Karl Byleen
x f’(x) = -x-2
(Using Power Rule)
6
f(3)
(x) = -6x-4
= - x 4
2 f(x) = ln(1 + x)
1
= (1 + x)-1
f'(x) = 1 x
f"(x) = (-1)(1 + x) (Using Power Rule)
f(3)
(x) = (-1)(-2)(1 + x)-3
(Using Power Rule)
2
=
(1 x)3
f’(x) = -e
f”(x) = e
f (x) = -e
4 f(x) = ln(1 + 3x)
3 = 3(1 + 3x)
f’(x) =
1 3x
(Using Power
Rule) f(3)
(x) = (-9)(-2)(3)(1 + 3x)-3
= 54(1 + 3x)-3
f(4)
(x) = (54)(-3)(3)(1 + 3x)-4
= -486(1 + 3x)-4 486
=
(1 3x)4
5 f(x) = e5x
f(3)
= 53
e5x
f(4)
(x) = 53
(5)e5x
= 54
e5x
= 625e5x
96 TAYLOR POLYNOMIALS AND INFINITE SERIES
Trang 21
= (2 + x)-1
6 f(x) =
2 x
f’(x) = (-1)(2 + x)
f”(x) = (-1)(-2)(2 + x) = 2(2 + x)
f (x) = (2)(-3)(2 + x) = -6(2 + x)
f(4) (x) = (-6)(-4)(2 + x)-5 = 24(2 + x)-5
7 f(x) = e-x f(0) = e-0 = 1
-x -0 = -1
f'(x) = -e f'(0) = -e
f"(x) = e -x f"(0) = e-0 = 1
f(3) (x) = -e -x f(3) (0) = -e-0 = -1
f(4) (x) = e-x f (4) (0) = e-0 = 1
Using 2,
p (x) = f(0) + f'(0)x + f"(0) (3)
x + f (0) x + 4 2! 3!
Thus, 1 1 1
p (x) = 1 - x + x - x + x = 1 - x + 4 2! 3! 4!
8 f(x) = e4x f(0) = 1
f'(x) = 4e f'(0) = 4
f"(x) = 16e f"(0) = 16
f(3) (x) = 64e4x f (3) (0) = 64
f"(0) 2 (3) 3
f (0) Thus, p 3 (x) = f(0) + f'(0)x + x +
x 2! 3!
= 1 + 4x + 16 x2 + 64 x3 = 1 + 4x + 8x2 + 2! f(x) = (x + 1)3 , 3!
9 f(0) = 1
f'(x) = 3(x + 1)2 , f'(0) = 3
f"(x) = 6(x + 1), f"(0) = 6
f (x) = 6, f (0) = 6
f (x) = 0 f (0) = 0
p (x) = 1 + 3x + 6 x2 + 6 x3 = 1 + 3x + 3x2 + x3 4 2! 3!
(4)
f (0) x
4!
1 x - 1 x + 1 x
32
EXERCISE 2-1 97
Trang 310 f(x) = (1 - x)
4
, f(0) = 1
f'(x) = -4(1 - x) , f'(0) = -4
f"(x) = 12(1 - x) , f"(0) = 12
f(3)
(x) = -24(1 - x), f(3)
(0) = -24
12 24
4x + 6x2
- 4x3
x3 = 1 -
1 2 2
f'(x) = (2) =
1 2x 1 2x
-2
f"(x) = -2(1 + 2x) (2) =
= 2 f"(0) = -4
(1 2x)
(3) -3 16 (3)
f (x) = 8(1 + 2x) (2) = (1 2x) f (0) = 16
(3)
2 + f (0) 3
3
2! x
3! x
Thus, p (x) = 0 + 2x - 4 x2
+ 16 x3
+ 8 x3 3!
