link solutions manual for additional calculus topics 11th edition by raymond barnett karl byleen michael ziegler

19 92 0
link solutions manual for additional calculus topics 11th edition by raymond barnett karl byleen michael ziegler

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Karl Byleen 1.f(x) = = x -1 x -2 f’(x) = -x f”(x) = 2x (3) f (Using Power Rule) -3 -4 (x) = -6x = -x f(x) = ln(1 + x) -1 f'(x) =  x = (1 + x) f"(x) = (-1)(1 + x) (Using Power Rule) (3) f (x) = (-1)(-2)(1 + x) = (1  x) -x -3 (Using Power Rule) f(x) = e f’(x) = -e f”(x) = e -x (3) f (x) = -e f(x) = ln(1 + 3x) f’(x) = = 3(1 + 3x)  3x -2 f”(x) = 3(-1)(3)(1 + 3x) Rule) f (4) f (3) (x) = (-9)(-2)(3)(1 + 3x) (x) = (54)(-3)(3)(1 + 3x) -4 5x f(x) = e f’(x) = 5e 5x 5x f”(x) = 5(5)e (3) f (Using Power -3 5x (x) = (5)e 5x 5x = e 5x = e 5x = 625e TAYLOR POLYNOMIALS AND INFINITE SERIES -3 = 54(1 + 3x) = -486(1 + 3x) 5x = e (x) = (5)e (4) f 96 -2 = -9(1 + 3x) -4 486 = - (1  3x) -1 f(x) =  x = (2 + x) f’(x) = (-1)(2 + x) f”(x) = (-1)(-2)(2 + x) f (x) = (2)(-3)(2 + x) (4) f -5 -5 -0 (x) = (-6)(-4)(2 + x) = 24(2 + x) -x f(x) = e f'(x) = -e f"(x) = f = 2(2 + x) = -6(2 + x) (3) f'(0) = -e -x e -x (x) = -e (4) f(0) = e -x f (x) = e Using 2, (3) (4) -0 f (0) = -e f (0) = e p (x) = f(0) + f'(0)x + f"(0) x 2! Thus, f(x) = e f'(x) = 4e f"(x) = 16e (3) f p (x) = - x + x 2! - x 3! 4x (x) = 64e = -1 -0 e = -0 f"(0) = -x = -0 = -1 + + 1x 4! = f (3) (0) x + f 3! = - x + (4) (0) x 4! x -1 x + 1x 24 f(0) = f'(0) = f"(0) = 16 4x (3) f (0) = 64 (3) f"(0) f (0) + Thus, p (x) = f(0) + f'(0)x + 2! x 3! x = + 4x + 16 x2 + 64 x3 = + 4x + 8x + 3! 2! f(x) = (x + 1) , f(0) = 32 x f'(x) = 3(x + 1) , f'(0) = f"(x) = 6(x + 1), f"(0) = f (x) = 6, f (0) = f (x) = f (0) = 2 p (x) = + 3x + x + x3 = + 3x + 3x + x 2! 3! EXERCISE 2-1 97 f(x) = (1 - x) , f'(x) = -4(1 - x) , f"(x) = 12(1 - x) , 10 f(0) = f'(0) = -4 f"(0) = 12 (3) f Thus, p (x) = - 4x + 11 (3) (x) = -24(1 - x), f(x) = ln(1 + 2x) 12 2! x2 f (0) = -24 24 - 3! x3 2 f'(x) =  2x (2) =1  2x 4 -2 f"(x) = -2(1 + 2x) (2) = (1  2x) (3) -3 16 f (x) = 8(1 + 2x) (2) = (1  2x) 12 f(x) = 2! 3x  = (x + 1) 1/3 + (3) f (0) x = f"(x) = 9(x  1) 10 (x) = 27(x  1) x f(0) = 31 f'(0) = 2 f (3) (0) = 16 3! (x) = + 2x - x + 16 x = 2x - 2x + x3 3! 2! f'(x) = 3(x  1) (3) f 3   = f"(0) = -4 f'(0) = f"(0) Using 2, p (x) = f(0) + f'(0)x + Thus, p = - 4x + 6x - 4x f(0) = ln(1) = 8/3 f"(0) = -9 f (3) 10 (0) = 27 (3) f"(0) f (0) p 3(x) = f(0) + f'(0)x + x + 2! 3! x3 1 Thus, p (x) = + x x + x 10 x = + x  2! 27  3! 