Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 204 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
204
Dung lượng
7,85 MB
Nội dung
ŀ Bộ Giáo Dục và Đào tạo ĐỀ THAM KHẢO Email: phukhanh@moet.edu.vn ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN - khối A. Ngày thi : 07.03.2010 (Chủ Nhật ) ĐỀ 02 I. PHẦN BẮT BUỘC ( 7,0 điểm ) Câu I : ( 2 điểm ) Cho hàm số : 3 2 3 9y x x x m= − − + , m là tham số thực . 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi 0m = . 2. Tìm tất cả các giá trị của tham số m để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt có hoành độ lập thành cấp số cộng. Câu II: ( 2 điểm ) 1. Giải phương trình ( ) ( ) ( ) 8 4 8 2 1 1 log 3 log 1 3 log 4 2 4 x x x+ + − = . 2. Giải phương trình: 2 2 1 1 cos sin 4 3 2 2 x x + = . Câu III: ( 1 điểm ) Tính tích phân: 4 2 6 t n cos 1 cos a x I dx x x π π = + ∫ . Câu IV: ( 1 điểm ) Cho tứ diện ABCD có 2 2 , 0 2 AB CD x x = = < < và 1AC BC BD DA= = = = . Tính thể tích tứ diện ABCD theo x .Tìm x để thể tích này lớn nhất và tính giá trị lớn nhất đó. Câu V: ( 1 điểm ) Tìm các giá trị của tham số thực m để phương trình 2 3 2 3 1 2 2 1x x x m− − + + = có nghiệm duy nhất thuộc đoạn 1 ;1 2 − . II. PHẦN TỰ CHỌN ( 3,0 điểm ) Thí sinh chỉ được làm một trong hai phần ( phần 1 hoặc 2 ). 1. Theo chương trình Chuẩn : Câu VI.a ( 2 điểm ) 1. Tìm tham số thực m sao cho đường thẳng ( ) ( ) : 2 1 1d x y z= − = + cắt mặt cầu 2 2 2 ( ) : 4 6 0S x y z x y m+ + + − + = tại 2 điểm phân biệt ,M N sao cho độ dài dây cung 8 MN = . 2. Trong mặt phẳng Oxy , cho đường thẳng ( )d có phương trình: 2 5 0x y− − = và hai điểm ( ) 1;2A , ( ) 4;1B . Viết phương trình đường tròn có tâm thuộc đường thẳng ( )d và đi qua hai điểm ,A B . Câu VII.a ( 1 điểm ) Với n là số tự nhiên, chứng minh đẳng thức: ( ) ( ) 0 1 2 3 1 1 2. 3. 4. . . 1 . 2 .2 n n n n n n n n n C C C C n C n C n − − + + + + + + + = + . 2. Theo chương trình Nâng cao : Câu VI.b ( 2 điểm ) 1. Tìm tham số thực m sao cho đường thẳng ( ) ( ) : 2 1 1d x y z= − = + tiếp xúc mặt cầu 2 2 2 ( ) : 4 6 0S x y z x y m+ + + − + = . 2. Tìm trên đường thẳng ( )d : 2 5 0x y− − = những điểm M sao cho khoảng cách từ M đến đường thẳng 2 5 0x y + + = bằng 5 . Câu VII.b ( 1 điểm ) Với n là số tự nhiên, giải phương trình: ( ) ( ) 0 1 2 3 1 2. 3. 4. . . 1 . 128. 2 n n n n n n n n C C C C nC n C n − + + + + + + + = + . Cán Bộ coi thi không giải thích gì thêm . I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH ( 7,0 điểm ) Câu I : ( 2 điểm ) Cho hàm số : 3 2 3 9y x x x m= − − + , m là tham số thực . 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi 0 m = .Học sinh tự làm . 2. Tìm tất cả các giá trị của tham số m để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt có hoành độ lập thành cấp số cộng. Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt có hoành độ lập thành cấp số cộng ⇔ Phương trình 3 2 3 9 0x x x m− − + = có 3 nghiệm phân biệt 1 2 3 , , x x x lập thành cấp số cộng ⇔ Phương trình ( ) 3 2 3 9 0 *x x x m− − + = có 3 nghiệm phân biệt 1 2 3 , , x x x thỏa mãn : ( ) 1 3 2 2 1 x x x+ = mà ( ) 1 3 2 3 2x x x + + = . Từ ( ) 1 , ( ) 2 suy ra 2 1x = . 2 1x• = là nghiệm phương trình ( ) * nên ta có : 3 2 1 3.1 9.1 0 11m m− − + = ⇔ = 11m• = phương trình ( ) 3 2 * 3 9 11 0x x x⇔ − − + = có 3 nghiệm 1 2 3 , , x x x luôn thỏa điều kiện 1 3 2 2 x x x+ = . Vậy 11m = là tham số thực cần tìm . Ngoài cách giải trên hs có thể lựa chọn phương pháp cấp số cộng thuộc chương trình giải tích lớp 11 Chú ý : Do chương trình mới giảm tải bài điểm uốn của chương trình ban cơ bản , sự giảm tải này đã dẫn đến các bài toán về cấp số cộng , cấp số nhân khá hạn chế trong mỗi đề thi . Nếu xuất hiện bài toán về cấp số thì việc lựa chọn phương pháp giải liên quan điểm uốn đều không chấp nhận. Do đó học sinh cần lưu ý điều này. Câu II: ( 2 điểm ) 1. Giải phương trình 8 4 8 2 1 1 log ( 3) log ( 1) 3 log (4 ) 2 4 x x x+ + − = Điều kiện : 3 1 0 1 0 x x x x > − ≠ ⇔ < ≠ > Phương trình : ( ) 8 4 8 2 2 2 2 1 1 log ( 3) log ( 1) 3 log (4 ) log ( 3) log 1 log (4 ) * 2 4 x x x x x x+ + − = ⇔ + + − = TH1: 0 1x< < Phương trình : ( ) ( )( ) ( ) 2 2 * . log 3 1 log 4x x x ⇔ ⇔ + − + = . Hs tự giải TH2: 1x > Phương trình : ( ) ( )( ) ( ) 2 2 * . log 3 1 log 4x x x ⇔ ⇔ + − = ( ) 2 1 l 2 3 0 3. 3 x x x x x = − ⇔ − − = ⇔ ⇔ = = 2. Giải phương trình: 2 2 1 1 cos sin 4 3 2 2 x x + = . 2 2 2 1 cos 1 1 1 1 cos 2 3 cos sin 1 2 2 cos 1 cos 4 3 2 2 4 2 4 3 x x x x x x + − + = ⇔ + = ⇔ + + = − 2 3 2 2 cos 2 cos 3 2 2 2 cos 1 4 cos 3 cos 3 3 3 3 3 x x x x x ⇔ + = − ⇔ + − = − − 2 3 2 2 4 cos 2 4 cos 3 cos 0 cos 4 cos 4 cos 3 0 3 3 3 3 3 3 3 x x x x x x x ⇔ + − + − = ⇔ + − = ( ) cos 0 3 cos 0 3 1 33 3 2 cos 2 3 2 6 . 2 cos cos 3 3 3 3 3 cos 3 2 x x x k x x k x x x k k x l π π π π π π π π π = = = + = + ⇔ = ⇔ ⇔ ⇔ = ± + = ± + = = − Câu IV: ( 1 điểm ) Cho tứ diện ABCD có 2 2 , 0 2 AB CD x x = = < < và 1AC BC BD DA= = = = . Tính thể tích tứ diện ABCD theo x .Tìm x để thể tích này lớn nhất và tính giá trị lớn nhất đó. Đây là dạng toán trong sách bài tập hình học 12 . Học sinh tự vẽ hình Gọi ,I J lần lượt là trung điểm của các cạnh ,AB CD Dễ thấy 1 1 , . , . 3 3 ABCD AICD BICD AICD ICD BICD ICD V V V V AI dt V BI dt= + = = Hay : ( ) 1 1 , . . 3 2 ABCD ICD ICD V dt AI BI dt IJ CD= + = Dễ dàng chứng minh được IJ là đoạn vuông góc chung của ,AB CD Ta có : 2 2 2 2 1 2 ,IJ CI CJ x AI BI x= − = − = = 2 2 1 1 . . . 1 2 .2 . 1 2 2 2 ICD dt IJ CD x x x x⇒ = = − = − (đvdt). ( ) ( ) 2 2 2 1 1 2 . 1 2 . 1 2 3 3 3 ABCD ICD x V dt AI BI x x x x x= + = − + = − (đvtt). ( ) ( ) 3 2 2 2 2 2 2 2 2 1 2 2 2 2 2 . 1 2 . . 1 2 . 3 3 3 3 9 3 x x x x x x x x + + − − = − ≤ = Đẳng thức xảy ra khi : 2 2 2 3 1 2 3 x x x x= = − ⇔ = Vậy 2 max 9 3 ABCD V = (đvdt) khi 3 3 x = . Câu III: ( 1 điểm ) Tính tích phân: 4 2 6 t n cos 1 cos a x I dx x x π π = + ∫ . 4 4 4 2 2 2 2 6 6 6 2 t n t n t n 1 cos 1 cos cos t n 2 cos 1 cos a x a x a x I dx dx dx x x x a x x x π π π π π π = = = + + + ∫ ∫ ∫ . Đặt 2 1 t n . cos u a x du dx x = ⇒ = . Đổi cận : 1 6 3 1 4 x u x u π π = ⇒ = = ⇒ = Do đó ( ) 1 1 1 2 2 1 2 1 1 3 3 3 3 7 2 2 3 2 u I du d u u u − = = + = + = + ∫ ∫ Học sinh yếu hơn có thể đặt 2 2 2 2 u t u dt du u = + ⇒ = + . Câu V: ( 1 điểm ) Tìm các giá trị của tham số thực m để phương trình 2 3 2 3 1 2 2 1x x x m− − + + = có nghiệm duy nhất thuộc đoạn 1 ;1 2 − . 2 3 2 3 1 2 2 1 ,x x x m m R− − + + = ∈ . Xét hàm số : ( ) 2 3 2 3 1 2 2 1f x x x x= − − + + xác định và liên tục trên đoạn 1 ;1 2 − . Ta có : ( ) 2 2 3 2 2 3 2 3 3 4 3 3 4 ' 1 2 1 1 2 1 x x x x f x x x x x x x x + + = − − = − + − + + − + + . ; ∀ ∈ − 1 1 2 x ta có 2 3 2 4 3 3 4 3 4 0 0 3 1 2 1 x x x x x x + > − ⇒ + > ⇒ + > − + + . Vậy: ( ) ' 0 0f x x= ⇔ = . Bảng biến thiên: ( ) ( ) 1 0 1 2 ' | 0 || 1 3 3 22 2 4 x f x f x − + − − − Phương trình đã cho có 1 nghiệm duy nhất thuộc 1 ;1 2 − 3 3 22 4 2 m − ⇔ − ≤ < hoặc 1m = . II. PHẦN RIÊNG ( 3,0 điểm ) Ban cơ bản và nâng cao có cùng đáp án. Câu VI.a ( 2 điểm ) 1. Tìm tham số thực m sao cho đường thẳng ( ) ( ) : 2 1 1d x y z= − = + cắt mặt cầu 2 2 2 ( ) : 4 6 0S x y z x y m+ + + − + = tại 2 điểm phân biệt ,M N sao cho độ dài dây cung 8MN = . 2 2 2 2 2 2 ( ) : 4 6 0 ( ) :( 2) ( 3) 13S x y z x y m S x y z m+ + + − + = ⇔ − + − + = − có tâm ( ) 2;3;0I , bán kính 13 , 13R IN m m= = − < Dựng 4IH MN MH HN⊥ ⇒ = = 2 2 13 16 3, 3IH IN HN m m m⇒ = − = − − = − − < − và ( ) ( ) ;I d IH d= ( ) d luôn đi qua ( ) 0;1; 1A − và có vectơ chỉ phương 1 1 1; ; 1 (2; 1; 2) 2 2 u = = ( 2; 2; 1); [ ; ] (3; 6; 6)AI AI u= − = − ( ) ( ) 2 2 2 ; 2 2 2 [ ; ] 3 6 6 81 3. 