f(0) = 3
= 1
f'(x) = 3(x 1) f'(0) = 3
2 2
f"(x) = 9(x 1)
f (x) = 27(x 1) 8/3
f"(0) = -9
f (0) =
27
p 3(x) = f(0) + f'(0)x +
Thus, p (x) = 1 + 1 x - 2
9
f"(0) (3)
f (0)
x2 + x3
x + 10 x = 1 + 1
x + 5 x
Trang 413 f(x) = 4
= (x + 16)1/4 f(0) = 2 x 16 1 1
f'(x) = -3/4 f'(0) = 4(x + 16) 32 f"(x) = - 3 (x + 16) f"(0) = - 3 16 1 3 2048
p (x) = 2 + x - x
2 32 4096
14 (A) f(x) = x - 1 f(0) = -1
f'(x) = 4x f'(0) = 0
f"(x) = 12x f"(0) = 0
f(3) (x) = 24x f(3) (0) = 0
f"(0) (3)
Using 2, p (x) = f(0) + f'(0)x + 2 + f (0) 3 3
2! x 3! x
Thus, p3(x) = -1
Now |p 3(x) - f(x)| = |-1 - (x4 - 1)| = |x4 | = |x|4 and |x|4 < 0.1 implies |x| < (0.1)1/4 ≈ 0.562 Therefore, -0.562 < x < 0.562
(B) From part (A),
f(4) (x) = 24 f(4) (0) = 24 (3)
f"(0) Using 2, p (x) = f(0) + f'(0)x + x + f (0) x 4 24 2! 3!
Thus, p 4(x) = -1 + x 4 = -1 + x 4 = x 4 - 1 = f(x) 4!
and |p4(x) - f(x)| = 0 < 0.1 for all x 15 (A) f(x) = x f(0) = 0
f'(x) = 5x f'(0) = 0
f"(x) = 20x f"(0) = 0
f (x) = 60x f (0) = 0
f(4) (x) = 120x f(4) (0) = 0
p4(x) = 0
|p4(x) - f(x)| = |0 - x5
| = |x|5
=
< 0.01 or |x| < (0.01)1/5
= 0.398
Therefore, -0.398 < x < 0.398
(B) f(0) = f'(0) = f"(0) = f(3)
(0) = f(4)
(0)
= 0 f(5)
(x) = 120 and hence f(5)
(0) =
120 p5(x) = 5! x5
= x5
| = 0 < 0.01
(4)
+ f(0)x4
4!
EXERCISE 2-1 99
Trang 516 f(x) = x
3
f(1) = 1 f'(x) = 3x2
f'(1) = 3
(1) = 6
p (x) = 1 + 3(x - 1) + 6 (x - 1)2
+ 6 (x - 1)3
= 1 + 3(x - 1) + 3(x - 1)2
+ (x - 1)3
f'(x) = 2x - 6 f'(3) = 0
f"(x) = 2 f"(4) = 2
(x - 3) = 1 + (x - 3)
Trang 618 f(x) = ln(2 - x)
f'(x) = -(2 - x)
f"(x) = -(2 - x)
f (x) = -2(2 - x)
f(4)
(x) = -6(2 - x)-4
1
(x - 1)2
= -(x - 1) - 2
f(1) = 0 f'(1) = -1 f"(1) = -1
(1) = -6
-
3
-
4
3 (x - 1) 4(x - 1)
f"(x) = 4e -2x
(3) - 2x
f (x) = -8e
f(0) = 1 f'(0) = -2 f"(0) = 4
(0) = -8
f"(0) (3)
3
4 x 2
-
- 4 x 3
Thus, p (x) = 1 - 2x + 8 x3
= 1 - 2x + 2x2
3
Now, e- 0.5
= f(0.25) ≈ p 3 (0.25)
4
= 1 - 2(0.25) + 2(0.25)2
(0.25)3
= 0.60416667
- 3
Trang 720 f(x) = x = x1/2 f(1) = 1
1 x-1/2 1
f'(x) =
f'(1) =
2 2
f"(x) = - 1 x-3/2 f"(1) = - 1
4 4
3 3
f(3) (x) = x-5/2 f(3) (1) =
8 8
15 15
f(4) (x) = - f(4) (1) = -
16 x-7/2 16
Thus, (3) (4)
f"(1)
f (1) f (1) p4(x) = f(1) + f'(1)(x - 1) + (x - 1)2 + (x - 1)3 + (x - 1)4 2! 3! 4!
= 1 + 1 (x - 1) - 1 (x - 1)2 + 3 (x - 1)3 - 15 (x - 1)4 2 4 2! 8 3! 16 4!