3 + x 81 1/4 f(x) = x  16 = (x + 16) f(0) = 1 f'(x) = 4(x + 16) f'(0) = 32 f"(x) = - (x + 16) f"(0) = - 16 2048 x p (x) = + x 32 4096 14 (A) f(x) = x - f(0) = -1 f'(x) = 4x f'(0) = f"(x) = 12x f"(0) = 13 -3/4 (3) f (3) (x) = 24x f (0) = Using 2, p (x) = f(0) + f'(0)x + f"(0) 2! Thus, p3(x) = -1 |p 3(x) - f(x)| = |-1 - (x Now 4 + (3) f (0) 3! x - 1)| = |x | = |x| < 0.1 implies |x| < (0.1) and |x| Therefore, -0.562 < x < 0.562 (B) From part (A), (4) 1/4 x ≈ 0.562 (4) (4) f (x) = 24 f (0) = 24 (3) f (0) Using 2, p (x) = f(0) + f'(0)x + f"(0) x + f (0) x + x4 2! 3! 4! 24 4 Thus, p 4(x) = -1 + 4! x = -1 + x = x - = f(x) |p4(x) - f(x)| = < 0.1 for f(0) = f(x) = x f'(x) = 5x f'(0) = f"(x) = 20x f"(0) = f (x) = 60x f (0) = all x 0 0 and 15 (A) (4) f (4) (x) = 120x f p4(x) = (0) = 5 |p4(x) - f(x)| = |0 - x | = |x| 1/5 < 0.01 or |x| < (0.01) = 0.398 Therefore, -0.398 < x < 0.398 (3) (B) f(0) = f'(0) = f"(0) = f = f (5) 5! x (5) |p5(x) - f(x)| = |x (4) (0) = f (x) = 120 and hence f 120 p5(x) = = (0) (0) = = x - x | = < 0.01 Thus for all x, |p5(x) - f(x)| < 0.01 EXERCISE 2-1 99 f(x) = x 16 f f'(x) = 3x f"(x) = 6x (3) (x) = f(1) = f'(1) = f"(1) = (3) f (1) = p (x) = + 3(x - 1) + 2! (x - 1) = + 3(x - 1) + 3(x - 1) 17 + (x - 1) 3! f(x) = x - 6x + 10 f'(x) = 2x - f"(x) = p (x) = + 2 (x - 3) 2! + (x - 1) f(3) = f'(3) = f"(4) = = + (x - 3) 18 f(x) f'(x) f"(x) f (x) (4) f = = = = ln(2 - x) -(2 - x) -(2 - x) -2(2 - x) f(1) = f'(1) = -1 f"(1) = -1 -4 (x) = -6(2 - x) p (x) = -(x - 1) - (x - 1) 19 f(x) = (x - 1) -2x e -2x -2x f"(x) = 4e f - 2x (x) = -8e f Thus, p (x) = - 2x + Now, e = e (x - 1) 4! - (x - 1) - 4(x - 1) (3) Using 2, p (x) = f(0) + f'(0)x + - 0.5 (1) = -6 f(0) = f'(0) = -2 f"(0) = f'(x) = -2e (3) f 3! = -(x - 1) - (1) = -2 (4) - (x - 1) - 2! f -2(0.25) x - 2! (0) = -8 (3) f"(0) x + f (0) x 2! 3! - x = - 2x + 2x 3! 3 x = f(0.25) ≈ p (0.25) = - 2(0.25) + 2(0.25) (0.25) = 0.60416667 -3 20 f(x) = f'(x) = = x1/2 x x-1/2 x-3/2 f"(x) = - (3) f (4) f(1) = 1 f'(1) = (x) = x-5/2 15 f (x) = - 16 x Thus, -7/2 f"(1) = - (3) f (4) f (1) = 15 (1) = - 16 (3) (4) f"(1) f (1) f (1) p4(x) = f(1) + f'(1)(x - 1) + + + 2! (x - 1) 3! (x - 1) 4! (x - 1) = + (x - 1) (x - 1) + 15 (x - 1) (x - 1) 16  4!  3! 2! 1 = + (x - 1) - (x - 1) Now, 1.2 = f(1.2) ≈ p4(1.2) + 16 (x - 1) - 128 (x - 1) (1.2 - 1) + (1.2 - 1) = + (1.2 - 1) - 16 = + (0.2) - (0.2) + (0.2) (0.2) 16 128 = 1.0954375 - (1.2 - 1) 128 -1 21 f(x) = f = (4 - x)  x -2 -2 (x) = 2(-3)(4 - x) (4) f (n) f (-1) = 1·2·3(1 - x) (x) = 2·3(-4)(4 - x) -5 -4 (-1) = 1·2·3·4(1 - x) -5 -(n+1) (x) = n!(4 - x) = 4(1 +x) -x  x f'(x) = -4(1 + x) f"(x) = (-1) (4)(2)(1 + x) 22 -3 f'(x) = -1(4 - x)-3(-1) = (4 - x) f"(x) = -2(4 - x) (-1) = 1·2(4 - x) (3) -4 f(x) = f (3) = 4(2!)(-1) (1 + x) -4 (x) = (-1) (4)(3)(2)(1 + x) M (n) f n -(n+1) (x) = 4(n!)