1. Trang chủ
  2. » Luận Văn - Báo Cáo

Mật mã dữ liệu ảnh ứng dụng kỹ thuật hỗn loạn.

150 69 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 150
Dung lượng 20,79 MB

Nội dung

THÔNG TIN TÓM TẮT VỀ NHỮNG KẾT LUẬN MỚI CỦA LUẬN ÁN TIẾN SĨ (Thông tin đưa lên trang Web) Tên luận án: Mật mã dữ liệu ảnh ứng dụng kỹ thuật hỗn loạn. Ngành: Kỹ thuật điện tử Mã số: 9520203 Nghiên cứu sinh: Hoàng Xuân Thành Người hướng dẫn khoa học: PGS.TS. Hoàng Mạnh Thắng Cơ sở đào tạo: Trường Đại học Bách khoa Hà Nội TÓM TẮT KẾT LUẬN MỚI CỦA LUẬN ÁN 1. Luận án đã nghiên cứu chi tiết về hệ mật mã hỗn loạn có cấu trúc SPN và ứng dụng để mật mã dữ liệu ảnh. Các thuộc tính của hệ hỗn loạn cho thấy sự tương đồng với các đặc trưng cần có trong các hệ mật mã. Các thuộc tính của hệ hỗn loạn gồm nhạy với điều kiện đầu, sự phức tạp trong đặc tính động và khó đoán được trạng thái của hệ. Qua nghiên cứu cho thấy, hệ hỗn loạn rời rạc theo thời gian thường được dùng để thiết kế lên hệ mật mã. Các tham số của hệ hỗn loạn được ứng dụng vào việc giấu tin gồm tham số hệ thống, số lần lặp, biến trạng thái, và điều kiện đầu. Các thuộc tính của hệ hỗn loạn được áp dụng vào thiết kế hệ mật mã thông qua các tham số có thể can thiệp và thu nhận được theo nhiều cách khác nhau. Hơn nữa, dữ liệu ảnh có những đặc trưng phân bố thông tin và bit dữ liệu điển hình. Các đặc trưng này được khai thác nhằm thiết kế ra các hệ mật mã phù hợp với dữ liệu và làm việc hiệu quả. 2. Cấu trúc SPN đã được xem là cung cấp khả năng đảm bảo an toàn mật mã tốt nhất. Phần lớn các hệ mật mã hỗn loạn hiện nay được xây dựng theo mô hình mật mã đối xứng dựa trên cấu trúc SPN đều đáp ứng được khả năng đảm bảo an toàn. Tuy nhiên, mặc dù một số hệ mật mã hỗn loạn được xây dựng dựa trên cấu trúc SPN, nhưng trong quá trình thiết kế vẫn tồn tại các điểm chưa chặt chẽ để trở thành các lỗ hổng. Các lỗ hổng đó được khai thác để phân tích mã thành công. Phân tích các lỗ hổng của các hệ mật mã giúp nhà thiết kế và người ứng dụng hệ mật mã hỗn loạn tránh được những nhược điểm này. Kết luận, các nội dung được nghiên cứu này đã được áp dụng để thiết kế ra các hai hệ mật mã làm việc ở mức bit và góp phần phân tích mã và chỉ ra phương pháp khắc phục cho hệ mật mã được đề xuất bởi W. Zhang và các đồng nghiệp.

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HOÀNG XUÂN THÀNH MẬT Mà DỮ LIỆU ẢNH ỨNG DỤNG KỸ THUẬT HỖN LOẠN LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỆN TỬ HÀ NỘI - 2019 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HOÀNG XUÂN THÀNH MẬT Mà DỮ LIỆU ẢNH ỨNG DỤNG KỸ THUẬT HỖN LOẠN Ngành: Kỹ thuật điện tử Mã số: 9520203 LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỆN TỬ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS HOÀNG MẠNH THẮNG HÀ NỘI - 2019 LỜI CAM ĐOAN Tôi xin cam đoan kết trình bày Luận án cơng trình nghiên cứu tơi hướng dẫn PGS.TS Hoàng Mạnh Thắng Các số liệu, kết trình bày luận án hồn tồn trung thực chưa công bố cơng trình trước Các kết sử dụng tham khảo trích dẫn đầy đủ theo quy định Hà nội, ngày 06 tháng 11 năm 2019 Tác giả Hoàng Xuân Thành LỜI CÁM ƠN Để hồn thành Luận án này, tơi xin gửi lời biết ơn sâu sắc đến Thày cô Bộ mơn Điện tử Kỹ thuật máy tính, Viện Điện tử–Viễn thông hỗ trợ, giúp đỡ động viên tơi suốt q trình làm luận án tiến sĩ Trường Đại học Bách khoa Hà Nội Tôi gửi lời cám ơn đến người hướng dẫn, PGS Hoàng Mạnh Thắng, người bảo định hướng cho trình nghiên cứu Xin cám ơn nhiều! Hà nội, ngày 06 tháng 11 năm 2019 Mục lục Trang DANH MỤC CÁC TỪ VIẾT TẮT iv DANH SÁCH HÌNH VẼ vii DANH SÁCH BẢNG x MỞ ĐẦU Chương 1: TỔNG QUAN VỀ HÀM HỖN LOẠN VÀ ẢNH SỐ 1.1 Giới thiệu 1.2 Mật mã đại phân loại .7 1.2.1 Định nghĩa 1.2.2 Phân loại mật mã 1.3 Hệ thống hỗn loạn 11 1.3.1 Hệ hỗn loạn liên tục theo thời gian 11 1.3.2 Hệ hỗn loạn rời rạc theo thời gian 12 1.3.2.1 Hàm Logistic 13 1.3.2.2 Hàm Henon 13 1.3.2.3 Hàm Cat 14 1.3.2.4 Hàm hỗn loạn Cat-Hadamard 14 1.3.2.5 Hàm Standard .15 1.3.2.6 Hàm Skew tent 15 1.3.2.7 Hàm Chebyshev 16 1.3.2.8 Hàm hỗn loạn không gian-thời gian 16 1.4 Các thuộc tính hàm hỗn loạn phù hợp cho ứng dụng mật mã 16 1.4.1 Các thuộc tính 16 1.4.2 Các tham số tính chất hàm hỗn loạn dùng mật mã 18 1.5 Tạo chuỗi ngẫu nhiên dùng hàm hỗn loạn 20 1.5.1 Tạo chuỗi bit ngẫu nhiên 21 1.5.2 Tạo chuỗi số giả ngẫu nhiên 22 1.6 Ảnh số đặc điểm 23 1.6.1 Biểu diễn ảnh số 23 1.6.2 Các đặc trưng liệu ảnh 24 1.7 Kết luận 26 i Chương 2: MẬT Mà ẢNH Ở MỨC BIT ỨNG DỤNG KỸ THUẬT HỖN LOẠN 27 2.1 Giới thiệu 27 2.2 Mơ hình mật mã cấu trúc SPN 28 2.2.1 Hoán vị điểm ảnh sử dụng hỗn loạn 30 2.2.1.1 Các chế hoán vị liệu cho ảnh .31 2.2.1.2 Luật hoán vị dựa vào biến trạng thái 31 2.2.1.3 Luật hốn vị dựa vào đặc tính động hàm hỗn loạn rời rạc 35 2.2.1.4 Đánh giá hiệu phép hoán vị 37 2.2.2 Phép thay sử dụng hỗn loạn 40 2.2.2.1 Phép thay không tạo lan truyền 40 2.2.2.2 