9 2 1 2 I d AI u d u + + ⇒ = = = = + + ( ) ( ) ; 3 3 3 9 12 I d IH d m m m= ⇔ − − = ⇔ − − = ⇔ = − Vậy 12m = − thỏa mãn yêu cầu bài toán . 2. Trong mặt phẳng Oxy , cho đường thẳng ( )d có phương trình: 2 5 0x y− − = và hai điểm (1;2)A , (4;1)B . Viết phương trình đường tròn có tâm thuộc đường thẳng ( )d và đi qua hai điểm ,A B . Phương trình đường trung trực của AB là 3 6 0x y− − = . Tọa độ tâm I của đường tròn là nghiệm của hệ: ( ) 2 5 1 1; 3 5 3 6 3 x y x I R IA x y y − = = ⇔ ⇒ − ⇒ = = − = = − Phương trình đường tròn là ( ) ( ) 2 2 1 3 25x y− + + = . Câu VII.a ( 1 điểm ) Với n là số tự nhiên, chứng minh đẳng thức: 0 1 2 3 1 1 2. 3. 4. . . ( 1). ( 2).2 n n n n n n n n n C C C C n C n C n − − + + + + + + + = + . Ta có : ( ) 0 1 2 2 3 3 1 1 1 . . n n n n n n n n n n n x C C x C x C x C x C x − − + = + + + + + + Nhân vào hai vế với x ∈ ℝ , ta có: ( ) 0 1 2 2 3 3 4 1 1 1 . . n n n n n n n n n n n x x C x C x C x C x C x C x − + + = + + + + + + Lấy đạo hàm hai vế ta được: ( ) 0 1 2 2 3 3 1 1 2 3 4 . 1 n n n n n n n n n n C C x C x C x nC x n C x − − + + + + + + + ( ) ( ) ( ) ( ) 1 1 1 1 1 1 . n n n n x x x x nx x − − = + + + = + + + Thay 1x = , ta được kết quả : 0 1 2 3 1 1 2. 3. 4. . . ( 1). ( 2).2 n n n n n n n n n C C C C n C n C n − − + + + + + + + = + Một bài toán giải thế này đúng chưa ? Cho nhị thức 95 2 3 y x y x + , có bao nhiêu số hạng trong dãy mà số mũ của x chia hết số mũ của y . Cho nhị thức 95 2 3 y x y x + , có bao nhiêu số hạng trong dãy mà số mũ của x chia hết số mũ của y ( ) 95 2 2 95 95 95 3 3 3.95 4. 95 95 95 0 0 . , 0 95 i i i i i i i i y y x y C x y C x y i x x − − + = = + = = ≤ ≤ ∑ ∑ . Số mũ của của x chia hết số mũ của y , khi đó tồn tại số nguyên t sao cho ( ) ( ) ( ) 4 95 3 * t i t + = − 4t• = − thì ( ) * vô nghiệm . 4t• ≠ − thì ( ) ( ) 95 3 * , 0 95 0,1,2,3 4 t i i t t − ⇒ = ≤ ≤ ⇒ = + . 95.3 0 4 t i+ = ⇒ = loại . 95.2 1 38 5 t i+ = ⇒ = = nhận , số hạng cần tìm là 38 133 133 95 .C x y . 95 2 6 t i+ = ⇒ = loại . 3 0t i+ = ⇒ = nhận , số hạng cần tìm là 0 258 95 95 .C x y . Vậy có hai số hạng thỏa mãn bài toán : 0 258 95 95 .C x y và 38 133 133 95 .C x y . ŀ Bộ Giáo Dục và Đào tạo ĐỀ THAM KHẢO Email: phukhanh@moet.edu.vn ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN - khối A. Ngày thi : 28.02.2010 (Chủ Nhật ) ĐỀ 01 I. PHẦN BẮT BUỘC ( 7,0 điểm ) Câu I : ( 2 điểm ) Cho hàm số : + = − 3 1 x y x , có đồ thị là ( ) C . 