(-1) (1 + x) 3x 23 f(x) = e 3x 3x f'(x) = e (3) = 3e 3x 3x 3x = e f"(x) = 3e (3) = 9e (3) 3x f (x) = 9e f (x) = 27e (4) (n) f 24 (3) = 27e 3x 3x (3) = 81e 3x 3x = e 3x = e n 3x (x) = e f(x) = ln(2x + 1) -1 f'(x) = 2(2x + 1) f"(x) = -(2) (2x + 1) -2 (3) 1) f (n) f 25 (x) = (-1) (x) = (-1) = (-1) (2x + 1) -2 = (-1) -1 (2x + (2!)(2x + 1) -3 n+1 n ((n - 1)!)(2x + 1) -n f(x) = ln(6 - x) = -(6 - x) f'(x) = (-1) = - x x -2 -2 f"(x) = (6 - x) (-1) = -(6 - x) (4) f -4 (x) = 1·2·3(6 - x) -4 (n) x) f -4 = 4(3!)(-1) (1 + x) (-1) = -1·2·3(6 - -n (x) = -(n - 1)!(6 - x) f(x) 26 x/2 = e f'(x) = x/2 e  1  f"(x) = ex/2 = 2 (3) ex/2 (x) = 13 ex/2 (n ) f f (x) = n ex/2 27 From Problem 31, 1 2! (3) 3! (n) n! f(0) = , f'(0) = , f"(0) = , f (0) = , … , f (0) = 4 4 Thus, 1 x + x + p (x) = x + x + … + n 4 n 1 4 4n 1 -1 28 f(x) =  x = 4(1 + x) From problem 32, f (x) = 4(n!)(-1) (1 + x) and (n) hence f (0) = 4(n!)(-1)n n The coefficient of x (3) , f Thus, = 1, f'(0) = 3e 0 x + 3 2! n (n ) x (0) = n + … + 3! n = 4(-1) n! = , …, f p (x) = + 3x +  n! n 4(n!)(1) = 3, f"(0) = e (0) = e (0) is 29.From Problem 33, f(0) = e (n) f = n e n = n x n! 30.f(x) = ln(2x + 1) From problem 34, (n) n n+1 n -n n+1 (n ) f (0) n! n f (x) = (-1) ((n - 1)!)(2x + 1) and = (-1) n+1 2n x n Thus, p (x) = 2x - x2 + 23 x - 24 x4 + … + (-1) n n 31 From Problem 35, (3) (n) (n  1)! 1 2! f(0) = ln 6, f'(0) = - , f"(0) = - , f (0) = - , …, f (0) = n 6 6 Thus, x x3 - … x p (x) = ln - x n 2  3 6 n n 6 EXERCISE 2-1 x/2 32 f(x) = e From problem 36, f (n) (x) = e x/2 and (n) f (0) = Thus, 105 p (x) = + n x + 2!2 2x f"(x) = (-1) (3) f (x) = (-1) f (x) = (-1) (n) n 3!2 3x 2(2!)x f"(x) = - x (3) f (x) = 23 x n!2 nx n!2 n +x -4 2(n!)x -(n+1) n = 2(-1) and - 2(x - 1) n + … + 2(-1) (x - 1) Step f(1) = Step a = f(1) = f'(1) = a1 = f'(1) = 1 2 -3 pn(x) = - 2(x - 1) + 2(x - 1) f'(x) = x + … + f(1) = n! 34 Step f(x) = ln x 2(3!)x f(n) (1) Therefore + -1 f(x) = = 2x x f'(x) = -2x 33 f"(1) f"(1) = -1 (3) f (1) = 2 = = 2! = - 2! = - (1) (3) f a 3! = 3! = n (4) (x) = - x f f  (n) f (x) = n 1 (1) f (n  1)! (4) (1) (n) = -3! a (1) = n+1 (-1) (4) a f = n = f (1) n! xn 4! = -4! = - (n) (n - 1)! 3! (1)  1)! n 1 = (1) Step The nth degree Taylor polynomial is: p (x) = (x - 1) - (x - 1) + (x - 1) - (x n 34 (n n! n 1 = (1) (1)n 1 n (x - 1) 1)4 + … + n x f(x) = e 35 f (n) (n) x (x) = e Thus, p (x) = n f and e2 (2) n! + e2 = n!e (x + 2) + (x 2!e + 2) n + … + n!e (x n + 2) 36.f(x) = x + 2x + 8x + (A) Fourth-degree Taylor polynomial p4(x) for f at is: (3) (4) p (x) = f(0) + F’(0) x + F’’(0) x + f (0) x + f (0) x4 1! 2! 3! 