1 1 1 5
= 1 +
(x - 1) - (x - 1)2 + 3
- (x - 1)4 2 8 16 (x - 1) 128 Now,
1.2 = f(1.2) ≈ p4(1.2) (1.2 - 1)2 + (1.2 - 1)3
(1.2 - 1)4 = 1 + 1 (1.2 - 1) - 1 1 - 5
2 8 16 128
= 1 + 1 (0.2) - 1 (0.2)2 + 1 (0.2)3 - 5 (0.2)4
2 8 16 128
= 1.0954375
Trang 821 f(x) = 1 = (4 - x)
-1
f'(x) = -1(4 - x)-3(-1) = (4 - x) -3
f"(x) = -2(4 - x) (-1) = 1·2(4 - x)
f(4)
(x) = 2·3(-4)(4 - x)-5
(-1) = 1·2·3·4(1 - x)-5
f(n)
(x) = n!(4 - x)-(n+1)
22 f(x) = 4 = 4(1 +x) -x
1 x f'(x) = -4(1 + x)
f"(x) = (-1) (4)(2)(1 + x) = 4(2!)(-1) (1 + x)
M
f(n)
(x) = 4(n!)(-1)n
(1 + x)-(n+1)
23 f(x) = e3x
f'(x) = e 3x
(3) = 3e 3x
f"(x) = 3e3x
e3x
f(3)
(x) = 9e3x
(3) = 27e3x
= 33
e3x
f(4)
(x) = 27e3x
(3) = 81e3x
= 34
e3x
f(n)
(x) = 3n
e3x
24 f(x) = ln(2x + 1)
-1
f'(x) = 2(2x + 1) = (-1) (2x + 1)
(2x +
1)-2
f(3)
(x) = (-1)4
23
(2!)(2x + 1)-3
f(n)
(x) = (-1)n+1
2n
25 f(x) = ln(6 - x)
f'(x) = 1 (-1) = - 1 = -(6 - x)
6 x -2 -2 6 f"(x) = (6 - x) (-1) x
= -(6 - x)
f(4)
(x) = 1·2·3(6 - x)-4
(-1) = -1·2·3(6 -
x)-4
f(n)
(x) = -(n - 1)!(6 - x)-n
Trang 926 f (x) = e x/2
1 x/2
f"(x) = ex/2 = 2 ex/2
2 2
f(3)
(x) = 1 ex/2
3
f (x) = n e x/2
27 From Problem 31,
1 1 2! (3) 3! (n) n! f(0) = , f'(0) = , f"(0) = , f (0) = , … , f (0) =
Thus,
x
+ x + x + 1
x + … +
n 4 42
43
44
4n 1
From problem 32, f (x) = 4(n!)(-1) (1 + x) and
(n) n
The coefficient of xn f (0)
4(n!)( 1)
= 4(-1)n
is n! n!
29.From Problem 33,
=
Thus,
p (x) = 1 + 3x +
n
30.f(x) = ln(2x +
1) From problem 34,
3 2
(n ) n+1 n -n f (n) (0) n+1 n 2
f (x) = (-1) 2 ((n - 1)!)(2x + 1) and n! = (-1) n
Thus, p (x) = 2x - 22 x2 + 23 x3
31 From Problem 35,
1 1 (3) 2! (n) (n 1)!
f(0) = ln 6, f'(0) = - , f"(0) = - , f (0) = - , …, f (0) = -
6 6 6 Thus,
1
1 1 1
p (x) = ln 6 - x - x - x3 - … - x
n
6 2 3
n n
EXERCISE 2-1 105
From problem 36, f (n)
(x) = 1 (n) 1
e x/2 and f (0) =
Trang 102 n!2
x2
+ 1 x3 1
x2
+xn
2!2 2 3!2 3 n!2 n
f(1) = 2
f(3)
(x) = (-1)3
2(3!)x-4
2(n!)x -(n+1)
and
= 2(-1)
pn(x) = 2 - 2(x - 1) + 2(x - 1)2
- 2(x - 1)3
+ … + 2(-1)n
(x - 1)n
a
f(x) = ln x f(1) = 0 = f(1) = 0
1
f'(x) = x
1 f'(1) = 1 f"(1) 1 1
f"(x) = - f"(1) = -1 2 = 2! = - 2! = - 2
f(3)
(x) =
(1) = 2
(3)
Trang 11
(4) 2 3 (4) (4) 3! 1
4
a f (1)
= -3!
x
f (n)
(x) = f (n) (1) = a
n =
( 1)n 1
(n 1)!
(-1)n+1
(n - 1)! (n) n 1 1)! n 1
= ( 1) (n = ( 1)
n! n!
Step 4 The nth degree Taylor polynomial is:
1 (x - 1) 2 + 1 (x - 1) 3 - 1 (x - 1) n
p (x) = (x - 1) - (x - 1)4 + … +
35 f(x) = e
x
(n)
f (n) (x) = e x 1
f ( 2)
n! n!e
Thus, p (x) = 1 + 1 (x + 2) + 1 (x + 2)2
+ … + 1 (x + 2)n
e2 e2
Trang 1236.f(x) = x5
+ 1
(A) Fourth-degree Taylor polynomial p4(x) for f at 0 is:
p (x) = f(0) + F’(0) x + F’’(0) x2
(0) x3
(0) x4
f’(x) = 5x + 6x + 16x ; f’(0) = 0
f”(x) = 20x + 12x + 16 ; f”(0) = 16
f (x) = 60x + 12 ; f (0) = 12
f(4)
(x) = 120x ; f
(4)
(0) = 0
p 4(x) = 1 + 8x2
+ 2x3
= 2x3
+ 8x2
+ 1 (B) The degree of the polynomial is 3
+ 1
f”(x) = 30x + 12x ; f”(0) = 0
f (x) = 120x + 12 ; f (0) = 12
f (x) = 360x ; f (0) = 0
f (x) = 720x ; f (0) = 0
f (x) = 720 ; f (0) = 720
f(n)
(x) = 0 for n ≥ 7
Thus, for n = 0, 3 and 6, the nth-degree Taylor polynomial for f at 0 has degree n
f”(x) = 12x ; f”(0) = 0
f (x) = 24x ; f (0) = 0
f (x) = 24 ; f (0) = 24
f(n)
(x) = 0 for n ≥ 5
Thus, for n = 0 and n = 4; the nth degree Taylor polynomial for f at
0 has degree n
EXERCISE 2-1 10
9
Trang 1339 f(x) = ln(1 + x) f(0) = 0
f"(x) = (1 x) f"(0) = -1
(3) 2 (3)
f (x) = f (0) = 2
(1 x)3
Thus,
x2
x2
x3
p1(x) = x, p 2(x) = x - 2 , p3(x) = x - 2 + 3
x p1(x) p2(x) p3(x) f(x) -0.2 -0.2 -0.22 -0.222667 -0.223144 -0.1 -0.1 -0.105 -0.105333 -0.105361
0.1 0.1 0.095 0.095333 0.09531 0.2 0.2 0.18 0.182667 0.182322
x p1(x) - f(x) p2(x) - f(x) p3(x) - f(x)
-0.2 0.023144 0.003144 0.000477 -0.1 0.005361 0.000361 0.000028
0.1 0.00469 0.00031 0.000023 0.2 0.017678 0.002322 0.000345
Trang 1440 f(x) = ln(1 + x) f(0) = 0
f'(x) = (1 + x) f'(0) = 1
f"(x) = -(1 + x) f"(0) = -1
f(3)
(x) = 2(1 + x)-3
f(3)
(0) = 2 Thus,
1 2 1 3
p (x) = x - x + x
Using a graphing utility, we find that
|p3(x) - ln(1 + x)| < 0.1 for -0.654 < x < 0.910
Trang 1541 f(x) = e
x
f(a) = ea
f'(x) = e f'(a) = e
f"(x) = e f"(a) = e
f(3) (x) = ex f(3) (a) = ea
M M
f(n) (x) = ex f(n) (a) = ea
Thus, (3)
(a) p (x) = f(a) + f'(a)(x - a) + (x - a)2 + f 2! 3! (x - a) 3 n
(n) (a)
+ + f (x - a) n n!
= e a + e a (x - a) + ea (x - a) 2 + ea (x - a) 3 + + ea (x - a) n 2! 3! n! = e a 1 (x a) 1 (x a) 1 (x a) 1 (x a) n 1 2! 3! n! = e a n k
(x - a) k 0
k !
42 f(x) = ln x -1 f'(x) = x f(3) (x) = (-1)4 (2!)x-3 f(4) (x) = (-1)5 (3!)x-4 f( n) (x) = (-1)n+1 ((n - 1)!)x-n Thus,
p (x) = ln a + 1 (x - a) - 1 n a 2a2 n ( 1)k 1 f(a) = ln a
1
f'(a) = a
f"(a) = - 1 2
a
f(3) (a) = (-1)4 (2!) 1
3 a f(4) (a) = (-1)5 (3!) 1 4
a
f (n) (a) = (-1) n+1 ((n - 1)!) 1 n a (x - a)2 + 1 (x - a)3
3a n+1
n
- … + (-1) 1 n (x - a)
na
= ln a + k (x - a)
Trang 1643 f(x) = (x + c)n
f'(x) = n(x + c)
f"(x) = n(n - 1)(x + c)n- 2
f(0) = cn
f'(0) = nc
M
f (x) = n!(x + c) f (0) = n!c
f(n)
(x) = n! f(n)
(0) = n!
Thus,
x + n(n 1) c n! cx n!
= c + x + c n-2 x 2 + … + x
(n 1)! 2!(n 2)!
=
cn-kxk
k 0 k!(n k)!
Trang 1744.Let f(x) be a polynomial of degree k, k ≥ 0 Then
f(x) = a 0 + a 1x + a 2 x2 + a3x3
+ … + a k xk f(0) = a 0
f'(x) = a 1 + 2a 2x + 3a 3x2 + … + ka kxk-1 f'(0) = a 1
f(3)
(x) = 6a 3 + … + k(k - 1)(k - 2)a k xk-3 f
(3)
(0) = 6a 3 = 3!a 3
In general, f (m) m!am for m 0,1,2,K k
(0) =
for m k
0
(3)
(n)
f"(0) Since p (x) = f(0) + f'(0)x + 2+ f (0) 3 + … + f (0) n
it follows that pn(x) = f(x) for all n ≥ k
45.f(x) = ex
f(0) = 1
f”(x) = ex
f(k)
(x) = ex
; f
(k)
p (x) = 1 + 1 x + 1 x + … + 1 x + 1x11
Trang 18For x > 0, ex
> p 11 (x) and hence
Take x = 2(11!)1/11
, then
e x – p (x) > 1 (2(11!)1/11 )11 = 211 = 2048 10 11! So, there exist values of x for which |p 10(x) – ex | = |ex – p 10 (x)| ≥ 100 46.f(x) = 1 = x-1 f(1) = 1 f’(x) = -x-2 ; f’(1) = -1 = -1! or f (1) = -1
1!
f”(x) = (-1)(-2)x-3 ; f”(x) = 2 = 2! or f (1) = 1
2!
M
f(k) (1)
f(k) (1) = (-1)k k! or = (-1)k
k!
Therefore,
p 12 (x) = 1 – (x – 1) + (x – 1)2 - - (x – 1)11 + (x – 1)12 , and
1
|p12(x) – f(x)| = 1 (x 1) (x 1)2 L (x 1)12 x 1 |x – x(x – 1) + x(x – 1)2 - … + x(x – 1)12 – 1| = x If we take x = 0.001, then 1 = 1000 and every term involving x on x
the right-hand side of the above equation is positive
and smaller than x
Thus,
|p12(x) – f(x)| ≥ 1000(1 – 13x) = 1000(1 – 0.013) =
987 So there exist values of x ≠ 0 for
which |p12(x) – f(x)| ≥ 100
EXERCISE 2-1 115
Trang 1947.ln 1.1
Let f(x) = ln(1 + x)
= (1 + x)-1
f’(x) =
f”(x) = -(1 + x)
f(3)
(x) = 2(1 + x)-3
f(n)
(x) = (n – 1)!(-1)n-1
(1 + x)-n
Rn(x) = f(n 1)(t)xn 1
for some t between 0 and x
(t)| = |n!(-1)n
(1 + t)-(n+1)
| = n!(1 + t)-(n+1)
< n! for t >
0 Therefore,
|R (x)| = f(n 1)(t)xn 1
<
n! x n 1
=
x n 1
n (n 1)! (n 1)! n 1
and
(0.1)n 1
R (0.1) <
n (n 1)
For n = 4, |R (0.1)| <
4 = 0.000 002 < 0.000 005, and hence the
5
x2
+ x3
- x4
polynomial with the lowest degree is p (x) = x - 1 1 1
4 2 3 4 which has degree 4
ln(1.1) ≈ p (0.1) = 0.1 - 1 (0.1) + 1 (0.1) - 1 (0.1)
4 2 3 4
≈ 0.095308 CHAPTER 2 REVIEW 209