THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 415 |
Dung lượng | 4,62 MB |
Nội dung
Ngày đăng: 29/08/2020, 18:20
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||
---|---|---|---|---|
49. Thibault, L.: A general sequential formula for subdifferentials of sums of convex functions defined on Banach spaces. In: R. Durier and C. Michelot (eds.), Recent Developments in Opti- mization, Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, Vol. 429, 340–345 (1995) | Sách, tạp chí |
|
||
50. Thibault, L.: Limiting subdifferential calculus with applications to integration and maximal monotonicity of subdifferential. In: M. Th´era (ed.) Constructive, experimental, and nonlinear analysis, CMS Conference Proceedings, Vol. 27, 279–289 (2000) | Sách, tạp chí |
|
||
2. Attouch, H.: Variational Convergence for Functions and Operators. Math. Series, Pitman, London (1984) | Khác | |||
3. Attouch, H., Baillon, J.-B., Th´era, M.: Variational sum of monotone operators. J. Convex Anal.1, 1–29 (1994) | Khác | |||
4. Attouch, H., Baillon, J.-B., Th´era, M.: Weak solutions of evolution equations and variational sum of maximal monotone operators. SEA Bull. Math. 19, 117–126 (1995) | Khác | |||
5. Attouch, H., Riahi, H., Th´era, M.: Somme ponctuelle d’op´erateurs maximaux monotones.Serdica Math. J. 22, 267–292 (1996) | Khác | |||
7. Bauschke, H.H., Borwein, J.M., Wang, X.: Fitzpatrick functions and continuous linear mono- tone operators. SIAM J. Optim. 18, 789–809 (2007) | Khác | |||
8. Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006) | Khác | |||
9. Borwein, J.M.: Maximality of sums of two maximal monotone operators in general Banach space. Proc. Amer. Math. Soc. 135, 3917–3924 (2007) | Khác | |||
10. Botá, R.I., Csetnek, E.R.: On two properties of enlargements of maximal monotone operators.J. Convex Anal. 16, 713–725 (2009) | Khác | |||
11. Botá, R.I., Grad, S.-M., Wanka, G.: Maximal monotonicity for the precomposition with a linear operator. SIAM J. Optim. 17, 1239–1252 (2006) | Khác | |||
12. Botá, R.I., Csetnek, E.R., Wanka, G.: A new condition for maximal monotonicity via represen- tative functions. Nonlinear Anal., TMA 67, 2390–2402 (2007) | Khác | |||
13. Brezis, H., Crandall, M.G., Pazy, A.: Perturbations of nonlinear maximal monotone sets in Banach space. Comm. Pure Appl. Math. XXIII, 123–144 (1970) | Khác | |||
14. Burachik, R.S., Iusem, A.: On non-enlargable and fully enlargable monotone operators. J. Con- vex Anal. 13, 603–622 (2006) | Khác | |||
15. Burachik, R.S., Svaiter, B.F.: ε-Enlargements in Banach spaces. Set-Valued Anal. 7, 117–132 (1999) | Khác | |||
16. Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargements of maximal monotone operators with applications to variational inequalities. Set-Valued Anal. 5, 159–180 (1997) | Khác | |||
20. Fitzpatrick, S.P., Simons, S.: The conjugates, compositions and marginals of convex functions.J. Convex Anal. 8, 423–446 (2001) | Khác | |||
21. Garc´ıa, Y.: New properties of the variational sum of monotone operators. J. Convex Anal. 16, 767–778 (2009) | Khác | |||
23. Garc´ıa, Y., Lassonde, M.: Representable monotone operators and limits of sequences of maxi- mal monotone operators. To appear in Set-Valued Analysis and its Applications | Khác | |||
24. Garc´ıa, Y., Lassonde, M., Revalski, J.P.: Extended sums and extended compositions of mono- tone operators. J. Convex Anal. 13, 721–738 (2006) | Khác |
TỪ KHÓA LIÊN QUAN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN