1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

link solutions manual for additional calculus topics 11th edition by raymond barnett karl byleen michael ziegler

19 92 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 1,16 MB

Nội dung

Trang 1

Karl Byleen

x f’(x) = -x-2

(Using Power Rule)

6

f(3)

(x) = -6x-4

= - x 4

2 f(x) = ln(1 + x)

1

= (1 + x)-1

f'(x) = 1  x

f"(x) = (-1)(1 + x) (Using Power Rule)

f(3)

(x) = (-1)(-2)(1 + x)-3

(Using Power Rule)

2

=

(1  x)3

f’(x) = -e

f”(x) = e

f (x) = -e

4 f(x) = ln(1 + 3x)

3 = 3(1 + 3x)

f’(x) =

1  3x

(Using Power

Rule) f(3)

(x) = (-9)(-2)(3)(1 + 3x)-3

= 54(1 + 3x)-3

f(4)

(x) = (54)(-3)(3)(1 + 3x)-4

= -486(1 + 3x)-4 486

=

(1  3x)4

5 f(x) = e5x

f(3)

= 53

e5x

f(4)

(x) = 53

(5)e5x

= 54

e5x

= 625e5x

96 TAYLOR POLYNOMIALS AND INFINITE SERIES

Trang 2

1

= (2 + x)-1

6 f(x) =

2  x

f’(x) = (-1)(2 + x)

f”(x) = (-1)(-2)(2 + x) = 2(2 + x)

f (x) = (2)(-3)(2 + x) = -6(2 + x)

f(4) (x) = (-6)(-4)(2 + x)-5 = 24(2 + x)-5

7 f(x) = e-x f(0) = e-0 = 1

-x -0 = -1

f'(x) = -e f'(0) = -e

f"(x) = e -x f"(0) = e-0 = 1

f(3) (x) = -e -x f(3) (0) = -e-0 = -1

f(4) (x) = e-x f (4) (0) = e-0 = 1

Using 2,

p (x) = f(0) + f'(0)x + f"(0) (3)

x + f (0) x + 4 2! 3!

Thus, 1 1 1

p (x) = 1 - x + x - x + x = 1 - x + 4 2! 3! 4!

8 f(x) = e4x f(0) = 1

f'(x) = 4e f'(0) = 4

f"(x) = 16e f"(0) = 16

f(3) (x) = 64e4x f (3) (0) = 64

f"(0) 2 (3) 3

f (0) Thus, p 3 (x) = f(0) + f'(0)x + x +

x 2! 3!

= 1 + 4x + 16 x2 + 64 x3 = 1 + 4x + 8x2 + 2! f(x) = (x + 1)3 , 3!

9 f(0) = 1

f'(x) = 3(x + 1)2 , f'(0) = 3

f"(x) = 6(x + 1), f"(0) = 6

f (x) = 6, f (0) = 6

f (x) = 0 f (0) = 0

p (x) = 1 + 3x + 6 x2 + 6 x3 = 1 + 3x + 3x2 + x3 4 2! 3!

(4)

f (0) x

4!

1 x - 1 x + 1 x

32

EXERCISE 2-1 97

Trang 3

10 f(x) = (1 - x)

4

, f(0) = 1

f'(x) = -4(1 - x) , f'(0) = -4

f"(x) = 12(1 - x) , f"(0) = 12

f(3)

(x) = -24(1 - x), f(3)

(0) = -24

12 24

4x + 6x2

- 4x3

x3 = 1 -

1 2 2

f'(x) = (2) =

1  2x 1  2x

-2

f"(x) = -2(1 + 2x) (2) =

= 2 f"(0) = -4

(1  2x)

(3) -3 16 (3)

f (x) = 8(1 + 2x) (2) = (1  2x) f (0) = 16

(3)

2 + f (0) 3

3

2! x

3! x

Thus, p (x) = 0 + 2x - 4 x2

+ 16 x3

+ 8 x3 3!

f(0) = 3

= 1

f'(x) = 3(x  1) f'(0) = 3

 2 2

f"(x) = 9(x  1)

f (x) = 27(x  1) 8/3

f"(0) = -9

f (0) =

27

p 3(x) = f(0) + f'(0)x +

Thus, p (x) = 1 + 1 x - 2

9

f"(0) (3)

f (0)

x2 + x3

x + 10 x = 1 + 1

x + 5 x

Trang 4

13 f(x) = 4

= (x + 16)1/4 f(0) = 2 x 16 1 1

f'(x) = -3/4 f'(0) = 4(x + 16) 32 f"(x) = - 3 (x + 16) f"(0) = - 3 16 1 3 2048

p (x) = 2 + x - x

2 32 4096

14 (A) f(x) = x - 1 f(0) = -1

f'(x) = 4x f'(0) = 0

f"(x) = 12x f"(0) = 0

f(3) (x) = 24x f(3) (0) = 0

f"(0) (3)

Using 2, p (x) = f(0) + f'(0)x + 2 + f (0) 3 3

2! x 3! x

Thus, p3(x) = -1

Now |p 3(x) - f(x)| = |-1 - (x4 - 1)| = |x4 | = |x|4 and |x|4 < 0.1 implies |x| < (0.1)1/4 ≈ 0.562 Therefore, -0.562 < x < 0.562

(B) From part (A),

f(4) (x) = 24 f(4) (0) = 24 (3)

f"(0) Using 2, p (x) = f(0) + f'(0)x + x + f (0) x 4 24 2! 3!

Thus, p 4(x) = -1 + x 4 = -1 + x 4 = x 4 - 1 = f(x) 4!

and |p4(x) - f(x)| = 0 < 0.1 for all x 15 (A) f(x) = x f(0) = 0

f'(x) = 5x f'(0) = 0

f"(x) = 20x f"(0) = 0

f (x) = 60x f (0) = 0

f(4) (x) = 120x f(4) (0) = 0

p4(x) = 0

|p4(x) - f(x)| = |0 - x5

| = |x|5

=

< 0.01 or |x| < (0.01)1/5

= 0.398

Therefore, -0.398 < x < 0.398

(B) f(0) = f'(0) = f"(0) = f(3)

(0) = f(4)

(0)

= 0 f(5)

(x) = 120 and hence f(5)

(0) =

120 p5(x) = 5! x5

= x5

| = 0 < 0.01

(4)

+ f(0)x4

4!

EXERCISE 2-1 99

Trang 5

16 f(x) = x

3

f(1) = 1 f'(x) = 3x2

f'(1) = 3

(1) = 6

p (x) = 1 + 3(x - 1) + 6 (x - 1)2

+ 6 (x - 1)3

= 1 + 3(x - 1) + 3(x - 1)2

+ (x - 1)3

f'(x) = 2x - 6 f'(3) = 0

f"(x) = 2 f"(4) = 2

(x - 3) = 1 + (x - 3)

Trang 6

18 f(x) = ln(2 - x)

f'(x) = -(2 - x)

f"(x) = -(2 - x)

f (x) = -2(2 - x)

f(4)

(x) = -6(2 - x)-4

1

(x - 1)2

= -(x - 1) - 2

f(1) = 0 f'(1) = -1 f"(1) = -1

(1) = -6

-

3

-

4

3 (x - 1) 4(x - 1)

f"(x) = 4e -2x

(3) - 2x

f (x) = -8e

f(0) = 1 f'(0) = -2 f"(0) = 4

(0) = -8

f"(0) (3)

3

4 x 2

-

- 4 x 3

Thus, p (x) = 1 - 2x + 8 x3

= 1 - 2x + 2x2

3

Now, e- 0.5

= f(0.25) ≈ p 3 (0.25)

4

= 1 - 2(0.25) + 2(0.25)2

(0.25)3

= 0.60416667

- 3

Trang 7

20 f(x) = x = x1/2 f(1) = 1

1 x-1/2 1

f'(x) =

f'(1) =

2 2

f"(x) = - 1 x-3/2 f"(1) = - 1

4 4

3 3

f(3) (x) = x-5/2 f(3) (1) =

8 8

15 15

f(4) (x) = - f(4) (1) = -

16 x-7/2 16

Thus, (3) (4)

f"(1)

f (1) f (1) p4(x) = f(1) + f'(1)(x - 1) + (x - 1)2 + (x - 1)3 + (x - 1)4 2! 3! 4!

= 1 + 1 (x - 1) - 1 (x - 1)2 + 3 (x - 1)3 - 15 (x - 1)4 2 4 2! 8  3! 16  4!

1 1 1 5

= 1 +

(x - 1) - (x - 1)2 + 3

- (x - 1)4 2 8 16 (x - 1) 128 Now,

1.2 = f(1.2) ≈ p4(1.2) (1.2 - 1)2 + (1.2 - 1)3

(1.2 - 1)4 = 1 + 1 (1.2 - 1) - 1 1 - 5

2 8 16 128

= 1 + 1 (0.2) - 1 (0.2)2 + 1 (0.2)3 - 5 (0.2)4

2 8 16 128

= 1.0954375

Trang 8

21 f(x) = 1 = (4 - x)

-1

f'(x) = -1(4 - x)-3(-1) = (4 - x) -3

f"(x) = -2(4 - x) (-1) = 1·2(4 - x)

f(4)

(x) = 2·3(-4)(4 - x)-5

(-1) = 1·2·3·4(1 - x)-5

f(n)

(x) = n!(4 - x)-(n+1)

22 f(x) = 4 = 4(1 +x) -x

1  x f'(x) = -4(1 + x)

f"(x) = (-1) (4)(2)(1 + x) = 4(2!)(-1) (1 + x)

M

f(n)

(x) = 4(n!)(-1)n

(1 + x)-(n+1)

23 f(x) = e3x

f'(x) = e 3x

(3) = 3e 3x

f"(x) = 3e3x

e3x

f(3)

(x) = 9e3x

(3) = 27e3x

= 33

e3x

f(4)

(x) = 27e3x

(3) = 81e3x

= 34

e3x

f(n)

(x) = 3n

e3x

24 f(x) = ln(2x + 1)

-1

f'(x) = 2(2x + 1) = (-1) (2x + 1)

(2x +

1)-2

f(3)

(x) = (-1)4

23

(2!)(2x + 1)-3

f(n)

(x) = (-1)n+1

2n

25 f(x) = ln(6 - x)

f'(x) = 1 (-1) = - 1 = -(6 - x)

6 x -2 -2 6 f"(x) = (6 - x) (-1) x

= -(6 - x)

f(4)

(x) = 1·2·3(6 - x)-4

(-1) = -1·2·3(6 -

x)-4

f(n)

(x) = -(n - 1)!(6 - x)-n

Trang 9

26 f (x) = e x/2

1 x/2



f"(x) = ex/2 = 2 ex/2

 2  2

f(3)

(x) = 1 ex/2

3

f (x) = n e x/2

27 From Problem 31,

1 1 2! (3) 3! (n) n! f(0) = , f'(0) = , f"(0) = , f (0) = , … , f (0) =

Thus,

x

+ x + x + 1

x + … +

n 4 42

43

44

4n  1

From problem 32, f (x) = 4(n!)(-1) (1 + x) and

(n) n

The coefficient of xn f (0)



4(n!)( 1)

= 4(-1)n

is n! n!

29.From Problem 33,

=

Thus,

p (x) = 1 + 3x +

n

30.f(x) = ln(2x +

1) From problem 34,

3 2

(n ) n+1 n -n f (n) (0) n+1 n 2

f (x) = (-1) 2 ((n - 1)!)(2x + 1) and n! = (-1) n

Thus, p (x) = 2x - 22 x2 + 23 x3

31 From Problem 35,

1 1 (3) 2! (n) (n  1)!

f(0) = ln 6, f'(0) = - , f"(0) = - , f (0) = - , …, f (0) = -

6 6 6 Thus,

1

1 1 1

p (x) = ln 6 - x - x - x3 - … - x

n

6 2 3 

n  n

EXERCISE 2-1 105

From problem 36, f (n)

(x) = 1 (n) 1

e x/2 and f (0) =

Trang 10

2 n!2

x2

+ 1 x3 1

x2

+xn

2!2 2 3!2 3 n!2 n

f(1) = 2

f(3)

(x) = (-1)3

2(3!)x-4

2(n!)x -(n+1)

and

= 2(-1)

pn(x) = 2 - 2(x - 1) + 2(x - 1)2

- 2(x - 1)3

+ … + 2(-1)n

(x - 1)n

a

f(x) = ln x f(1) = 0 = f(1) = 0

1

f'(x) = x

1 f'(1) = 1 f"(1) 1 1

f"(x) = - f"(1) = -1 2 = 2! = - 2! = - 2

f(3)

(x) =

(1) = 2

(3)

Trang 11

(4) 2  3 (4) (4) 3! 1

4

a f (1)

= -3!

x

f (n)

(x) = f (n) (1) = a

n =

(  1)n  1

(n  1)!

(-1)n+1

(n - 1)! (n) n 1  1)! n  1

= (  1) (n = (  1)

n! n!

Step 4 The nth degree Taylor polynomial is:

1 (x - 1) 2 + 1 (x - 1) 3 - 1 (x - 1) n

p (x) = (x - 1) - (x - 1)4 + … +

35 f(x) = e

x

(n)

f (n) (x) = e x 1

f (  2)

n! n!e

Thus, p (x) = 1 + 1 (x + 2) + 1 (x + 2)2

+ … + 1 (x + 2)n

e2 e2

Trang 12

36.f(x) = x5

+ 1

(A) Fourth-degree Taylor polynomial p4(x) for f at 0 is:

p (x) = f(0) + F’(0) x + F’’(0) x2

(0) x3

(0) x4

f’(x) = 5x + 6x + 16x ; f’(0) = 0

f”(x) = 20x + 12x + 16 ; f”(0) = 16

f (x) = 60x + 12 ; f (0) = 12

f(4)

(x) = 120x ; f

(4)

(0) = 0

p 4(x) = 1 + 8x2

+ 2x3

= 2x3

+ 8x2

+ 1 (B) The degree of the polynomial is 3

+ 1

f”(x) = 30x + 12x ; f”(0) = 0

f (x) = 120x + 12 ; f (0) = 12

f (x) = 360x ; f (0) = 0

f (x) = 720x ; f (0) = 0

f (x) = 720 ; f (0) = 720

f(n)

(x) = 0 for n ≥ 7

Thus, for n = 0, 3 and 6, the nth-degree Taylor polynomial for f at 0 has degree n

f”(x) = 12x ; f”(0) = 0

f (x) = 24x ; f (0) = 0

f (x) = 24 ; f (0) = 24

f(n)

(x) = 0 for n ≥ 5

Thus, for n = 0 and n = 4; the nth degree Taylor polynomial for f at

0 has degree n

EXERCISE 2-1 10

9

Trang 13

39 f(x) = ln(1 + x) f(0) = 0

f"(x) = (1  x) f"(0) = -1

(3) 2 (3)

f (x) = f (0) = 2

(1  x)3

Thus,

x2

x2

x3

p1(x) = x, p 2(x) = x - 2 , p3(x) = x - 2 + 3

x p1(x) p2(x) p3(x) f(x) -0.2 -0.2 -0.22 -0.222667 -0.223144 -0.1 -0.1 -0.105 -0.105333 -0.105361

0.1 0.1 0.095 0.095333 0.09531 0.2 0.2 0.18 0.182667 0.182322

x p1(x) - f(x) p2(x) - f(x) p3(x) - f(x)

-0.2 0.023144 0.003144 0.000477 -0.1 0.005361 0.000361 0.000028

0.1 0.00469 0.00031 0.000023 0.2 0.017678 0.002322 0.000345

Trang 14

40 f(x) = ln(1 + x) f(0) = 0

f'(x) = (1 + x) f'(0) = 1

f"(x) = -(1 + x) f"(0) = -1

f(3)

(x) = 2(1 + x)-3

f(3)

(0) = 2 Thus,

1 2 1 3

p (x) = x - x + x

Using a graphing utility, we find that

|p3(x) - ln(1 + x)| < 0.1 for -0.654 < x < 0.910

Trang 15

41 f(x) = e

x

f(a) = ea

f'(x) = e f'(a) = e

f"(x) = e f"(a) = e

f(3) (x) = ex f(3) (a) = ea

M M

f(n) (x) = ex f(n) (a) = ea

Thus, (3)

(a) p (x) = f(a) + f'(a)(x - a) + (x - a)2 + f 2! 3! (x - a) 3 n

(n) (a)

+ + f (x - a) n n!

= e a + e a (x - a) + ea (x - a) 2 + ea (x - a) 3 + + ea (x - a) n 2! 3! n! = e a  1  (x  a)  1 (x a) 1 (x a)  1 (x a) n   1 2! 3! n!  = e a n k

 (x - a) k 0

k ! 

42 f(x) = ln x -1 f'(x) = x f(3) (x) = (-1)4 (2!)x-3 f(4) (x) = (-1)5 (3!)x-4 f( n) (x) = (-1)n+1 ((n - 1)!)x-n Thus,

p (x) = ln a + 1 (x - a) - 1 n a 2a2 n (  1)k  1 f(a) = ln a

1

f'(a) = a

f"(a) = - 1 2

a

f(3) (a) = (-1)4 (2!) 1

3 a f(4) (a) = (-1)5 (3!) 1 4

a

f (n) (a) = (-1) n+1 ((n - 1)!) 1 n a (x - a)2 + 1 (x - a)3

3a n+1

n

- … + (-1) 1 n (x - a)

na

= ln a +  k (x - a)

Trang 16

43 f(x) = (x + c)n

f'(x) = n(x + c)

f"(x) = n(n - 1)(x + c)n- 2

f(0) = cn

f'(0) = nc

M

f (x) = n!(x + c) f (0) = n!c

f(n)

(x) = n! f(n)

(0) = n!

Thus,

x + n(n 1) c n! cx n!

= c + x + c n-2 x 2 + … + x

(n 1)! 2!(n  2)!

=

cn-kxk





k  0 k!(n k)!

Trang 17

44.Let f(x) be a polynomial of degree k, k ≥ 0 Then

f(x) = a 0 + a 1x + a 2 x2 + a3x3

+ … + a k xk f(0) = a 0

f'(x) = a 1 + 2a 2x + 3a 3x2 + … + ka kxk-1 f'(0) = a 1

f(3)

(x) = 6a 3 + … + k(k - 1)(k - 2)a k xk-3 f

(3)

(0) = 6a 3 = 3!a 3

In general, f (m) m!am for m 0,1,2,K k

(0) = 

for m k

 0

(3)

(n)

f"(0) Since p (x) = f(0) + f'(0)x + 2+ f (0) 3 + … + f (0) n

it follows that pn(x) = f(x) for all n ≥ k

45.f(x) = ex

f(0) = 1

f”(x) = ex

f(k)

(x) = ex

; f

(k)

p (x) = 1 + 1 x + 1 x + … + 1 x + 1x11

Trang 18

For x > 0, ex

> p 11 (x) and hence

Take x = 2(11!)1/11

, then

e x – p (x) > 1 (2(11!)1/11 )11 = 211 = 2048 10 11! So, there exist values of x for which |p 10(x) – ex | = |ex – p 10 (x)| ≥ 100 46.f(x) = 1 = x-1 f(1) = 1 f’(x) = -x-2 ; f’(1) = -1 = -1! or f (1) = -1

1!

f”(x) = (-1)(-2)x-3 ; f”(x) = 2 = 2! or f (1) = 1

2!

M

f(k) (1)

f(k) (1) = (-1)k k! or = (-1)k

k!

Therefore,

p 12 (x) = 1(x1) + (x – 1)2 - - (x – 1)11 + (x – 1)12 , and

1

|p12(x) – f(x)| = 1 (x  1)  (x  1)2  L  (x  1)12 x 1 |x – x(x – 1) + x(x – 1)2 - … + x(x – 1)12 – 1| = x If we take x = 0.001, then 1 = 1000 and every term involving x on x

the right-hand side of the above equation is positive

and smaller than x

Thus,

|p12(x) – f(x)| ≥ 1000(1 – 13x) = 1000(1 – 0.013) =

987 So there exist values of x ≠ 0 for

which |p12(x) – f(x)| ≥ 100

EXERCISE 2-1 115

Trang 19

47.ln 1.1

Let f(x) = ln(1 + x)

= (1 + x)-1

f’(x) =

f”(x) = -(1 + x)

f(3)

(x) = 2(1 + x)-3

f(n)

(x) = (n – 1)!(-1)n-1

(1 + x)-n

Rn(x) = f(n  1)(t)xn  1

for some t between 0 and x

(t)| = |n!(-1)n

(1 + t)-(n+1)

| = n!(1 + t)-(n+1)

< n! for t >

0 Therefore,

|R (x)| = f(n  1)(t)xn 1

<

n! x n  1

=

x n  1

n (n  1)! (n  1)! n 1

and

(0.1)n 1

R (0.1) <

n (n  1)

For n = 4, |R (0.1)| <

4 = 0.000 002 < 0.000 005, and hence the

5

x2

+ x3

- x4

polynomial with the lowest degree is p (x) = x - 1 1 1

4 2 3 4 which has degree 4

ln(1.1) ≈ p (0.1) = 0.1 - 1 (0.1) + 1 (0.1) - 1 (0.1)

4 2 3 4

≈ 0.095308 CHAPTER 2 REVIEW 209

Ngày đăng: 28/02/2019, 15:49

TỪ KHÓA LIÊN QUAN

w