4! f(0) = f’(x) = 5x + 6x + 16x ; f’(0) = f”(x) = 20x + 12x + 16 ; f”(0) = 16 f (x) = 60x + 12 ;f (0) = 12 (4) f (x) = 120x Thus, p 4(x) = + 8x ; f + (4) (0) =0 2x = 2x + 8x + (B) The degree of the polynomial is 37.f(x) = x f(0) = f’(x) = f”(x) = f (x) f (x) f (x) f (x) (n) + 2x + 6x + 6x 30x + 12x = 120x + 12 = 360x = 720x = 720 ; ; ; ; ; ; f’(0) = f”(0) = f (0) f (0) f (0) f (0) 0 = = = = 12 0 720 f (x) = for n ≥ Thus, for n = 0, and 6, the nth-degree Taylor polynomial for f at has degree n 38.f(x) = x f(0) = -1 f’(x) = f”(x) = f (x) f (x) f (n) – 4x 12x = 24x = 24 (x) = ; ; ; ; f’(0) = f”(0) = f (0) f (0) 0 = = 24 for n ≥ Thus, for n = and n = 4; the nth degree Taylor polynomial for f at has degree n EXERCISE 2-1 10 39 f f(x) = ln(1 + x) f'(x) =  x 1 f"(x) = (1  x) (3) (x) = (1  x) f(0) = f'(0) = f"(0) = -1 f (3) (0) = 2 Thus, x p1(x) = x, p x -0.2 -0.1 0.1 0.2 2(x) = x - p1(x) p2(x) -0.2 -0.1 0.1 0.2 -0.22 -0.105 0.095 0.18 x p1(x) - f(x) -0.2 -0.1 0.1 0.2 0.023144 0.005361 0.00469 0.017678 , p3(x) = x p3(x) -0.222667 -0.105333 0.095333 0.182667 x + f(x) -0.223144 -0.105361 0.09531 0.182322 p2(x) - f(x) 0.003144 0.000361 0.00031 0.002322 x p3(x) - f(x) 0.000477 0.000028 0.000023 0.000345 40 (3) f(x) = ln(1 + x) f'(x) = (1 + x) f"(x) = -(1 + x) -3 (3) f(0) = f'(0) = f"(0) = -1 f (x) = 2(1 + x) f (0) = Thus, p (x) = x - x + x 3 Using a graphing utility, we find that |p3(x) - ln(1 + x)| < 0.1 for -0.654 < x < 0.910 x f(x) = e f'(x) = e f"(x) = e 41 (3) f (x) = e M (n) f (x) = e Thus, f(a) = e f'(a) = e f"(a) = e x f (3) (a) = e M x f (n) (a) = e a a a (3) p (x) = f(a) + f'(a)(x - a) + n (n) f (a) + + n! (x - a)2 2! (x - a) (a) f + (x - a) 3! n a a a a = e + e (x - a) + e (x - a) + e (x - a) + a  = e = e 42  (x  a)  2! (x  a) 2! k  a n  (x - a) k k ! 3! 1 (x  a) 3! f'(x) = x (4) f f -3 (3) (x) = (-1) (2!)x f (x) = (-1) Thus, p (x) = ln a + f n+1 ((n - 1)!)x -n 2a k  = ln a f (n) (x - a) (x - a) - a n n (1) +  k k 1 ka a a (x - a) n! n  (x  a)  (x - a) a (a) = (-1) (3!) 14 a (a) = (-1) (a) = (-1) (2!) (4) -4 (x) = (-1) (3!)x ( n) e f(a) = ln a f'(a) = a f"(a) = - -1 (3)  n! +  f(x) = ln x f + n+1 ((n - 1)!) (x - a) n a 3a - … + (-1) n+1 n na (x - a) n n 43 f(x) = (x + c) n n f(0) = c f'(x) = n(x + c) f'(0) = nc n- f"(x) = n(n - 1)(x + c) n- f"(0) = n(n - 1)c M f (x) = n!(x + c) f (n) f (x) = n! Thus, p (x) = c + nc n = c n = (n) f x + n(n  1) c x + … + 2! n! n! + x + cn-2x2 (n  1)! 2!(n  2)! n! cn-kxk  k 0 (0) = n!c k!