Thay có lan truyền 42 2.3 Đề xuất hệ mật mã hỗn loạn làm việc mức bit .43 2.3.1 Đề xuất 1: Hệ mật mã dựa tác động lên đặc tính động hàm hỗn loạn 44 2.3.1.1 Bộ mật mã .45 2.3.1.2 Bộ giải mật mã 48 2.3.1.3 Kết mô 48 2.3.1.4 Phân tích khả bảo mật 49 2.3.1.5 Kết thiết kế mạch cứng 53 2.3.2 Đề xuất 2: Hệ mật mã hỗn loạn cho ảnh mức bit 60 2.3.2.1 Giải thuật mật mã dùng hàm hỗn loạn Cat-Hadamard 60 2.3.2.2 Giải thuật giải mật 62 2.3.2.3 Chi phí tính toán 62 2.3.2.4 Giải thuật phân phối khóa 63 2.3.2.5 Phân tích khả bảo mật 64 2.4 Kết luận 67 Chương 3: PHÂN TÍCH MẬT Mà HỖN LOẠN CÓ CẤU TRÚC SPN 69 3.1 Giới thiệu 69 3.2 Một số qui ước phân tích mã 71 3.3 Mô tả hệ mật mã hỗn loạn đề xuất W Zhang 71 3.4 Đề xuất 3: Phân tích hệ mật mã hỗn loạn có cấu trúc SPN với vịng lặp mã75 3.4.1 Tấn cơng lựa chọn rõ 76 3.4.1.1 Tấn cơng vào q trình hốn vị 76 3.4.1.2 Tấn công vào khuếch tán 79 ii 3.4.2 Tấn công lựa chọn mã 83 3.4.2.1 Tấn cơng q trình hốn vị ngược 83 3.4.2.2 Tấn công khuếch tán ngược 87 3.4.3 Ước lượng thời gian công 90 3.4.3.1 Thời gian cơng hốn vị 90 3.4.3.2 Thời gian công khuếch tán .91 3.4.4 Một số bàn luận công vòng lặp mã 92 3.5 Đề xuất 4: Phân tích mật mã hỗn loạn có cấu trúc SPN với nhiều vịng lặp mã 93 3.5.1 Giải thuật mật mã giải mật nhiều vòng lặp mã 93 3.5.2 Phân tích mã 95 3.5.2.1 Nhận diện điểm yếu hệ mật mã 96 3.5.2.2 Khôi phục luật hoán vị 101 3.5.3 Đề xuất phương pháp nâng cao bảo mật cho hệ mật mã .110 3.5.4 Kết luận .120 KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN 121 DANH MỤC CƠNG TRÌNH CÔNG BỐ CỦA LUẬN ÁN 123 TÀI LIỆU THAM KHẢO 124 iii Danh sách từ viết tắt VIẾT TẮT TIẾNG ANH TIẾNG VIỆT 1D One-dimention Một chiều tự 2D Two-dimention Hai chiều tự AES Advanced Encryption System Hệ mật mã tiên tiến BIC Bit Independence Criteria Tiêu chí độc lập bit đầu CCA Chosen-Ciphertext Attack Tấn công lựa chọn mã CML Coupled Map Lattice Ghép hàm hỗn loạn COA Ciphertext-Only Attack Tấn công có mã CPA Chosen-Plaintext Attack Tấn cơng lựa chọn rõ Cdr Ciphertext difference rate Tỷ lệ sai khác mã Cdr Tỷ lệ sai khác hai mã thu (Cdr) DBAP Distance Between Adjacent Pixels Khoảng cách điểm ảnh lân cận FIPS 199 Federal Information Processing Bản công cố tiêu chuẩn xử lý Standard Publication 199 thông tin liên bang 199 HSV Hue, Saturation, and Value ID Initial for Diffusion Giá trị khởi đầu cho khuếch tán IP Initial Vector/Value Giá trị/vectơ khởi đầu KPA Known-Plaintext Attack Tấn công biết rõ LFSR Linear Feedback Shift Register Thanh ghi dịch hồi tiếp tuyến tính NIST National Institute of Standards Viện quốc gia chuẩn công NPCR and Technology nghệ Number of Pixels Change Rate Tỷ lệ số điểm ảnh thay đổi giá trị PRESENT PWLCM Mã hạng nhẹ PRESENT Piece-wise Linear Chaotic Map Hàm hỗn loạn gồm đoạn tuyến tính PAPC Percentage of adjacent pixels Phần trăm điểm ảnh lân cận count PKI Public Key Infrastructure Nền tảng khóa cơng khai iv PV Primary vertex Điểm sơ cấp RGB Red, Green, and Blue UACI Unified Average Changing Inten- Cường độ thay đổi trung bình sity thống SAC Strict Avalanche Criterion Tiêu chí thác chặt SAFER Secure And Fast Encryption Rou- Hàm mật mã hóa nhanh an tồn tine SPN SV Substitution-Permutation Net- Mạng hốn vị-thay thế; cấu trúc work SPN Secondary vertex Điểm thứ cấp Attractor Vùng hút Asymmetric Bất đối xứng Avanlanche Hiệu ứng thác lũ, hiệu ứng tuyết lở Back neighbor Lân cận sau Bifurcation Phân nhánh Bitmap Ảnh biểu diễn dạng ma trận điểm ảnh Back neighbor Lân cận sau Confusion Tính chất lộn xộn Ciphertext Văn mã hóa, mã Ciphertext word Từ mã Cryptanalysis Thám mã; phân tích mã; phá mã Cryptology Mật mã học Deciphering algorithm Thuật tốn giải mã Diffusion Tính chất khuếch tán Enciphering algorithm Thuật tốn mã hóa Enciphering key Khóa mã hóa Front neighbor Lân cận trước Histogram Biểu đồ phân bố Inverse permutation Giải hốn vị; Khơi phục hốn vị; Hốn vị ngược Inverse diffusion Giải khuếch tán; Khôi phục khuếch tán; Khuếch tán ngược Main track Đường chính; nhánh v Plaintext Văn trơn, rõ Plaintext Văn trơn, rõ Plaintext word Từ rõ Private key Khóa mật Public key Khóa cơng khai Raster Ảnh biểu diễn dạng ma trận điểm ảnh Side track Đường phụ; nhánh phụ Steganography Phương pháp giấu tin ảnh Symmetric Đối xứng Symmetric-key algorithms Thuật tốn khóa đối xứng Topologically transitive hay Topo- Cấu trúc đồ hình liên kết logical mixing Watermarking Thủy vân số vi q trình hốn vị điểm ảnh; giá trị điểm ảnh dùng để tác động vào đặc tính động hàm hỗn loạn trình khuếch tán Việc tác động xảy bit biểu diễn giá trị biến trạng thái hàm hỗn loạn bit biểu diễn vị trí giá trị điểm ảnh Hàm hỗn loạn Logistic dùng ví dụ minh họa Phần cứng cho hệ mật thiết kế dùng ngôn ngữ VHDL để thực FPGA với kết đạt mong muôn Hệ mật mã thứ hai đề xuất có cấu trúc SPN thực mật mã cho ảnh mức bit Quá trình xáo trộn liệu dựa hàm hỗn loạn Cat trình khuếch tán dùng hàm Cat-Hadamard nhiều chiều (2) Đề xuất phương pháp phân tích mã cho hệ mật mã có cấu trúc SPN với vòng lặp mã nhiều vòng lặp mã Các phương pháp nêu lỗ hổng bảo mật hệ mật mã hỗn loạn có cấu trúc SPN đề xuất W Zhang đồng nghiệp Từ điểm yếu này, hệ mật mã phân tích thành cơng luật hốn vị liệu ảnh khôi phục với chế công lựa chọn rõ lựa chọn mã trường hợp vòng lặp mã Cơ chế công lựa chọn mã áp dụng thành cơng để khơi phục luật hốn vị bên giải mã trường hợp hệ mật mã có nhiều vòng lặp mã Lỗ hổng bảo mật hệ mật mã hỗn loạn W Zhang đồng nghiệp khắc phục qua đề xuất phương pháp nâng cao nâng cao khả bảo mật Trong trường hợp, trình khuếch tán tăng cường cách thêm ràng buộc từ mật Tất đóng góp chứng minh có hiệu thông qua lập luận, đại lượng đánh giá ví dụ minh họa Hướng phát triển Nội dung Luận án nghiên cứu khía cạnh lý thuyết đánh giá, chứng minh hiệu qua ví dụ minh họa Để nghiên cứu hệ mật mã ứng dụng hỗn loạn ứng dụng vào thực tiễn, nghiên cứu chuyên sâu tiếp tục nghiên cứu quan trọng hệ mật mã hỗn loạn phải triển khai thực tế phần cứng số Việc thực phần cứng số giúp đưa ứng dụng hệ mật mã hỗn loạn vào thực tế Nó giúp đánh giá thông số làm việc hệ mật mã hỗn loạn, tốc độ làm việc, tài nguyên phần cứng yêu cầu, độ an toàn , cách thực tế 122 DANH MỤC CƠNG TRÌNH CƠNG BỐ CỦA LUẬN ÁN [C1] Ta Thi Kim Hue, Thang Manh Hoang, Hoang Xuan Thanh, An Braeken (2018), “Bit Plane Decomposing Image Encryption Based on Discrete Cat-Hadamard map”, 2018 IEEE Seventh International Conference on Communications and Electronics (IEEE ICCE 2018), TP Huế, Việt nam, tháng 72018, pp 344 – 349 [J1] Hoang Xuan Thanh, Thang Manh Hoang (2017), “Cryptanalysis of a Symmetric Color Image Encryption with One-round Encryption”, ASEAN Engineering Journal (Part A: CIE, EEE, EneE & ME/ManuE), Vol.5, pp 34-55 [J2] Thang Manh Hoang, Hoang Xuan Thanh (2018), “Cryptanalysis and security improvement for a symmetric color image encryption algorithm”, International Journal for Light and Electron Optics (Optik), Vol.155, pp 366–383 [J3] Thang Manh Hoang, Hoang Xuan Thanh (2019), “A Novel Cryptosystem Using Dynamics Perturbation of Logistic map”, The Journal of Science and Technology (7 Technical Universities) (Mã số: 19014, chấp nhận đăng ngày 24/7/2019, xuất Số 138 – tháng 11/2019) 123 Tài liệu tham khảo [1] H Noura, S E Assad, C Vladeanu, and D Caragata ( Dec 2011), “An efficient and secure spn cryptosystem based on chaotic control parameters,” in 2011 International Conference for Internet Technology and Secured Transactions, pp 226–231 [2] Øyvind Kol˚as (2007), “Image processing with gluas,” [3] S K Abd-El-Hafiz, S H AbdElHaleem, and A G Radwan (2016), “Novel permutation measures for image encryption algorithms,” Optics and Lasers in Engineering, Vol 85, pp 72 – 83 [4] T T Luong, N N Cuong, and L T Dung ( Oct 2015), “A new statement about direct exponent of an mds matrix in block ciphers,” in Proc Seventh Int Conf Knowledge and Systems Engineering (KSE), pp 340–343 [5] T T Luong, N N Cuong, and H D Tho ( June 2017), “On the calculation of input and output for dynamic mds matrices in diffusion layer of spn block ciphers,” in Proc Int Conf Information and Communications (ICIC), pp 281– 287 [6] L V Thai and P K Hoan ( Dec 2015), “Mceliece cryptosystem based identification and signature scheme using chained BCH codes,” in Proc Management and Telecommunications (ComManTel) 2015 Int Conf Communications, pp 122–127 [7] V Dao, A Nguyen, V Hoang, and T Tran ( Dec 2015), “An ASIC implementation of low area AES encryption core for wireless networks,” in Proc Management and Telecommunications (ComManTel) 2015 Int Conf Communications, pp 99–102 [8] L V Thai, N T Phuoc Van, and P K Hoan ( Feb 2017), “A novel method of decoding the BCH code based on norm syndrome to improve the error correction efficiency,” in Proc 2nd Workshop Recent Trends in Telecommunications Research (RTTR), pp 1–4 [9] T Hue, T Hoang, A Braeken, and K Steenhaut (2016), “Design of the chaosbased diffusion layer for lightweight block cipher,” Journal of Science and Technology (established by technical universities in Vietnam), Vol 113, pp 86–92 [10] N X Quyen, V V Yem, and T M Hoang (2012), “A chaotic pulse-time mod124 ulation method for digital communication,” Abstract and Applied Analysis, Vol 2012, pp 1–15 [11] E Solak, C C ¸ okal, O T Yildiz, and T Biyikoˇglu (2010), “Cryptanalysis of fridrich’s chaotic image encryption,” International Journal of Bifurcation and Chaos, Vol 20, no 05, pp 1405–1413 [12] D Arroyo, J Diaz, and F Rodriguez (2013), “Cryptanalysis of a one round chaos-based substitution permutation network,” Signal Processing, Vol 93, no 5, pp 1358 – 1364 [13] J Holden (2017), The Mathematics of Secrets: Cryptography from Caesar Ciphers to Digital Encryption Princeton University Press [14] R E Blahut (2014), Cryptography and Secure Communication Cambridge University Press [15] B Schneier (1996), Applied Cryptography Wiley-New York [16] P Ping, J Fan, Y Mao, F Xu, and J Gao (2018), “A chaos based image encryption scheme using digit-level permutation and block diffusion,” IEEE Access, Vol 6, pp 67581–67593 [17] R Kilic (2010), A Practical Guide for Studying Chua’s Circuits World Scientific [18] J Ohtsubo (2017), Semiconductor Lasers: Stability, Instability and Chaos World Scientific [19] M Clerc, P Coullet, and E Tirapegui (1999), “Lorenz bifurcation: Instabilities in quasireversible systems,” Phys Rev Lett., Vol 83, pp 3820–3823 [20] L Merah, A Ali Pacha, N Hadj Said, and M Mamat (2013), “Design and fpga implementation of lorenz chaotic system for information security issues,” Applied Mathematical Sciences, Vol 8, pp 237–246 [21] K A K Patro and B Acharya (2019), “An efficient colour image encryption scheme based on 1-d chaotic maps,” Journal of Information Security and Applications, Vol 46, pp 23 – 41 [22] H Wang, H.-F Liang, and Z.-H Miao (2016), “A new color image encryption scheme based on chaos synchronization of time-delay lorenz system,” Advances in Manufacturing, Vol 4, no 4, pp 348–354 [23] T M Hoang, T D Nguyen, N V Duc, J C Chedjou, and K Kyamakya ( June 2009), “Design and simulation of circuit for synchronization of multidelay feedback systems,” in VXV International Symposium on Theoretical Engineering, pp 1–4 125 [24] N Jiang, X Dong, H Hu, Z Ji, and W Zhang (2019), “Quantum image encryption based on henon mapping,” International Journal of Theoretical Physics, Vol 58, no 3, pp 979–991 [25] S J Sheela, K V Suresh, and D Tandur (2018), “Image encryption based on modified henon map using hybrid chaotic shift transform,” Multimedia Tools and Applications, Vol 77, no 19, pp 25223–25251 [26] S E Assad and M Farajallah (2016), “A new chaos-based image encryption system,” Signal Processing: Image Communication, Vol 41, pp 144 – 157 [27] G Gu and J Ling (2014), “A fast image encryption method by using chaotic 3D Cat maps,” Optik, Vol 125, no 17, pp 4700 – 4705 [28] T T K Hue and T M Hoang (2017), “Complexity and properties of a multidimensional Cat-Hadamard map for pseudo random number generation,” The European Physical Journal Special Topics, Vol 226, no 10, pp 2263–2280 [29] K.-W Wong, B S.-H Kwok, and W.-S Law (2008), “A fast image encryption scheme based on chaotic standard map,” Physics Letters A, Vol 372, no 15, pp 2645 – 2652 [30] B Mondal, S Singh, and P Kumar (2019), “A secure image encryption scheme based on cellular automata and chaotic skew tent map,” Journal of Information Security and Applications, Vol 45, pp 117 – 130 [31] M Essaid, I Akharraz, A Saaidi, and A Mouhib (2018), “A new image encryption scheme based on confusion-diffusion using an enhanced skew tent map,” Procedia Computer Science, Vol 127, pp 539 – 548 [32] K Kaneko (1993), Theory and application of coupled map lattices John Wiley & Sons [33] J P Eckmann and D Ruelle (1985), “Ergodic theory of chaos and strange attractors,” Rev Mod Phys., Vol 57, pp 617–656 [34] F Christiansen and H H Rugh (1997), “Computing Lyapunov spectra with continuous Gram-Schmidt orthonormalization,” Nonlinearity, Vol 10, no 5, pp 1063–1072 [35] S Lian, J Sun, and Z Wang (2005), “Security analysis of a chaos-based image encryption algorithm,” Physica A: Statistical Mechanics and its Applications, Vol 351, no 2–4, pp 645 – 661 [36] L Liu and S Miao (2016), “A new image encryption algorithm based on Logistic chaotic map with varying parameter,” SpringerPlus, Vol 5, no 1, p 289 [37] L Liu, S Miao, H Hu, and Y Deng (2016), “Pseudorandom bit generator 126 based on non-stationary Logistic maps,” IET Information Security, Vol 10, no 2, pp 87–94 [38] G Ye and X Huang (2017), “An efficient symmetric image encryption algorithm based on an intertwining Logistic map,” Neurocomputing, Vol 251, pp 45 – 53 [39] Y.-Q Zhang and X.-Y Wang (2014), “A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice,” Information Sciences, Vol 273, pp 329 – 351 [40] Y.-Q Zhang, Y He, and X.-Y Wang (2018), “Spatiotemporal chaos in mixed linear-nonlinear two-dimensional coupled Logistic map lattice,” Physica A: Statistical Mechanics and its Applications, Vol 490, pp 148 – 160 [41] S W (Dec 1999), Functionality classes and evaluation methodology for deterministic random number generators Retrieved aug 2013, Anwendungshinweise and Interpretation (AIS) [42] A M Ayoup, A H Hussein, and M A A Attia (2016), “Efficient selective image encryption,” Multimedia Tools and Applications, Vol 75, no 24, pp 17171–17186 [43] E Barkan and E Biham (2006), “On the security of the GSM cellular network,” NATO Security through Science Series, D: Information and Communication Security – Vol 2, , pp., 2006., Vol 2, p 188–195 [44] E Barkan, E Biham, and N Keller (2003), “Instant ciphertext-only cryptanalysis of GSM encrypted communications,” in Advances in Cryptology, proceedings of Crypto 2003, p 600–616, Springer-Verlag [45] D Ruelle (1989), Chaotic Evolution and Strange Attractors Cambridge University Press Cambridge Books Online [46] J M Bahi, X Fang, C Guyeux, and Q Wang ( Sep 2010), “Randomness quality of ci chaotic generators: Applications to internet security,” in 2010 2nd International Conference on Evolving Internet, pp 125–130 [47] A K N Smaoui (2009), “Logistic chaotic maps for binary numbers generations,” Chaos, Solitons & Fractals, Vol 40, pp 2557–2568 [48] Q Wang, C Guyeux, and J M Bahi ( Aug 2009), “A novel pseudo-random number generator based on discrete chaotic iterations,” in 2009 First International Conference on Evolving Internet, pp 71–76 [49] H Yang, X Liao, K wo Wong, W Zhang, and P Wei (2009), “A new cryp- 127 tosystem based on chaotic map and operations algebraic,” Chaos, Solitons & Fractals, Vol 40, no 5, pp 2520 – 2531 [50] C Guyeux and J M Bahi ( July 2010), “Topological chaos and chaotic iterations application to hash functions,” in The 2010 International Joint Conference on Neural Networks (IJCNN), pp 1–7 [51] T Xiang, X Liao, G Tang, Y Chen, and K wo Wong (2006), “A novel block cryptosystem based on iterating a chaotic map,” Physics Letters A, Vol 349, no 1–4, pp 109 – 115 [52] T Kohda and A Tsuneda (1997), “Statistics of chaotic binary sequences,” IEEE Transactions on Information Theory, Vol 43, no 1, pp 104–112 [53] A Tsuneda (2005), “Design of binary sequences with tunable exponential autocorrelations and run statistics based on one-dimensional chaotic maps,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol 52, no 2, pp 454–462 [54] G Zhang and Q Liu (2011), “A novel image encryption method based on total shuffling scheme,” Optics Communications, Vol 284, no 12, pp 2775 – 2780 [55] X Wang, L Teng, and X Qin (2012), “A novel colour image encryption algorithm based on chaos,” Signal Processing, Vol 92, no 4, pp 1101 – 1108 [56] X.-J Tong, M Zhang, Z Wang, Y Liu, H Xu, and J Ma (2015), “A fast encryption algorithm of color image based on four-dimensional chaotic system,” Journal of Visual Communication and Image Representation, Vol 33, pp 219 – 234 [57] S E Assad, H Noura, and I Taralova ( Oct 2008), “Design and analyses of efficient chaotic generators for crypto-systems,” in Advances in Electrical and Electronics Engineering - IAENG Special Edition of the World Congress on Engineering and Computer Science 2008, pp 3–12 [58] M Farajallah, S E Assad, and O Deforges (2016), “Fast and secure chaosbased cryptosystem for images,” International Journal of Bifurcation and Chaos, Vol 26, no 02, p 1650021 [59] G Ye (2010), “Image scrambling encryption algorithm of pixel bit based on chaos map,” Pattern Recognition Letters, Vol 31, no 5, pp 347 – 354 [60] Y Wang, K.-W Wong, X Liao, and G Chen (2011), “A new chaos-based fast image encryption algorithm,” Applied Soft Computing, Vol 11, no 1, pp 514 – 522 [61] W Zhang, K.-W Wong, H Yu, and Z.-L Zhu (2013), “A symmetric color 128 image encryption algorithm using the intrinsic features of bit distributions,” Commun Nonlinear Sci Numer Simulat, Vol 18, pp 584–600 [62] L E Bassham III, A L Rukhin, J Soto, J R Nechvatal, M E Smid, E B Barker, S D Leigh, M Levenson, M Vangel, D L Banks, et al (2010), “Sp 800-22 rev 1a a statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards & Technology, [63] C Solomon and T Breckon (2011), Fundamentals of Digital Image Processing: A Practical Approach with Examples in Matlab Wiley [64] L Kocarev and S Lian (2011), Chaos-based Cryptography Springer [65] L Kocarev (2001), “Chaos-based cryptography: a brief overview,” IEEE Circuits and Systems Magazine, Vol 1, no 3, pp 6–21 [66] G Alvarez and S Li (2006), “Some basic cryptographic requirements for chaos-based cryptosystems,” International Journal of Bifurcation and Chaos, Vol 16, no 08, pp 2129–2151 [67] M Li, Y Guo, J Huang, and Y Li (2018), “Cryptanalysis of a chaotic image encryption scheme based on permutation-diffusion structure,” Signal Processing: Image Communication, Vol 62, pp 164 – 172 [68] A.-V Diaconu (2016), “Circular inter-intra pixels bit-level permutation and chaos-based image encryption,” Information Sciences, Vol 355-356, pp 314 – 327 [69] C Cao, K Sun, and W Liu (2018), “A novel bit-level image encryption algorithm based on 2D-LICM hyperchaotic map,” Signal Processing, Vol 143, pp 122 – 133 [70] L Teng, X Wang, and J Meng (2018), “A chaotic color image encryption using integrated bit-level permutation,” Multimedia Tools and Applications, Vol 77, no 6, pp 6883–6896 [71] L Xu, Z Li, J Li, and W Hua (2016), “A novel bit-level image encryption algorithm based on chaotic maps,” Optics and Lasers in Engineering, Vol 78, pp 17 – 25 [72] S Lian (2008), Multimedia Content Encryption: Techniques and Applications Auerbach Publications [73] C E Shannon (Sept 1, 1945), “A mathematical theory of cryptography,” Bell System Technical Memo MM, Vol 45-110-02, pp 1–110+25 [74] M Kar, M K Mandal, D Nandi, A Kumar, and S Banik (2016), “Bit-plane 129 encrypted image cryptosystem using chaotic, quadratic, and cubic maps,” IETE Technical Review, Vol 33, no 6, pp 651–661 [75] S Guo, Y Liu, L Gong, W Yu, and Y Gong (2018), “Bit-level image cryptosystem combining 2d hyper-chaos with a modified non-adjacent spatiotemporal chaos,” Multimedia Tools and Applications, Vol 77, no 16, pp 21109– 21130 [76] R K Singh, B Kumar, D K Shaw, and D A Khan (2018), “Level by level image compression-encryption algorithm based on quantum chaos map,” Journal of King Saud University - Computer and Information Sciences [77] N Masuda, G Jakimoski, K Aihara, and L Kocarev (2006), “Chaotic block ciphers: from theory to practical algorithms,” Circuits and Systems I: Regular Papers, IEEE Transactions on, Vol 53, no 6, pp 1341–1352 [78] A Saito and A Yamaguchi (2016), “Pseudorandom number generation using chaotic true orbits of the bernoulli map,” Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol 26, no 6, p 063122 [79] R Munir (2014), “A block-based image encryption algorithm in frequency domain using chaotic permutation,” in Telecommunication Systems Services and Applications (TSSA), 2014 8th International Conference on, pp 1–5, IEEE [80] Y Suryanto, K Ramli, et al (2015), “Chaos properties of the chaotic permutation generated by multi circular shrinking and expanding movement,” in Quality in Research (QiR), 2015 International Conference on, pp 65–68, IEEE [81] M Ahmad, H Chugh, A Goel, and P Singla (2013), “A chaos based method for efficient cryptographic s-box design,” in Security in Computing and Communications: International Symposium, SSCC 2013, Mysore, India, August 2224, 2013 Proceedings (S M Thampi, P K Atrey, C.-I Fan, and G M Perez, eds.), (Berlin, Heidelberg), pp 130–137, Springer Berlin Heidelberg [82] M Ahmad, F Ahmad, Z Nasim, Z Bano, and S Zafar ( Aug 2015), “Designing chaos based strong substitution box,” in 2015 Eighth International Conference on Contemporary Computing (IC3), pp 97–100 [83] R L Devaney (2003), An Introduction to Chaotic Dynamical Systems 2nd Edition Westview Pr (Short Disc) [84] J Fridrich (1998), “Symmetric ciphers based on two-dimensional chaotic maps,” International Journal of Bifurcation and Chaos, Vol 08, no 06, pp 1259–1284 [85] A N Pisarchik, N J Flores-Carmona, and M Carpio-Valadez (2006), “En130 cryption and decryption of images with chaotic map lattices,” Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol 16, no 3, p 033118 [86] D Arroyo, R Rhouma, G Alvarez, S Li, and V Fernandez (2008), “On the security of a new image encryption scheme based on chaotic map lattices,” Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol 18, no 3, p 033112 [87] X Wang, X Zhu, and Y Zhang (2018), “An image encryption algorithm based on josephus traversing and mixed chaotic map,” IEEE Access, Vol 6, pp 23733–23746 [88] R Li, Q Liu, and L Liu (2019), “Novel image encryption algorithm based on improved Logistic map,” IET Image Processing, Vol 13, no 1, pp 125–134 [89] Z liang Zhu, W Zhang, K wo Wong, and H Yu (2011), “A chaos-based symmetric image encryption scheme using a bit-level permutation,” Information Sciences, Vol 181, no 6, pp 1171 – 1186 [90] C Fu, B bin Lin, Y sheng Miao, X Liu, and J jie Chen (2011), “A novel chaos-based bit-level permutation scheme for digital image encryption,” Optics Communications, Vol 284, no 23, pp 5415 – 5423 [91] T T K Hue, T M Hoang, and S Al Assad (2013), “Design and implementation of a chaotic cipher block chaining mode for image encryption,” in Advanced Technologies for Communications (ATC), 2013 International Conference on, pp 185–190, IEEE [92] Y Feng and X Yu ( Nov 2009), “A novel symmetric image encryption approach based on an invertible two-dimensional map,” in 2009 35th Annual Conference of IEEE Industrial Electronics, pp 1973–1978 [93] J A Gordon and H Retkin (1983), “Are big s-boxes best?,” in Cryptography: Proceedings of the Workshop on Cryptography Burg Feuerstein, Germany, March 29–April 2, 1982 (T Beth, ed.), (Berlin, Heidelberg), pp 257– 262, Springer Berlin Heidelberg [94] C Adams and S Tavares (1990), “Good s-boxes are easy to find,” in Advances in Cryptology — CRYPTO’ 89 Proceedings (G Brassard, ed.), (New York, NY), pp 612–615, Springer New York [95] M H Dawson and S E Tavares ( May 1991), “An expanded set of design criteria for substitution boxes and their use in strengthening des-like cryptosystems,” in [1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings, pp 191–195 vol.1 131 [96] C Adams and S Tavares (1990), “The structured design of cryptographically good s-boxes,” J Cryptol., Vol 3, no 1, pp 27–41 [97] M Matsui (1994), “Linear cryptanalysis method for des cipher,” in Advances in Cryptology — EUROCRYPT ’93: Workshop on the Theory and Application of Cryptographic Techniques Lofthus, Norway, May 23–27, 1993 Proceedings (T Helleseth, ed.), (Berlin, Heidelberg), pp 386–397, Springer Berlin Heidelberg [98] E Biham (1995), “On matsui’s linear cryptanalysis,” in Advances in Cryptology — EUROCRYPT’94 (A De Santis, ed.), (Berlin, Heidelberg), pp 341– 355, Springer Berlin Heidelberg [99] A F Webster and S E Tavares (1986), “On the design of s-boxes,” in Advances in Cryptology, CRYPTO ’85, (London, UK, UK), pp 523–534, Springer-Verlag [100] G Tang and X Liao (2005), “A method for designing dynamical s-boxes based on discretized chaotic map,” Chaos, Solitons & Fractals, Vol 23, no 5, pp 1901 – 1909 [101] J Detombe and S Tavares (1993), “Constructing large cryptographically strong s-boxes,” in Advances in Cryptology — AUSCRYPT ’92: Workshop on the Theory and Application of Cryptographic Techniques Gold Coast, Queensland, Australia, December 13–16, 1992 Proceedings (J Seberry and Y Zheng, eds.), (Berlin, Heidelberg), pp 165–181, Springer Berlin Heidelberg [102] E Biham and A Shamir (1991), “Differential cryptanalysis of des-like cryptosystems,” Journal of Cryptology, Vol 4, no 1, pp 3–72 [103] G Jakimoski and L Kocarev (2001), “Chaos and cryptography: block encryption ciphers based on chaotic maps,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol 48, no 2, pp 163–169 [104] G Zaibi, A Kachouri, F Peyrard, and D Fournier-Prunaret ( June 2009), “On dynamic chaotic s-box,” in 2009 Global Information Infrastructure Symposium, pp 1–5 [105] T T K Hue, T M Hoang, and D Tran ( July 2014), “Chaos-based s-box for lightweight block cipher,” in 2014 IEEE Fifth International Conference on Communications and Electronics (ICCE), pp 572–577 [106] Y Wang, K.-W Wong, X Liao, and T Xiang (2009), “A block cipher with dynamic s-boxes based on tent map,” Communications in Nonlinear Science and Numerical Simulation, Vol 14, no 7, pp 3089 – 3099 132 [107] D Lambi´c (2017), “A novel method of s-box design based on discrete chaotic map,” Nonlinear Dynamics, Vol 87, no 4, pp 2407–2413 [108] Y Zhang ( Jan 2018), “Test and verification of AES used for image encryption,” 3D Research, Vol 9, p [109] Y Liu, L Y Zhang, J Wang, Y Zhang, and K.-w Wong ( June 2016), “Chosen-plaintext attack of an image encryption scheme based on modified permutation-diffusion structure,” Nonlinear Dynamics, Vol 84, p 2241 [110] F Özkaynak ( Jan 2018), “Brief review on application of nonlinear dynamics in image encryption,” Nonlinear Dynamics, p [111] Y Dai, H Wang, and Y Wang (2016), “Chaotic medical image encryption algorithm based on bit-plane decomposition,” International Journal of Pattern Recognition and Artificial Intelligence, Vol 30, no 04, p 1657001 [112] J Liu, D Yang, H Zhou, and S Chen ( Nov 2017), “A digital image encryption algorithm based on bit-planes and an improved Logistic map,” Multimedia Tools and Applications, p [113] J xin Chen, Z liang Zhu, C Fu, L bo Zhang, and Y Zhang (2015), “An image encryption scheme using nonlinear inter-pixel computing and swapping based permutation approach,” Communications in Nonlinear Science and Numerical Simulation, Vol 23, no 1, pp 294 – 310 [114] G Ye and K.-W Wong (2012), “An efficient chaotic image encryption algorithm based on a generalized Arnold map,” Nonlinear Dynamics, Vol 69, no 4, pp 2079–2087 [115] M Keyvanpour and F Merrikh-Bayat (2011), “An effective chaos-based image watermarking scheme using fractal coding,” Procedia Computer Science, Vol 3, pp 89–95 [116] W K Tang and Y Liu (2011), “Formation of high-dimensional chaotic maps and their uses in cryptography,” in Chaos-Based Cryptography, pp 99–136, Springer [117] M Falcioni, L Palatella, S Pigolotti, and A Vulpiani (2005), “Properties making a chaotic system a good pseudo random number generator,” Physical Review E, Vol 72, no 1, p 016220 [118] T K H Ta, T M Hoang, A Braeken, and K Steenhaut (2017), “On construction of multi-maximum distance separable (MDS) matrix generator based on high dimensional Cat matrices,” Optik-International Journal for Light and Electron Optics, Vol 131, pp 454–466 133 [119] Y Wu, Z Hua, and Y Zhou (2016), “n-dimensional discrete Cat map generation using Laplace expansions,” IEEE transactions on cybernetics, Vol 46, no 11, pp 2622–2633 [120] D Giry “Bluekrypt: Cryptographic key length recommendation; https://www.keylength.com/en.” Accessed: 2019-11-2 [121] E Yavuz (2019), “A novel chaotic image encryption algorithm based on content-sensitive dynamic function switching scheme,” Optics & Laser Technology, Vol 114, pp 224 – 239 [122] Y Li, C Wang, and H Chen (2017), “A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation,” Optics and Lasers in Engineering, Vol 90, pp 238 – 246 [123] X Wang and H li Zhang (2015), “A color image encryption with heterogeneous bit-permutation and correlated chaos,” Optics Communications, Vol 342, pp 51 – 60 [124] Y Wu, S Member, J P Noonan, L Member, S Agaian, and S Member (2011), “NPCR and UACI randomness tests for image encryption,” in Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT) [125] G Maze (2003), Algebraic methods for constructing one-way trapdoor functions PhD thesis, University of Notre Dame Notre Dame [126] K Chain and W.-C Kuo (2013), “A new digital signature scheme based on chaotic maps,” Nonlinear Dynamics, Vol 74, no 4, pp 1003–1012 [127] A U Rehman, J S Khan, J Ahmad, and S O Hwang (2016), “A new image encryption scheme based on dynamic S-Boxes and chaotic maps,” 3D Research, Vol 7, no 1, pp 1–8 [128] A Medio and M Lines (2001), Nonlinear Dynamics: A Primer Cambridge University Press [129] Y Liu, S Tian, W Hu, and C Xing (2012), “Design and statistical analysis of a new chaotic block cipher for wireless sensor networks,” Communications in Nonlinear Science and Numerical Simulation, Vol 17, no 8, pp 3267 – 3278 [130] L Y Zhang, C Li, K.-W Wong, S Shu, and G Chen (2012), “Cryptanalyzing a chaos-based image encryption algorithm using alternate structure,” Journal of Systems and Software, Vol 85, no 9, pp 2077 – 2085 Selected papers from the 2011 Joint Working IEEE/IFIP Conference on Software Architecture (WICSA 2011) 134 [131] C Li, L Y Zhang, R Ou, K.-W Wong, and S Shu (2012), “Breaking a novel colour image encryption algorithm based on chaos,” Nonlinear Dynamics, Vol 70, no 4, pp 2383–2388 [132] C Zhu, C Liao, and X Deng (2013), “Breaking and improving an image encryption scheme based on total shuffling scheme,” Nonlinear Dynamics, Vol 71, no 1-2, pp 25–34 [133] H Heys and S Tavares (1995), “Avalanche characteristics of substitutionpermutation encryption networks,” Computers, IEEE Transactions on, Vol 44, no 9, pp 1131–1139 [134] D Stinson (2005), Cryptography: Theory and Practice CRC Press, 3rd ed [135] T St Denis (26 November 2001), “Advanced encryption standard (AES),” tech rep., Federal Information Processing Standards [136] P Paillier and I Verbauwhede, eds (2007), PRESENT: An Ultra-Lightweight Block Cipher, (Berlin, Heidelberg), Springer Berlin Heidelberg [137] J L Massey (1993), “SAFER K-64: A byte-oriented block-ciphering algorithm,” in International Workshop on Fast Software Encryption, pp 1–17, Springer [138] X.-J Tong (2013), “Design of an image encryption scheme based on a multiple chaotic map,” Communications in Nonlinear Science and Numerical Simulation, Vol 18, no 7, pp 1725 – 1733 [139] A Kanso and M Ghebleh (2012), “A novel image encryption algorithm based on a 3D chaotic map,” Communications in Nonlinear Science and Numerical Simulation, Vol 17, no 7, pp 2943 – 2959 [140] X Zhang, L Shao, Z Zhao, and Z Liang (2014), “An image encryption scheme based on constructing large permutation with chaotic sequence,” Computers and Electrical Engineering, Vol 40, no 3, pp 931 – 941 Special Issue on Image and Video Processing [141] T T K Hue, C V Lam, T M Hoang, and S Al Assad ( Dec 2012), “Implementation of secure spn chaos-based cryptosystem on fpga,” in Signal Processing and Information Technology (ISSPIT), 2012 IEEE International Symposium on, pp 000129–000134 [142] Y Zhang, D Xiao, Y Shu, and J Li (2013), “A novel image encryption scheme based on a linear hyperbolic chaotic system of partial differential equations,” Signal Processing: Image Communication, Vol 28, no 3, pp 292 – 300 135 [143] E A Arnold and A Avez (1968), Ergodic Problems of Classical Mechanics Benjamin [144] F Rannou (1974), “Numerical study of discrete plane area-preserving mappings,” Astron & Astrophys., Vol 31, pp 289–301 [145] E A Jackson (1991), Perspectives of Nonlinear Dynamics Cambridge University Press 136 ... mật mã đối xứng mật mã bất đối xứng Hệ mật mã bất đối xứng hiểu khóa mật bên mật mã khác với khóa mật dùng bên giải mật mã Một tên gọi khác hệ mật mã mật mã khóa cơng khai Hai khóa dùng cho mật. .. đối xứng Hình 1.2: Mật mã khóa đối xứng bất đối xứng • Phân loại theo cách sử dụng khóa mật ta có mật mã khóa cơng khai (hay mật mã bất đối xứng) mật mã khóa riêng tư (hay mã đối xứng) Hệ mật mã. .. triển ứng dụng hỗn loạn cho mật mã nhiều nhiều triển vọng Chương Luận án trình bày chi tiết hướng tiếp cận mật mã ứng dụng kỹ thuật hỗn loạn đề xuất Luận án 26 Chương MẬT Mà ẢNH Ở MỨC BIT ỨNG DỤNG

Ngày đăng: 06/07/2020, 00:01

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w