Solution manual for thomas calculus multivariable 13th edition by thomas

24 37 0
Solution manual for thomas calculus multivariable 13th edition by thomas

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ CHAPTER 10 10.1 INFINITE SEQUENCES AND SERIES SEQUENCES a1  121  0, a2  122   14 , a3  123   92 , a4  124   16  1, a  a1  1! 2!  12 , a3  ( 1)2 3!  16 , a4  ( 1)3 4!  24 ( 1) ( 1)5 a1  21  1, a2  41   13 , a3  61  15 , a4  81   71 a1   (1)1  1, a2   (1)2  3, a3   (1)3  1, a4   (1)4  a1  22  12 , a2  a1  21 22 23  12 , a2  22 1 22  34 , a3  a1 1, a2   12  23 , a3  32  a9  511 , 256 , 362,880 a10   12   , 23 1 23 24 25  24 1 24  78 , a4   74 , a4  74  23 15  16  15 , a5  15  8 31 , a   16 24 63 , 32 255 , a7  127 , a8  128 64 ( 1)2 (2)  1, a9  128 , a10 1( 2) a9   92 , a4   16   , 24 a5   241   , 120 a6  , 720 a7  , 5040 a8  , 40,320 3,628,800 a1  2, a2  , a8   64 22  12 , a4  a10  1023 512 a1  1, a2  12 , a3  a9  23 24  12 , a3  a3   ( 1)3 (1)   12 , a4     1, ( 1)4  12 a5     1, ( 1)5  14 , a  , a6  16 32 256 10 a1  2, a2   1, a3  a8   14 , a10   15 2( 1)   32 , a4    1, 3  23 a5    2, 4  12 5 a6   13 , a7   72 , 11 a1  1, a2  1, a3    2, a4    3, a5    5, a6  8, a7  13, a8  21, a9  34, a10  55 12 a1  2, a2  1, a3   12 , a4    12   , 1 a5   12   1,   12  a6  2, a7  2, a8  1, a9   12 , a10  13 an  (1)n 1 , n  1, 2,  14 an  (1)n , n  1, 2,  15 an  (1)n 1 n , n  1, 2,  16 an  ( 1)n 1 n2 , n  1, 2,  Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ 701 Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ 702 Chapter 10 Infinite Sequences and Series 17 an  2n 1 , 3( n  2) 18 an  n2(nn51) , n  1, 2,  n  1, 2,  19 an  n  1, n  1, 2,  20 an  n  4, n  1, 2,  21 an  4n  3, n  1, 2,  22 an  4n  2, n  1, 2,  23 an  3n  , n! 25 an  1 ( 1)n 1 , n  1, 2,    27 n  1, 2,  29 lim 1 n  lim n 1 2n n 30 lim 2n 1  lim lim 31 15n 4 n n 8n  lim 32 lim n 3 n n 5n   lim 33 n  n 1 n 1 n  lim 34 lim 1n n 70  n 38  lim n 2 n  1, 2,  n n   5  4 n  n 1 n    5  converges n3 n ( n 3)( n  2)  ( n 1)( n 1) n 1 n   n  2 lim  n  n  70    n2  n n   lim   converges  lim (n  1)    diverges n    diverges  36   lim (1) n  1n does not exist  diverges n  n2n1  1  1n   nlim    1  1n   12  converges  2 n  lim  n  21    n  , converges lim  (1)n does not exist  diverges n n  12  ( 1)n      diverges  3  n n lim n  1, 2,  (Theorem 5, #4)  1n 2  lim 2  1   1n  n n 13 n lim n3 , 5n 1  ( 1)n   lim 1  n    converges n    n  ( 1)n n n 37 26 an  lim  (0.1)n   converges n 28 35 24 an  2n 3     converges 2n 39 ( 1) n 1 n n 1 lim   converges Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ Section 10.1 Sequences 40   n 41 lim 42 43 44 45 46 lim  12 n 2n n  n 1   lim  10  n n n (0.9)  lim lim    converges 2n n  2n n 1 n ( 1)n  lim n   lim  21    converges  n  n     diverges    lim sin 2  1n  sin  lim 2  1n   sin 2   converges  n   n lim n cos (n )  lim (n )(1)n does not exist  diverges n n  lim sin n n lim sin n 2n n n  because  47 lim nn n  lim 48 3n n n  lim 49 ln ( n 1) n n  lim 50 ln n n ln 2n  1n    n  22n  lim n n  ln 3n ln n 3n lim lim sin n n  n sin n 2n  2n  because  1n  n   converges by the Sandwich Theorem for sequences  converges by the Sandwich Theorem for sequences ˆ   converges (using l'Hopital's rule) 3n (ln 3)2 6n n  lim  n11     n  lim n n  n 1 lim 3n (ln 3)3 n  lim  lim n  ˆ    diverges (using l'Hopital's rule)     converges n 1 1n   converges lim 81 n   converges (Theorem 5, #3) lim (0.03)1 n   converges (Theorem 5, #3) 53 lim  7n  n  n  e7  converges (Theorem 5, #5) 54  n  n ( 1)  lim 1  n   e1  converges  n   51 52 55 n n lim  1n lim n n n 10n  lim 101 n  n1 n  1   converges n  (Theorem 5, #5) (Theorem 5, #3 and #2) Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ 703 Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ 704 56 57 Chapter 10 Infinite Sequences and Series lim   n  lim n n  12   converges n n n lim 31 n 1n lim n3  n  n  11   converges lim n n  (Theorem 5, #2) (Theorem 5, #3 and #2) n  58 59 60 61 62 lim (n  4)1 ( n  4)  lim x1 x   converges; (let x  n  4, then use Theorem 5, #2) n lim x  ln n 1n n n lim n1 n  1    diverges (Theorem 5, #2)   lim  ln n  ln (n  1)  lim ln nn1  ln  lim nn1   ln   converges n  n  n lim n 4n n  lim n n  1   converges n lim n n n 1 n 64 ( 4) n n n ! 65 lim n6!n n 10  lim n  66 lim nn !n n 67 1 n n n        lim exp n  n n!          n (Theorem 5, #6)    diverges  lim exp  ln n ln    ln  lim  1n  n 6n2 (3n 1)(3n 1)  (Theorem 5, #6) n   ln e   converges  3n 1 3n 1   exp  (Theorem 5, #6) ln 1 ln n exp  ln n   e1  converges  n1    nlim      lim exp n ln n (Theorem 5, #3)  lim 1n  and nn!   lim nn!   converges n n n n    diverges n      n n    n!  3n 1 n n 3n 1 lim 106  lim lim ln  1n n 123( n 1)( n ) nnnnn  lim (ln n ) lim n   converges lim (Theorem 5, #2)  lim 32 (1 n )  lim 32  31 n  1   converges n lim nn! n n 69 n  n  63 68 lim ln n   3   ln (3n 1) ln (3n 1)   3n 1  3n 1   lim exp   lim exp       n  n   n     n2     e2  converges Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ (Theorem 5, #5) Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ Section 10.1 Sequences 70   n lim nn1 n    n n 1  lim exp n ln n   705 1   ln n ln ( n 1)      lim exp    lim exp  n n 1   n   n   n    12     n   lim exp  n (nn 1)  e1  converges n  71   1/ n xn n n 1 lim  lim x n  2n11  1/ n  x lim exp n  2   ln(2n 1) exp  exp   1n ln  2n11   x nlim   x nlim  n    2n    xe0  x, x   converges 72  lim  n  n2 n     lim exp n ln  n  n2  ln 1      1    lim exp   n    lim exp   n   n    lim exp     n      n n n   n2        e0   converges 73 n n lim 3 n6 n n ! n 74  1011  n n n    11  10 12  lim 36n !   converges n  1211   1011  n n n n n  12     12   11  11 10 11 12 n 75 lim (Theorem 5, #6) n  120 121  0 n n  108  1 110 n n  lim  lim n e  e n n e 1 n 2e n  n   ln n  ln n lim sinh (ln n)  lim e 2e  lim n    diverges n n  n 77 lim 79 80 (Theorem 5, #4) n n 2n 2n lim n  lim en e n  lim e2 n 1  lim 2e2 n  lim   converges 76 78 converges n sin  1n   2n 1 n lim sin  n1  n     n n2   lim      cos n  n n2     lim     3  n n  n  n1    2  n2   cos converges   1cos 1n   lim sin  n   n2   lim sin   converges lim n  cos 1n  lim n   n n n n  1  lim n   n sin    lim n n 1n lim  n n  n sin   2 n  n    lim n n cos     n  n  n3 2 n3     lim cos n     cos   converges n  3n ln 3 5n ln   ln  3n 5n   n n  n n n   lim exp  ln  exp    lim exp  1   nlim n   n  n            3n  ln 3 ln   3n  n   lim exp    ln 3 ln   exp(ln 5)   lim exp    n n   1  n n    35  1    5n   Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ 2 n n 1 Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ 706 81 Chapter 10 Infinite Sequences and Series lim tan 1 n  2  converges 82 n lim tan 1 n   2   converges n n   83 n  n  n  lim  13    lim  13     converges n  2n  n   84  ln  n  n   n  n  lim exp  n   lim exp 22n 1  e0   converges n n n n   n 85 (ln n)200 n n  lim    n lim  ln n  86 87 88 lim n n 200 (ln n )199 n n   lim 200199 (ln n )198 n n    5 ln n 4     n   10 ln n   lim    lim  lim  n n  n  n n     lim n 1  n  n   lim  n      lim 200!   converges n  lim  lim  n  n2  n   lim  n  n2  n   n   n    n n  n (Theorem 5, #4) n2 1   n n   n2  n n2  n n  80 ln n  n    lim  n  n n n n2 n    lim n  n  n  n 1  n2  n n 1     lim 3840 n   converges n 1 1 1n  lim n 1 n  n 1 n   lim  converges 1 n    1 n1 n2  1n 1   2  converges 89 n1 n n x 90  n  ln n dx  lim n  lim 1n   converges n n  n xp dx  lim  11 p p11   lim 11p p11   p11 if p   converges  n x n n  lim lim   n (Theorem 5, #1) 72 n  1 an 91 Since an converges  lim an  L  lim an 1  lim n  n  L  172  L(1  L)  72 L  L2  L  72   L  9 or L  8; since an  for n   L  92 Since an converges  lim an  L  lim an 1  lim n  n an  n  an  L L6 L2  L( L  2)  L   L2  L    L  3 or L  2; since an  for n   L  93 Since an converges  lim an  L  lim an 1  lim n  n n   2an  L   L  L2  L    L  2 or L  4; since an  for n   L  94 Since an converges  lim an  L  lim an 1  lim n  n n   2an  L   L  L2  L    L  2 or L  4; since an  for n   L  Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ Section 10.1 Sequences 5an  L  5L  L2  5L   L  or L  5; 95 Since an converges  lim an  L  lim an 1  lim n  n 707 n  since an  for n   L      96 Since an converges  lim an  L  lim an 1  lim 12  an  L  12  L  L2  25L  144  n  n n  L  or L  16; since 12  an  12 for n   L    97 an 1   a1 , n  1, a1  Since an converges  lim an  L  lim an 1  lim  a1  L   L1 n  n n n  n  L2  L    L   2; since an  for n   L   98 an 1   an , n  1, a1  Since an converges  lim an  L  lim an 1  lim  an  L   L n  n n  L2  L    L  12 ; since an  for n   L  12 99 1, 1, 2, 4, 8, 16, 32, …  1, 20 , 21 , 22 , 23 , 24 , 25 ,   x1  and xn  2n 2 for n  2 100 (a) 12  2(1)2  1, 32  2(2)2  1; let f (a, b)   a  2b    a  b   a  4ab  4b  2a  4ab  2b  2b  a ; a  2b  1  f (a, b)  2b2  a  1; a  2b   f (a, b)  2b  a  1 (b) rn2 2    a  2b a b 2 a  ab  4b2  a  ab  2b2  a b 2 In the first and second fractions, yn  n Let a b    a  2b  a b    1  r yn2 n  2 a  2b a b n f ( x)  x  2; the sequence converges to 1.414213562  (b) f ( x)  tan ( x)  1; the sequence converges to 0.7853981635  4 (c) f ( x)  e x ; the sequence 1, 0, 1, 2, 3, 4, 5, … diverges (b) (c) (d)  lim f  x   lim  n x n x  x  1 1 lim n tan  n   f (0)   1, 1 n lim n f    f  0x   f (0) x  f (0), where x  f ( x)  tan 1 x  lim n e1/ n   f (0)  