(n  k)! (0) = n! n! (n  1)! + … + x cx n! n +x n! 44.Let f(x) be a polynomial of degree k, k ≥ Then f(x) = a + a 1x + a x + a 3x f'(x) = a + 2a 2x + 3a 3x2 (3) xk f(0) = a + … + ka kxk-1 f'(0) = a + 6a3x + … + k(k - 1)a kxk-2 f"(x) = 2a f + … + a k f"(0) = 2a + 2!a (3) xk-3 (x) = 6a + … + k(k - 1)(k - 2)a k In general,  m!am for m  0,1,2,K k f (m) (0) = for m  k  Since p (x) = f(0) + f'(0)x + f"(0) 2+ f 2! n f (0) = 6a = 3!a  (3) (0) x x 3! it follows that pn(x) = f(x) for all n ≥ k 45.f(x) = e f(0) = x x f’(x) = e f”(x) = e (k) x f (x) = e Therefore, p x (x) = + ; ; f’(0) = f”(0) = (k) ; f x2 + … + x10 1! 2! 10! p (x) = + x + x + … + x + 1x11 1! 2! 10! 11! 11 10 x + (0) = + … + (n) f (0) n x n! For x > 0, e x e x > p 11(x) (x) > p (x) – p 10 11 1/11 Take x = 2(11!) , then e – p x – p (x) > 10 and hence 1x 11! (x) = 10 (2(11!) 11! 1/11 11 ) = 11 11 = 2048 So, there exist values of x for which |p x x 10(x) – e | = |e 46.f(x) = = x f(1) = f’(x) = -x – p 10 (x)| ≥ 100 -1 -2 ; f’(1) = -1 = -1! or f (1) = -1 1! f”(x) = (-1)(-2)x M (k) f -3 k f (1) ; f”(x) = = 2! or f (1) = (-1) k! or (k) (1) k! = (-1) Therefore, p 12(x) = – (x – 1) + (x – 1) and |p12(x) – f(x)| = -  (x  1)  (x  1) = 2! k - (x – 1) = 11  L  (x  1) x |x – x(x – 1) + x(x – 1) - + (x – 1) 12 … x 12 , 12 + x(x – 1) – 1| If we take x = 0.001, then x = 1000 and every term involving x on the right-hand side of the above equation is positive and smaller than x Thus, |p12(x) – f(x)| ≥ 1000(1 – 13x) = 1000(1 – 0.013) = 987 So there exist values of x ≠ for which |p12(x) – f(x)| ≥ 100 EXERCISE 2-1 115 47.ln 1.1 Let f(x) = ln(1 + x) -1 = (1 + x) f’(x) =  x f”(x) = -(1 + x) (3) f (x) = 2(1 + x) (n) f Rn(x) = -3 (x) = (n – 1)!(-1) f(n 1)(t)xn 1 Note that f (n  1)! (n+1) n-1 -n (1 + x) for some t between and x n -(n+1) (t) = n!(-1) (1 + t) (n+1) n -(n+1) |f (t)| = |n!(-1) (1 + t) Therefore, |R (x)| = f(n 1)(t)xn 1 (n  1)! n and n! x n 1 < (n  1)! and hence | = n!(1 + t) -(n+1) < n! for t > x n 1 =n  n 1 R (0.1) < (0.1) n (n  1) (0.1) For n = 4, |R (0.1)| < polynomial with the lowest degree is p which has degree ln(1.1) ≈ p (0.1) = 0.1 - (0.1) ≈ 0.095308 (x) = x - x + (0.1) 3 +1x = 0.000 002 < 0.000 005, and hence the - x4 - (0.1) CHAPTER REVIEW 209 ... f’(0) = f”(0) = f (0) f (0) f (0) f (0) 0 = = = = 12 0 720 f (x) = for n ≥ Thus, for n = 0, and 6, the nth-degree Taylor polynomial for f at has degree n 38.f(x) = x f(0) = -1 f’(x) = f”(x) = f (x)... = 24x = 24 (x) = ; ; ; ; f’(0) = f”(0) = f (0) f (0) 0 = = 24 for n ≥ Thus, for n = and n = 4; the nth degree Taylor polynomial for f at has degree n EXERCISE 2-1 10 39 f f(x) = ln(1 + x) f'(x)... In general,  m!am for m  0,1,2,K k f (m) (0) = for m  k  Since p (x) = f(0) + f'(0)x + f"(0) 2+ f 2! n f (0) = 6a = 3!a  (3) (0) x x 3! it follows that pn(x) = f(x) for all n ≥ k 45.f(x)

Ngày đăng: 28/02/2019, 15:49

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan