2 ω tan−1 π 50 ∞ − ∞ ω2 6dω + 100 ω 0.6 tan−1 π 10 ∞ = 1.5 − 0.3 = 1.2 J Wo (0–100 rad/s) = 0.6 tan−1 (2) − tan−1 (10) π π = 1.06 − 0.28 = 0.78 J Therefore, the percent between and 100 rad/s is 0.78 (100) = 64.69% 1.2 P 17.40 [a] |Vi (ω)|2 = × 104 ; ω2 |Vi (100)|2 = × 104 = 4; 1002 |Vi (200)|2 = × 104 =1 2002 Problems [b] Vo = RCVi Vi R = R + (1/sC) RCs + H(s) = s Vo ; = Vi s + (1/RC) H(ω) = jω jω + 100 |Vo (ω)| = × 104 , ω + 104 |Vo (100)|2 = [c] W1Ω = π = 100 ≤ ω ≤ 200 rad/s; × 104 = 2; 104 + 104 200 100 |Vo (200)|2 = × 104 × 104 dω = − ω2 π ω |Vo (ω)|2 = 0, × 104 = 0.8 × 104 200 100 × 104 200 ∼ − = = 63.66 J π 100 200 π = π = 106 10−3 1000 = = = 100 RC (0.5)(20) 10 |ω| 200 200 √ ·√ = |ω| ω + 104 ω + 104 |Vo (ω)|2 = [d] W1Ω 17–39 200 100 × 104 ω × 104 · tan−1 dω = ω + 10 π 100 400 [tan−1 − tan−1 1] ∼ = 40.97 J π 200 100 elsewhere 17–40 CHAPTER 17 The Fourier Transform P 17.41 [a] Vi (ω) = H(s) = A ; a + jω |Vi (ω)| = √ s ; s+α H(ω) = WIN = ∞ = A2 π A2 ; 2a when α = a we have ω dω A2 = π (ω + a2 )2 a dω − a + ω2 a2 dω (a2 + ω )2 a π −1 ∞ A2 π ω2 A2 dω = (a2 + ω )2 4a WOUT (a) = 0.5 − = 0.1817 or WOUT (total) π Therefore ω α2 + ω ω A2 (a2 + ω )(α2 + ω ) a A2 4aπ WOUT (total) = |H(ω)| = √ (a2 + ω )(α2 + ω ) A2 e−2at dt = WOUT (a) = jω ; α + jω ωA Therefore |Vo (ω)| = Therefore |Vo (ω)|2 = A + ω2 a2 18.17% [b] When α = a we have WOUT (α) = = π ω A2 dω (a2 + ω )(α2 + ω ) α A2 π where K1 = α a2 K1 K2 + dω +ω α + ω2 a a2 − α2 and K2 = −α2 a2 − α2 Therefore WOUT (α) = α A2 απ a tan−1 − 2 π(a − α ) a WOUT (total) = Therefore π A2 π A2 − α a = π(a2 − α2 ) 2 2(a + α) α απ WOUT (α) · a tan−1 − = WOUT (total) π(a − α) a √ For α = a 3, this ratio is 0.2723, √ or 27.23% of the output energy lies in the frequency band between and a √ [c] For α = a/ 3, the ratio is 0.1057, √ or 10.57% of the output energy lies in the frequency band between and a/

Ngày đăng: 15/09/2020, 07:50

TỪ KHÓA LIÊN QUAN

w