e0  1, f ( x)  e x  n   lim n ln  2n  f (0)  1 2(0)  2, f ( x)  ln (1  x) n Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ a b  and b  n  and a  b  2b  2n   n  yn  n Thus, lim rn  102 (a) yn represent the (n  1) th fraction where for n a positive integer  Now the nth fraction is 101 (a)   n Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ 708 Chapter 10 Infinite Sequences and Series 2 103 (a) If a  2n  1, then b   a2    n 24n 1    2n  2n  12   2n2  2n, c   a2    2n  2n  12               4n  8n3  8n  4n    2n  2n  1  c  2n  2n  and a  b   2n  1  2n  2n (b) 104 (a)  a2  2 lim   a   a     lim 2n2  2n n  n 1 a  (2 n) lim  2n   or  lim exp n n    a2  2 lim   a   a    ln 2n 2n Stirling’s approximation  n n !  n n (b) 40 50 60 105 (a) lim ln n c n n  1n  c 1 n  cn nc a    2  21n   e0  1; n!   ne  n 2n , for large values of n n e c n cn  lim   lim sin   lim sin    ne   2n 1 (2n)  ne 14.71517765 18.39397206 22.07276647 0 (b) For all   0, there exists an N  e(ln  )  nc  1   4n2  4n   4n  8n3  4n   2    lim exp  22n   lim exp n    n n! 15.76852702 19.48325423 23.19189561  lim  nc c such that n  e(ln  ) c n  n     lim c  ln n   ln  c    ln nc  ln 1 0 106 Let {an } and {bn } be sequences both converging to L Define {cn } by c2 n  bn and c2 n 1  an , where n  1, 2, 3,  For all   there exists N1 such that when n  N1 then an  L   and there exists N such that when n  N then bn  L   If n   max{N1 , N }, then cn  L  , so {cn } converges to L      107 lim n1 n  lim exp 1n ln n  lim exp 1n  e0  n n n  108 lim x1 n  lim exp 1n ln x  e0  1, because x remains fixed while n gets large n n 109 Assume the hypotheses of the theorem and let  be a positive number For all  there exists an N1 such that when n  N1 then an  L      an  L    L    an , and there exists an N such that when n  N then cn  L      cn  L    cn  L   If n  max{N1 , N }, then L    an  bn  cn  L    bn  L    lim bn  L n 110 Let   We have f continuous at L  there exists  so that x  L    f ( x)  f ( L)   Also, an  L  there exists N so that for n  N , an  L   Thus for n  N , f (an )  f ( L)    f (an )  f ( L ) Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ Section 10.1 Sequences 709 3( n 1) 1 111 an 1  an  ( n 1) 1  3nn11  3nn24  3nn11  3n  3n  4n   3n2  6n  n    2; the steps are reversible so the sequence is nondecreasing; 3nn11   3n   3n    3; the steps are reversible so the sequence is bounded above by  2( n1) 3! (2n 3)! (2n5)! (2n 3)! (2n5)! ( n  2)! 112 an 1  an   ( n 1)!  ( n  2)!  ( n 1)!  (2n 3)!  ( n 1)!  (2n  5)(2n  4)  n  2;  ( n1) 1! the steps are reversible so the sequence is nondecreasing; the sequence is not bounded since (2 n  3)! ( n 1)!  (2n  3)(2n  2) (n  2) can become as large as we please 2n 13n 1 ( n 1)! n 1 n 1 n n ( n 1)!  n3!  n3n  n !    n  which is true for n  5; the steps are reversible so the sequence is decreasing after a5 , but it is not nondecreasing for all its terms; a1  6, a2  18, a3  36, 113 an 1  an  a4  54, a5  324  64.8  the sequence is bounded from above by 64.8 114 an 1  an   n21  n11   n2  1n  n2  n21  2 2n 1  2n  n ( n21)   2n11 ; the steps are reversible so the sequence is nondecreasing;  2n  1n   the sequence is bounded from above 115 an   1n converges because 1n  by Example 1; also it is a nondecreasing sequence bounded above by 116 an  n  1n diverges because n   and 1n  by Example 1, so the sequence is unbounded 117 an  2n 1 2n  1 118 an  2n 1 3n   1n ; since 1n  (by Example 1)  a nondecreasing sequence bounded above by  2n  23  n and   3n 2n 2n  0, the sequence converges; also it is ; the sequence converges to by Theorem 5, #4     119 an  (1)n  nn1 diverges because an  for n odd, while for n even an   1n converges to 2; it diverges by definition of divergence 120 xn  max {cos 1, cos 2, cos 3, , cos n} and xn 1  max {cos 1, cos 2, cos 3, , cos (n  1)}  xn with xn  so the sequence is nondecreasing and bounded above by  the sequence converges 121 an  an 1  1 2n n  1 2( n 1) n 1  n   2n  2n  n  2n  2n  n   n and thus the sequence is nonincreasing and bounded below by 1 n n  2;  it converges ( n 1) 1 122 an  an 1  nn1  n 1  n  2n   n  2n   and nn1  1; thus the sequence is nonincreasing and bounded below by  it converges Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ 710 123 Chapter 10 Infinite Sequences and Series 4n 1  3n 4n  4  34  n so an  an 1    34  n  4  34  n 1   34    34  n n 1 1 and   34  n  4; thus the sequence is nonincreasing and bounded below by  it converges         124 a1  1, a2   3, a3  2(2  3)   22  22   3, a  22  22     23  23  3,       a5   23  23  3   24  24  3,  , an  2n 1  2n 1   2n 1   2n 1     2n 1 (1  3)   2n  3; an  an 1  2n   