1. Khảo sát sự biến thiên và vẽ đồ thị ( ) C của hàm số . 2. Cho điểm ( ) ( ) ∈ 0 0 0 ; M x y C . Tiếp tuyến của ( ) C tại 0 M cắt các đường tiệm cận của ( ) C tại các điểm , A B . Chứng minh 0 M là trung điểm của đoạn AB . Câu II: ( 2 điểm ) 1. Giải phương trình : 2 6 4 2 4 2 2 4 x x x x − + − − = + 2. Giải phương trình : 3 3 sin .sin 3 cos cos 3 1 8 t n t n 6 3 x x x x a x a x π π + = − − + Câu III: ( 1 điểm ) Tính tích phân − = + + ∫ 3 1 2 0 2 2 dx I x x Câu IV: ( 1 điểm ) Cho tứ diện OABC có đáy OBC là tam giác vuông tại O , ,OB a= ( ) 3, 0 . OC a= > và đường cao = 3 OA a . Gọi M là trung điểm của cạnh BC . Tính khoảng cách giữa hai đường thẳng ,AB OM . Câu V: ( 1 điểm ) Cho 3 số thực dương , , x y z thỏa mãn 1 1 1 1 x y z x y z + + = . Tìm giá trị lớn nhất của biểu thức 2 2 1 1 1 1 y x z P x y z − = + + + + + II. PHẦN TỰ CHỌN ( 3,0 điểm ) Thí sinh chỉ được làm một trong hai phần ( phần 1 hoặc 2 ). 1. Theo chương trình Chuẩn : Câu VI.a ( 2 điểm ) Trong không gian với hệ trục tọa độ Oxyz 1. Cho 4 điểm ( ) ( ) ( ) ( ) 1;0;0 , 0; 1;0 , 0;0;2 , 2; 1;1A B C D − − . Tìm vectơ ' 'A B là hình chiếu của vectơ AB lên CD . 2. Cho đường thẳng : ( ) 2 : 1 2 2 x y z d − = = và mặt phẳng ( ) : 5 0P x y z− + − = . Viết phương trình tham số của đường thẳng ( ) t đi qua ( ) 3; 1;1A − nằm trong ( ) P và hợp với ( ) d một góc 0 45 . Câu VII.a( 1 điểm ) Một giỏ đựng 20 quả cầu. Trong đó có 15 quả màu xanh và 5 quả màu đỏ. Chọn ngẫu nhiên 2 quả cầu trong giỏ.Tính xác suất để chọn được 2 quả cầu cùng màu ? 2. Theo chương trình Nâng cao : Câu VI.b ( 2 điểm ) Trong không gian với hệ trục tọa độ Oxyz 1. Cho 3 điểm ( ) ( ) 0;1; 0 , 2;2;2A B và đường thẳng ( ) 1 2 3 : 2 1 2 x y z d − + − = = − . Tìm điểm ( ) ∈ M d để diện tích tam giác ABM nhỏ nhất. 2. Cho hai đường thẳng ( ) 1 1 2 : 2 3 2 x y z d + − − = = − và ( ) 2 2 ' : 1 2 2 x y z d − + = = − . Chứng minh ( ) d vuông góc với ( ) ' d , viết phương trình đường vuông góc chung của ( ) d và ( ) 'd . Câu VII.b ( 1 điểm ) Cho khai triển ( ) 1 3 1 2 2 8 1 log 3 1 log 9 7 5 2 2 x x − − − + + + . Hãy tìm các giá trị của x biết rằng số hạng thứ 6 trong khai triển này là 224 . …………………………….Cán bộ coi thi không giải thích gì thêm ……………………………………… . I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH ( 7,0 điểm ) Câu I : ( 2 điểm ) Cho hàm số : + = − 3 1 x y x , có đồ thị là ( ) C . 1. Khảo sát sự biến thiên và vẽ đồ thị ( ) C của hàm số . 2. Cho điểm ( ) ( ) ∈ 0 0 0 ; M x y C . Tiếp tuyến của ( ) C tại 0 M cắt các đường tiệm cận của ( ) C tại các điểm ,A B . Chứng minh 0 M là trung điểm của đoạn AB . Câu II: ( 2 điểm ) 1. Giải phương trình : 2 6 4 2 4 2 2 4 x x x x − + − − = + Điều kiện : 2 2x− ≤ ≤ 2 2 6 4 6 4 6 4 2 4 2 2 2 4 2 2 4 4 x x x x x x x x x − − − + − − = ⇔ = + + − + + ( ) 2 1 1 2 3 2 0 2 4 2 2 4 x x x x ⇔ − − = + + − + 2 2 2 3 3 4 2(2 )(2 ) (2 )( 4) 0 2 4 2 2 4 x x x x x x x x x = = ⇔ ⇔ + − + − + = + + − = + 2 2 3 3 2 2 (4 2(2 ) ( 4) 2 ) 0 x x x x x x x = = ⇔ ⇔ = − + + + − = 2. Giải phương trình : 3 3 sin .sin 3 cos cos 3 1 8 t n t n 6 3 x x x x a x a x π π + = − − + Điều kiện : sin sin cos cos 0 6 3 6 3 x x x x π π π π − + − + ≠ Ta có : t n t n t n cot 1 6 3 6 6 a x a x a x x π π π π − + = − − = − Phương trình : 3 3 3 3 sin .sin 3 cos cos 3 1 1 sin .sin 3 cos cos 3 8 8 t n t n 6 3 x x x x x x x x a x a x π π + = − ⇔ + = − + 1 cos2 cos 2 cos 4 1 cos2 cos2 cos 4 1 2 2 2 2 8 x x x x x x− − + + ⇔ ⋅ + ⋅ = 3 1 1 1 2(cos2 cos2 cos 4 ) cos 2 cos2 2 8 2 x x x x x⇔ + = ⇔ = ⇔ = -4 -2 2 4 -4 -2 2 4 x y M A B (không ) 6 6 x k thoa x k π π π π = + ⇔ = − + . Vậy phương trình cho có họ nghiệm là 6 x k π π = − + Câu III: ( 1 điểm ) Tính tích phân − = + + ∫ 3 1 2 0 2 2 dx I x x − − = = + + + + ∫ ∫ 3 1 3 1 2 2 0 0 2 2 1 ( 1) dx dx I x x x Đặt π π + = ∈ − ⇒ = + 2 1 t n , ; (t n 1) 2 2 x a t t dx a x dt Đổi cận : π π = ⇒ = = − ⇒ =0 , 3 1 . 4 3 x t x t π π π π π π π + = = = − = + ∫ ∫ 3 3 2 2 4 4 t n 1 . 3 4 12 1 t n a t I dt dt a t Câu IV: ( 1 điểm ) Cho tứ diện OABC có đáy OBC là tam giác vuông tại O , ( ) = = > , 3, 0 .OB a OC a và đường cao = 3OA a . Gọi M là trung điểm của cạnh BC . Tính khoảng cách giữa hai đường thẳng ,AB OM . Chọn hệ trục tọa độ như hình vẽ. Khi đó O(0;0;0), (0;0; 3), ( ;0;0), (0; 3;0),A a B a C a 3 ; ; 0 2 2 a a M , gọi N là trung điểm của AC ⇒ 3 3 0; ; 2 2 a a N . MN là đường trung bình của tam giác ABC ⇒ AB // MN ⇒ AB //(OMN) ⇒ d(AB;OM) = d(AB;(OMN)) = d(B;(OMN)). 3 3 3 ; ; 0 , 0; ; 2 2 2 2 a a a a OM ON = = ( ) 2 2 2 2 2 3 3 3 3 3 [ ; ] ; ; 3; 1; 1 4 4 4 4 4 a a a a a OM ON n = = = , với ( 3; 1; 1)n = . Phương trình mặt phẳng (OMN) qua O với vectơ pháp tuyến : 3 0n x y z+ + = Ta có: 3. 0 0 3 15 ( ; ( )) 5 3 1 1 5 a a a d B OMN + + = = = + + . Vậy, 15 ( ; ) . 5 a d AB OM = Câu V: ( 1 điểm ) Cho 3 số thực dương , ,x y z thỏa mãn 1 1 1 1 x y z x y z + + = . Tìm giá trị lớn nhất của biểu thức 2 2 1 1 1 1 y x z P x y z − = + + + + + Ta có : 1 1 1 1 . . . 1x y y z z x x y z x y z + + = ⇔ + + = . Điều này gợi ý ta đưa đến hướng giải lượng giác . Đặt tan , tan , tan 2 2 2 A B C x y z= = = Nếu , , (0; ),A B C A B C π π ∈ + + = thì t n t n t n t n t n t n 1. 2 2 2 2 2 2 A B B C C A a a a a a a+ + = Khi đó 2 sin sin cos 2 cos cos 2 cos 1 2 2 2 C A B C P A B C − = + − = − + 2 2 1 1 3 2(cos cos ) 1 cos 2 2 2 2 2 2 C A B A B P − − = − − + + ≤ Vậy 3 max 2 P = khi 2 2 2 3 tan 3 12 2 3 3 6 C x y A B z π π π − = = = = ⇔ + = = = II. PHẦN RIÊNG ( 3,0 điểm ) Thí sinh chỉ được làm một trong hai phần ( phần 1 hoặc 2 ). 1. Theo chương trình nâng cao : Câu VI.b ( 2 điểm ) 1. Trong không gian với hệ trục tọa độ Oxyz cho ( ) ( ) ( ) −0;1; 0 , 2;2;2 , 2; 3;1A B C và đường thẳng ( ) = + = − − = + 1 2 : 2 3 2 x t d y t z t . Tìm điểm ( ) ∈M d để diện tích tam giác ABN nhỏ nhất. ∈ ⇒ + − − +( ) (1 2 ; 2 ; 3 2 ).M d M t t t = = − ⇒ = − − = − − = − = − (2; 1; 2), ( 2; 2;1) [ ; ] ( 3; 6; 6) 3(1; 2; 2) 3. , (1; 2; 2)AB AC AB AC n n Mặt phẳng ( ) ABC qua ( ) 0;1; 0A và có vecto pháp tuyến = − (1; 2; 2)n nên có phương trình + − − =2 2 2 0x y z = = − + − + = 2 2 2 1 1 9 [ ; ] ( 3) ( 6) 6 , 2 2 2 ABC S AB AC + + − − − + − − − = = = + + 1 2 2( 2 ) 2(3 2 ) 2 4 11 ( ( )) 3 1 4 4 t t t t MH d M ABC + = ⇔ = = ⇔ + = ⇔ = − = − 4 11 1 9 5 17 3 . . 3 4 11 6 hay . 3 2 3 4 4 MABC t V V t t t Vậy − − − 3 3 1 15 9 11 ; ; hay ; ; 2 4 2 2 4 2 M M là tọa độ cần tìm. 2. Cho hai đường thẳngờ ( ) 1 1 2 : 2 3 2 x y z d + − − = = − và ( ) 2 2 ' : 1 2 2 x y z d − + = = − . Chứng minh ( ) d vuông góc với ( ) 'd , viết phương trình đường vuông góc chung của ( ) d và ( ) 'd . Câu VII.b ( 1 điểm ) Cho khai triển ( ) 1 3 1 2 2 8 1 log 3 1 log 9 7 5 2 2 x x − − − + + + . Hãy tìm các giá trị của x biết rằng số hạng thứ 6 trong khai triển này là 224 . Ta có : ( ) 8 8 8 8 0 k k k k k a b C a b = − = + = ∑ với ( ) ( ) ( ) 1 3 1 2 2 1 1 1 log 3 1 log 9 7 1 1 3 5 5 2 = 9 7 ; 2 3 1 x x x x a b − − − − + + − − = + = = + + Theo thứ tự trong khai triển trên , số hạng thứ sáu tính theo chiều từ trái sang phải của khai triển là ( ) ( ) ( ) ( ) 3 5 1 1 1 5 1 1 1 1 3 5 6 8 9 7 . 3 1 56 9 7 . 3 1 x x x x T C − − − − − − = + + = + + [...]... 