2n 1   2n  2n 1   so the sequence is nonincreasing but not bounded below and therefore diverges 125 For a given  , choose N to be any integer greater than /  Then for n  N , sin n 1 sin n 0      n n n N 126 For a given  , choose N to be any integer greater than 1/ e Then for 1 n  N ,       n n N 127 Let  M  and let N be an integer greater than 1MM Then n  N  n  1MM  n  nM  M  n  M  nM  n  M (n  1)  nn1  M 128 Since M1 is a least upper bound and M is an upper bound, M1  M Since M is a least upper bound and M1 is an upper bound, M  M1 We conclude that M1  M so the least upper bound is unique ( 1)n 129 The sequence an   is the sequence 12 , 32 , 12 , 32 ,  This sequence is bounded above by clearly does not converge, by definition of convergence 130 Let L be the limit of the convergent sequence {an } Then by definition of convergence, for corresponds an N such that for all m and n, m  N  am  L    3, but it there and n  N  an  L  2 Now am  an  am  L  L  an  am  L  L  an  2  2   whenever m  N and n  N 131 Given an   0, by definition of convergence there corresponds an N such that for all n  N , L1  an   and L2  an   Now L2  L1  L2  an  an  L1  L2  an  an  L1      2 L2  L1  2 says that the difference between two fixed values is smaller than any positive number 2 The only nonnegative number smaller than every positive number is 0, so L1  L2  or L1  L2 132 Let k (n) and i (n) be two order-preserving functions whose domains are the set of positive integers and whose ranges are a subset of the positive integers Consider the two subsequences ak ( n) and ( n) , where ak ( n )  L1 , ( n)  L2 and L1  L2 Thus ak ( n )  ( n )  L1  L2  So there does not exist N such that for all m, n  N  am  an   So by Exercise 128, the sequence {an } is not convergent and hence diverges Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ Section 10.1 Sequences 711 133 a2 k  L  given an   there corresponds an N1 such that  2k  N1  a2 k  L    Similarly, a2k 1  L   2k   N  a2 k 1  L    Let N  max{N1 , N } Then n  N  an  L   whether n is even or odd, and hence an  L 134 Assume an  This implies that given an   there corresponds an N such that n  N  an     an    an    an     an  On the other hand, assume an  This implies that given an   there corresponds an N such that for n  N , an     an    an    an     an    xn  x xn  xn  a  x2  a xn2  a n f ( x)  x  a  f ( x)  x  xn 1  xn  2n x  xn 1    xn xn n (b) x1  2, x2  1.75, x3  1.732142857, x4  1.73205081, x5  1.732050808; we are finding the positive 2 135 (a) a number where x   0; that is, where x  3, x  0, or where x  136 x1  1, x2   cos (1)  1.540302306, x3  1.540302306  cos (1  cos (1))  1.570791601, x4  1.570791601  cos (1.570791601)  1.570796327  2 to decimal places After a few steps, the arc  xn 1  and line segment cos  xn 1  are nearly the same as the quarter circle 137-148 Example CAS Commands: Mathematica: (sequence functions may vary): Clear[a, n] a[n_ ] : n1/ n first25 Table[N[a[n]],{n, 1, 25}] Limit[a[n], n  8] The last command (Limit) will not always work in Mathematica You could also explore the limit by enlarging your table to more than the first 25 values If you know the limit (1 in the above example), to determine how far to go to have all further terms within 0.01 of the limit, the following Clear[minN, lim] lim Do[{diff  Abs[a[n]  lim], If[diff  01, {minN  n, Abort[]}]}, {n, 2, 1000}] minN For sequences that are given recursively, the following code is suggested The portion of the command a[n_ ]: a[n] stores the elements of the sequence and helps to streamline computation Clear[a, n] a[1] 1; a[n_ ] : a[n] a[n  1]  (1/5)n 1 first25 Table[N[a[n]],{n, 1, 25}] Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ 712 Chapter 10 Infinite Sequences and Series The limit command does not work in this case, but the limit can be observed as 1.25 Clear[minN, lim] lim 1.25 Do[{diff  Abs[a[n]  lim], If[diff  01, {minN  n, Abort[]}]}, {n, 2, 1000}] minN 10.2 INFINITE SERIES sn  sn  sn   a 1 r n (1 r )  a 1 r n (1 r )     21  1     lim sn  21  1  n      1  a 1 r n (1 r ) n 100 100 1     1   1 100 n  12   n   9  lim sn  1001  11 1 100  n  lim sn  n   32   1 ( 2) n sn  1( 2) , a geometric series where r   divergence ( n 1)( n  2) n ( n 1)  n11  n 1  sn   sn  12  12  13    13  14      n11  n1   12  n1  nlim  sn    25  35    35  54      n51  5n    5n  n51    n51  nlim   n5  n51  sn   25     , the sum of this geometric series is  14  16 64 16    , the sum of this geometric series is  64 256    , the sum of this geometric series is  16 64 1  14   1 12   1 14     161   1 14  12  74   1 14     , the sum of this geometric series is 10  54  16 64 11 (5  1)   1  14   4  52  13    45  19    85  271    , is the sum of two geometric series; the sum is 1 13   10  32  23 Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ Section 10.2 Infinite Series  52  13    45  91    85  271    , is the difference of two geometric series; the sum is 12 (5  1)  1 12    13 (1  1)  1 12    10  23  17 1 13  12  15    14  251    18  1251    , is the sum of two geometric series; the sum is 1 15    56  17   10  16         ; the sum of this geometric series is 14  45  25    125 25 125  1     15 Series is geometric with r     Converges to 1 25   16 Series is geometric with r  3  3   Diverges 17 Series is geometric with r  18    Converges to 1 18 18 Series is geometric with r   23   23   Converges to 19 0.23  23  100  102   n n 0 21 0.7    n 0 23 0.06    n 10 10   23  100   23 1 100  99   101   106   101  n  n0 24 1.414   414  1000  103   n 25 1.24123   26 3.142857     n0   n 0   n     d n 10 10  n  234  1000   234 1 1000  999  10d   d 1 10   1006    1 1 10  90 15 414  1000    414  1413 999 999 1 1000     142,857 106 106  n0  1 123 105 103 234  1000  103  n0 22 0.d  n 0 124 100   25   1  23 20 0.234   107   1 10    23 n 124 100  123   5   10  1 13   10   3 124   100  142,857     106    1 16   10   3 123 105 102 142,857 106 1  124  123   100 99,900 3,142,854 999,999  116,402 37,037 Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ 123,999 99,900 41,333  33,300 713 Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ 714 Chapter 10 Infinite Sequences and Series 27 lim n n n 10 28 n ( n 1) lim ( n  2)( n 3)  lim 2n  n  lim 22nn15  lim n n n 5n  n n 29 lim n n  30 lim 2n n n 3 31 32 33 34 n   lim    diverges 2    diverges   test inconclusive n n  lim   test inconclusive lim cos 1n  cos    diverges n en n e n  n lim n n  lim ne  lim en  lim n  e 1 n e n     diverges lim ln 1n     diverges n lim cos n  does not exist  diverges n  sk  lim 1  k11   1,   12  13    13  14      k11  1k    1k  k11    k11  klim  k  35 sk   12  series converges to 36 sk   13  34    34  93    93  163      (k 31)  k2   3     k  ( k 1)    ( k 1)2       lim sk  lim     3, series converges to ( k 1)  k  k            37 sk  ln  ln  ln  ln  ln  ln    ln k  ln k   ln k   ln k  ln k   ln  ln k   lim sk  lim ln k   ; series diverges k  k  38 sk   tan1  tan    tan  tan1   tan  tan      tan k  tan  k  1    tan  k  1  tan k   tan  k  1  tan  tan  k  1  lim sk  lim tan  k  1  does not exist; series diverges k  k    12   cos1  13     cos1  13   cos1  14     cos1  14   cos1  15      cos 1  1k   cos 1  k11     cos 1  k11   cos 1  k 1    3  cos 1  k 1   lim sk  lim  3  cos 1  k 1    3  2  6 , series converges to 6  k  k   39 sk  cos 1 Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/  Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ Section 10.2 Infinite Series 40 sk       5  6         715  k 3  k 2  k 4  k 3  k 4 2  lim sk  lim  k     ; series diverges k  k  41 (4 n 3)(4n 1)    15  91    91  131      4k17  4k13    4k13  4k11    4k11  n13  n11  sk   15     lim sk  lim  k11  k  42 k  A(2 n 1)  B (2n 1)  2nA1  nB1  (2 n 1)(2 n 1)  A(2n  1)  B(2n  1)   (2 A  B )n  ( A  B)  6 (2 n 1)(2 n 1) k 2 A  B   A  B     A   A  and B  3 Hence,   A B  A  B  n 1 3 43  1111 1 1 3 5 40 n (2 n 1)2 (2 n 1)2 A (2 n 1)       2( k 1) 1 k 1 k 1 B (2 n 1)2  (2 nC1)  D (2 n 1)  (2n 1)(2n 1)   31    the sum is k 1 k 3  n 1  2n11  2n11   lim  2k11  k  A(2 n 1)(2 n 1)  B (2n 1)2 C (2 n 1)(2 n 1)2  D (2n 1) (2n 1)2 (2 n 1)  A(2n  1)(2n  1)2  B(2n  1)  C (2n  1)(2n  1)2  D(2n  1)2  40n  A(8n3  4n2  2n  1)  B (4n  4n  1)  C (8n3  4n  2n  1)  D(4n  4n  1)  40n  (8 A  8C )n3  (4 A  B  4C  D )n2  (2 A  B  2C  D )n  ( A  B  C  D)  40n A  8C  AC     A  B  4C  D   A B C  D   BD        B  20  B  2 A  B  2C  D  40  A  B  C  D  20  B  D  20   A  B  C  D    A  B  C  D   AC  and D  5    C  and A  Hence,  A   C   k k 1 1 1      40 n 1 1    (2n 1)2 (2 n 1)2   (2 n 1)2  (2 n 1)2       25  25     2( k 1) 12  (2k 1)2  (2 k 1)2    n 1 n 1      1    the sum is lim     (2 k  1) (2 k  1) n       44 n 1 n ( n 1)2  12  n ( n 1)2                 sk   14  14  19  19  16  ( k 1)2 k   k ( k 1)2     lim sk  lim 1    ( k 1)  k  k        lim 1   1 45 sk           lim sk k   2 k    k 1     k k k 1   1 k 1 k 1      46 sk  12  11  11  11  11  11    (1k 1)  11 k  11k  (1k 1)  12  (1k 1) 2 2 2 2 2  lim sk  12  11   12 k  Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ 716 Chapter 10 Infinite Sequences and Series        47 sk  ln13  ln12  ln14  ln13  ln15  ln14    ln (1k 1)  ln1k  ln ( k1 2)  ln (1k 1)   ln12  ln ( k1 2)  lim sk   ln12 k  48 sk   tan 1 (1)  tan 1 (2)    tan 1 (2)  tan 1 (3)      tan 1 (k  1)  tan 1 (k )    tan 1 (k )  tan 1 (k  1)           tan 1 (1)  tan 1 (k  1)  lim sk  tan 1 (1)  2  4  2   4 k  49 convergent geometric series with sum 1 2 1     2 50 divergent geometric series with r   51 convergent geometric series with sum 52  32   1  12  lim (1)n 1 n   diverges n  n  53 The sequence an  cos   starting with n  is 1, 0, 1, 0,1, 0, 1, 0, , so the sequence of partial  2 sums for the given series is 1, 1, 0, 0, 1, 1, 0, 0, and thus the series diverges 54 cos (n )  (1) n  convergent geometric series with sum 55 convergent geometric series with sum 56 lim ln n 3n 1 12  e  58 convergent geometric series with sum 1  101  1 1x   59 difference of two geometric series with sum  lim  1n n    e2 e2 1     diverges 57 convergent geometric series with sum 60  1  15  n   lim  n1 n  n 2   20  18  9 x x1 1 23   1 13    32   e1   diverges Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ Section 10.2 Infinite Series 61 63 n! n n 1000     diverges lim   n 1   2n 3n 4n 2n 4n n 1   n 1 converge since r    n 1 64 2n  3n 4n n n lim 2n  4n n         12     34  ; both   12  n n 1 lim n n 1 n 1  and r   n nnn n  12n  lim  and   34  n 1   1, respectively   n 1  12  n n   lim n    diverges n are geometric series, and both 1 12  and    34  n n 1  1 34 3    by Theorem 8, part (1)  lim n  65 3n 4n nn n n ! 62 717 2n 4n 1 3n 4n 1  12  1      n n   1 n  lim diverges by n th term test for divergence    nn1    ln(n)  ln(n  1) ln n 1 n 1  sk   ln(1)  ln(2)   ln(2)  ln(3)   ln(3)  ln(4)      ln(k  1)  ln(k )   ln(k )  ln(k  1)    ln(k  1)  lim sk  ,  diverges k  66 lim an  lim ln n n  2nn1   ln  12    diverges 67 convergent geometric series with sum 68 divergent geometric series with r   69  n0 70  n0 n 0 n0 23.141 22.459 1 n 0     e   (1)n x 2n     x   e e  e  (1)n x n   ( x) n ; a  1, r   x; converges to 71 a  3, r  72 1 x 1 ; ; a  1, r   x ; converges to converges to  1  x21      12  3sin1 x  n ( 1)n 3 sin x for all x (since n  n 0 3sin x  73 a  1, r  x; converges to 1 (  x )  n 3 x for 1  ; a  12 , r  x1  11x for x  1 1 x for x   or 1  x  1 ; 3sin x converges to  12  1  3sin1 x  for all x) 1 2x for x  or x  Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/  3 sin x 2 sin x  sin x  832sin x Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ 718 Chapter 10 Infinite Sequences and Series 74 a  1, r   x2  1 21  x  ; converges to 75 a  1, r  ( x  1); converges to 3 x ; 76 a  1, r  converges to 1ln x 78 a  1, r  ln x; converges to  79 (a)  n 2  80 (a)  n 1 (c)  x2 for  or x   2 x for x   or 2  x  x 1 for 3 x  or  x  for x  (2k  1) 2 , k an integer for ln x  or e1  x  e  ( n  4)( n  5) (b) ( n  2)( n  3) (b)  (c) ( n  2)( n 1) (c) n0   n 3  ( n  2)( n  3)  n 5 ( n 3)( n  2)   n  20 ( n 19)( n 18)  12   1 12  3       3 one example is  32  34  83  16 1 12  1       one example is  12  14  81  16 1 12  81 (a) one example is (b)  32 x  1sin x 77 a  1, r  sin x; converges to x2 x 1 1 ( x 1) 1   82 The series    14  81  16    n 1 k 12 is a geometric series whose sum is n0  k2   k 1 12  where k can be any positive or negative number 83 Let an  bn   12  n 84 Let an  bn   12  n 85 Let an  86 Yes:  14  n   a1n  Then Then and bn     n 1 n 1 n 1    n 1 n 1 n 1  an   bn    12  n  an   bn    12   12  n Then A  diverges The reasoning:  1, while   bnn    (1) diverges  n 1 n  1, while  a n 1   n 1 n 1  (anbn )    14   13  AB  an  13 , B   bn  and   bnn     12     n 1 n 1 n 1  an converges  an   an nth-Term Test Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ n a  n n 1    A B   diverges by the an Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ Section 10.2 Infinite Series 719 87 Since the sum of a finite number of terms is finite, adding or subtracting a finite number of terms from a series that diverges does not change the divergence of the series 88 Let An  a1  a2    an and lim An  A Assume n   an  bn  converges to S Let Sn   a1  b1    a2  b2      an  bn   Sn   a1  a2    an    b1  b2    bn   b1  b2    bn  Sn  An  lim  b1  b2    bn   S  A   bn converges This contradicts the  bn assumption that 1 r 89 (a) 5 n  diverges; therefore,   r  r  35 ;   53    53   132    13   r  r   ; 13  13 (b) 1 r 10 90  eb  e2b    10 1 eb 9   an  bn  diverges 2   103   132  103    eb  eb  89  b  ln  13  103    89  91 sn   2r  r  2r  r  2r    r n  2r n 1 , n  0, 1,       sn   r  r    r n  2r  2r  2r    2r n 1  lim sn  if r n  1 r  2r 1 r  1 22r , 1 r  or r  92 area  22   2  (1)2    2       12     m2 1 12 93 (a) After 24 hours, before the second pill: 300e( 0.12)(24)  16.840 mg; after 48 hours, the amount present after 24 hours continues to decay and the dose taken at 24 hours has 24 hours to decay, so the amount present is 300e( 0.12)(48)  300e( 0.12)(24)  0.945  16.840  17.785 mg   (b) The long-run quantity of the drug is 300 e( 0.12)(24) 94 L  sn  1ar   a 1 r n 1 r   ar  n  300 e( 0.12)(24)  e( 0.12)(24)  17.84 mg n 1 r 95 (a) The endpoint of any closed interval remaining at any stage of the construction will remain in the Cantor , , , , , , , , , , set, so some points in the set include 0, 27 27 9 27 27 3 9 (b) The lengths of the intervals removed are: Stage 1:  1 Stage 2: 1     3 Stage 3:  2 and so on 1       27  Thus the sum of the lengths of the intervals removed is  2    n 1 n 1 Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ 1     (2 / 3) Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ 720 Chapter 10 Infinite Sequences and Series 96 (a) n 1 n 1 L1  3, L2  43 , L3  43 , , Ln  43  lim Ln  lim 43  n n       s , (b) Using the fact that the area of an equilateral triangle of side length s is       , A  A  3(4)      A  A  3(4)     , A  A  3(4)     ,  , A    3(4)        3(4)   A2  A1  43 n 2 4 n 33 k 2 4 32  3 3    k 2 k 1  4k     9k 1    34 n k 2  12 k 3 k 1     3  364    1  x   1 x2 3  , 27  n k 3   3   k 1     k 2   201   43 1  35   43  85   58 A1 n 1   n 1 n2 4 b x 0.2  b dx  lim b dx  lim  54 x0.8  1 b  dx diverges   10.2 diverges n 1 n is positive, continuous, and decreasing for x  1; b  x 0.2 1  0.2  lim  12 tan 1 2x   lim 1 b  b   b dx  lim   1x  b  n x x 4 b x2  b dx  lim  f ( x)  10.2 is positive, continuous, and decreasing for x  1; f ( x)  21  x2 1 dx converges   12 converges  b0.8  54     1 x1 b   1 dx x2 4 b dx b x    lim  12 tan 1 b2  12 tan 1 12   4  12 tan 1 12  1 x 14 dx converges converges f ( x)  x 1 is positive, continuous, and decreasing for x  1;  dx x4  lim  ln | b  4|  ln 5     b  3 32 f ( x)  12 is positive, continuous, and decreasing for x  1;  lim , THE INTEGRAL TEST  b  3 n  lim  1b     12 k 2  lim An  lim  n n   10.3 we see that A1   diverges   n 1 n4 f ( x)  e2 x is positive, continuous, and decreasing for x  1; b    lim   12 e2 x   lim  12b  12  1 b  2e 2e b   2e2  dx x4 1 b  lim ln x   b  diverges  2 x 1 e dx  lim   b 2 x b  2 n   e2 x dx converges   e Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ b dx x 4  b  lim n 1 e dx converges Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ Section 10.3 The Integral Test x (ln x )2 f ( x)   b   lim   ln1x   lim  ln1b  ln12  b b  f ( x)  x x2  x  3; 3   ln x x    n 3 f ( x)   x2 ex 7   x (ln x )2 b  lim 2  diverges   n n2 4   n 1 f ( x)   dx  lim n 1 b ln x x b  dx converges  n n2   4 x2  x 4    lim  b    15  82   n 3 n n2     n (ln n )2 dx converges  for x  2, thus f is decreasing for b b b  x (ln x ) dx  lim n 2  ln b  4  2 ln(13)   x dx x2  diverges   is positive and continuous for x  1, f ( x)  n 2 b  x b e dx  lim    327 e7 13 e x4 x  x 1 x3    lim  ln x   b    n 2  x2 ex n2 en ln n n  diverges   e 327 e7 23  x 4 ( x 1)2 n4 n  n 1 b x 1 8  ln ln n n n 3  x ( x 6) 3e x b  x2 ex  e1  16 e4  dx converges    n 7 25 e5  362  e   n7 n2 en n2 en   for x  6, thus f is decreasing for x  7; 3b 18b 54 eb   327  lim 73 e b   x4 ( x 1)2       2  14   16 25 36  n 8 1 11 converges; a geometric series with r  10 n 4 n2  n 1  x4 ( x 1) 7 x ( x 1)3 327 e7  for x  7, dx diverges    n 8 n4 n  n 1 diverges n n n 1    dx   x 1  5ln(n  1)  5ln   Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/  12 converges; a geometric series with r  1e  13 diverges; by the nth-Term Test for Divergence, lim n dx x 1 eb b b  b   b  dx  lim   x 1 dx   dx   lim   x11 dx   dx  ( x 1) ( x 1)2 b   ( x 1)  b    b 1 3( 6b 18) converges  lim ln b   b31  ln  73     14 diverges by the Integral Test;  converges is continuous for x  2, f is positive for x  4, and f ( x)  8 dx diverges diverges   lim dx  lim   3xx  18x x3  54 e e x  b b  e thus f is decreasing for x  8;   ln x x b dx  lim   ln x    lim  2(ln b)  2(ln 3)      b  b  ln n n 54 b3 b  e  lim 10  x (ln x )2 2 f ( x)  lnxx is positive and continuous for x  2, f ( x)  2ln2 x  for x  e, thus f is decreasing for x  3; x 3   ln x   x dx  blim b x    x dx x 4 n 3 ln is positive and continuous for x  1, f ( x)  diverges   2 is positive, continuous, and decreasing for x  2; 721 diverges Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ 722 Chapter 10 Infinite Sequences and Series 15 diverges;   n n 1 16 converges;   n 1   3 n n 1 2 n n , which is a divergent p-series with p    2  n 1 n3 2 , which is a convergent p-series with p  17 converges; a geometric series with r  18  18 diverges;   n 1 8 n   8  n 1 n   and since n n 1 19 diverges by the Integral Test: 2 lnxx dx  12  ln 20 diverges by the Integral Test: 2  tet dt  lim  2tet ln b   n  ln x x 5n n n 3 23 diverges;   n0 2 n 1 n0 , n 1 2n n n 1 25 diverges; lim an  lim n n ln n  lim n n  dx x  , dx  e dt  t n    which diverges by the Integral Test  12 ln(2n  1)   as n   2n ln n  lim n dx x x 1    lim n n n n     n    u  x  1 n 1 du  ;  ln  dx u   du  x  1  28 diverges; lim an  lim  1n n  ln x dx x 1  ln    n  ln 4 n dx x 1 26 diverges by the Integral Test: 27 diverges; lim  lim 1 24 diverges by the Integral Test: n  n  ln   b 5n ln n n  ln  diverges  4et   lim  2eb (b  2)  2e(ln 2) (ln  2)     ln b     lim  2  n n 1 dx; t  ln x, dt  21 converges; a geometric series with r  22 diverges; lim  diverges, 8       e  29 diverges; a geometric series with r  ln  1.44  Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/  n   ln   as n   Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ Section 10.3 The Integral Test 30 converges; a geometric series with r   du  lim ln u u 1 b 1 1  0.91   1x   3 31 converges by the Integral Test:  ln 723 (ln x ) (ln x ) 1 u  ln x, du  x dx  dx; b sec1 u   lim sec1 b  sec1 (ln 3)   lim  cos1   ln b   b    b1   sec1 (ln 3)  cos (0)  sec (ln 3)  2  sec 1 (ln 3)  1.1439    1u  1x   1 x11ln x  dx  1 32 converges by the Integral Test:  b dx; u  ln x, du  1x dx  1 (ln x )2  du  lim  tan 1 u   lim tan 1 b  tan 1  2   2  b   b  1n   lim sin x      x 0 x 33 diverges by the nth-Term Test for divergence; lim n sin  1n   nlim  sin 34 diverges by the nth-Term Test for divergence; lim n tan  tan n n     sec lim sec 1n n   e 1u   u e  ex 1 e x    n    dx; 1 e x b  lim  ln uu1   lim e b b   37 converges by the Integral Test: 38 diverges by the Integral Test: 1  tan 1 x 1  1 39 converges by the Integral Test: 1 x x dx; x 1  1 u  e x , du  e x dx, dx  du    du u   e u (1u )  ln   bb1   2ln  ee1   ln1  ln  ee1   2ln  ee1   0.63 u  tan 1 x     dx;  8u du   4u   dx     du   1 x    u  x2      du  x dx   x x Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ b   2  4  16  34  lim  12 ln u   lim 12 (ln b  ln 2)   b b   tan  e dx  blim b 1  e    sech x dx  lim  b  du 2 u  lim tan 1 eb  tan 1 e    tan 1 e  0.71 b   dx; u  e x , du  e x dx    1 b  u21 du  n  1n   lim   n2  sec  n   1n  n   12  du  lim  tan 1 u   lim tan 1 b  tan 1 e  2  tan 1 e  0.35  e b n  36 converges by the Integral Test:   lim   35 converges by the Integral Test:  n n 1 x b e 1 Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ 724 Chapter 10 Infinite Sequences and Series 40 converges by the Integral Test:  1 sech x dx  lim  b b sech x dx  lim  x 1  lim (tanh b  1) b b  b    0.76 41 b  (b  2)  a ln x   ln x    lim  ln b   1  xa  x 1  dx  blim  b   a  ln    lim ln 3a b (b  2) a b4  ln  ; 3a  , a  (b  2) lim b   a lim (b  2)a 1    the series converges to ln 53 if a  and diverges to  if 1,  a b b  a  If a  1, the terms of the series eventually become negative and the Integral Test does not apply From that point on, however, the series behaves like a negative multiple of the harmonic series, and so it diverges  a 42  3   2a x 1 x 1 lim b 12 a b (b 1)   dx  lim  ln b   x 1 ( x 1)2 a  lim a 1 b a (b 1) b   b 1   blim ln (b 1)2 a  ln  3  1, a    , a  2    lim ln 42 a b   the series converges to ln b 1 (b 1)2 a  ln  ; 42 a  42   ln if a  12 and diverges to  if a  12 If a  12 , the terms of the series eventually become negative and the Integral Test does not apply From that point on, however, the series behaves like a negative multiple of the harmonic series, and so it diverges 43 (a)   (b) There are (13)(365)(24)(60)(60) 109 seconds in 13 billion years; by part (a) sn   ln n where      n  (13)(365)(24)(60)(60) 109  sn   ln (13)(365)(24)(60)(60) 109   ln(13)  ln(365)  ln(24)  ln(60)  ln(10)  41.55 44 No, because   n 1 45 Yes If   an nx  x   n 1 n and   1n diverges n 1 is a divergent series of positive numbers, then n 1  12   an    a2  also diverges and a2  an   n 1 n 1 n There is no “smallest” divergent series of positive number: for any divergent series numbers   2n   a n   an n 1 has smaller terms and still diverges n 1 Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ of positive ... n  36 converges by the Integral Test:   lim   35 converges by the Integral Test:  n n 1 x b e 1 Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file... bounded below by  it converges Copyright  2014 Pearson Education, Inc Full file at https://TestbankDirect.eu/ Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file... https://TestbankDirect.eu/ n a  n n 1    A B   diverges by the an Solution Manual for Thomas Calculus Multivariable 13th Edition by Thomas Full file at https://TestbankDirect.eu/ Section 10.2

Ngày đăng: 21/08/2020, 13:38

Tài liệu cùng người dùng

Tài liệu liên quan