3: Hiệu suất lượng tử(là tỉ số giữa các electron thốt ra khỏi Katod và số photon chiếu lên nó) Phương Un * H= It e Pt ne np 2 CÁC DẠNG BÀI TẬP VẬT LÝ 12 I Pe , P là cơng suất nguồn bức xạ , I cường độ dòng quang điện bảo hồ Dạng 4 : Chuyển động electron trong điện trường đều và từ trường đều F me * Trong điện trường đều : gia tốc của electron a eE me * Trong từ trường đều : lực Lorentz đóng vai trò... 3 : Phương pháp gia trọng biểu kiến + Con lắc chịu thêm tác dụng của lực lạ f ( lực qn tính, lực đẩy Archimeder, lực điện trường ) , ta xem con lắc dao động tại nơi có gia tốc trọng lực biểu kiến g ' f m g l g' + Căn cứ vào chiều của f và g tìm giá trị của g ' Chu kỳ con lắc là T = 2 l g' + Con lắc đơn đặt trong xe chuyển động với gia tốc a = const : T = 2 con lắc tan = g' xuống dốc lấy dấu - ) ,... 9 ði u ki n đ phương trình có nghi m trong kho ng (a; b) a) ð nh lý 1 Hàm s f(x) liên t c trên [a; b] th a f(a).f(b) < 0 thì phương trình f(x) = 0 có nghi m trong (a; b) (ngư c l i khơng đúng) b) ð nh lý 2 Bư c 2 ð t t = x ± Hàm s f(x) liên t c trên [a; b] và có f / (x) > 0 (ho c f / (x) < 0 ) trong kho ng (a, b) thì phương trình f(x) = 0 có khơng q 1 nghi m trong (a, b) II PHƯƠNG TRÌNH VÀ B T PHƯƠNG... khi l min Dạng 4 : Cắt , ghép lò xo + Cắt : k1l1 k 2l2 k nln 1 k + Ghép nối tiếp : 1 k1 1 k2 + Ghép song song : k = k1 l k2 Dạng 5 : Con lắc quay + Tạo nên mặt nón có nửa góc ở đỉnh là + Vận tốc quay (vòng/s) N = 1 2 , khi P Fđh Fht + Nếu lò xo nằm ngang thì Fđh g l cos + Vận tốc quay tối thi u để con lắc tách rời khỏi trục quay 1 2 N g l Dạng 6 : Tổng hợp nhiều dao động điều hồ cùng phương ,cùng tần... ta dùng cơng th c bi n đ i đ đưa v các d ng đã bi t cách gi i III GI I TỐN TRONG TAM GIÁC 1 Liên h các góc trong tam giác ABC A = π − (B + C) 1) A + B + C = π ⇒ B = π − (C + A) C = π − (A + B) A π B+C = − 2 2 2 B A+B+C π = π−C+A 2) = ⇒ 2 2 2 2 2 C π A+B = − 2 2 2 2 Các đ nh lý trong tam giác ABC Trong ∆ABC , ta ký hi u: 4) ma, mb, mc l n lư t là đ dài các trung tuy n xu t... s 0 cos( t s2 , với a g + Con lắc treo trên xe chuyển động trên dốc nghiêng góc + Tính s 0 = l cos g 2 y từ điều kiện ban đầu : s 0 A cos và v0 A sin v0 tan s0 Thường dùng s0 và v0 >0 (hay v0 . KHẢO Email: phukhanh@moet.edu.vn ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN - khối A. Ngày thi : 07.03 .2010 (Chủ Nhật ) ĐỀ 02 I. PHẦN BẮT. phukhanh@moet.edu.vn ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN - khối A. Ngày thi : 28.02 .2010 (Chủ Nhật ) ĐỀ 01 I. PHẦN BẮT BUỘC ( 7,0 điểm )