1. Trang chủ
  2. » Giáo án - Bài giảng

Chương trình on thi vào 10 chuẩn mẫu giáo án

28 511 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 28
Dung lượng 1,48 MB

Nội dung

tuần 1+2 Căn bậc hai - hằng đẳng thức 2 A A = . I, Mục tiêu: * Kiến thức - Kĩ năng: - HS đợc củng cố đ/n, phân biệt cách tìm CBH, CBHSH của một số thực. - Nắm vững và tìm đợc đkxđ của A - áp dụng khai triển HĐT 2 A A= , vận dụng rút gọn đợc biểu thức. * Thái độ: Rèn tính cẩn thận, chính xác. II, Lí thuyết cần nhớ: Căn bậc hai của một số a không âm là một số x sao cho 2 x = a. Số a > 0 có hai CBH là a và a . Số a 0 , a đợc gọi là CBHSH của a. a, b là các số không âm, a < b a < b . A xác định (hay có nghĩa) A 0 (A là một biểu thức đại số). III, Bài tập và h ớng dẫn: Bài tập: Tìm CBH, CBHSH của những số sau: 25; 3; 5; 17; 23, 81, 144; 225; 324; 289. Bài 1. Tính: a, 9 ; 4 25 ; 2 3 ; 2 6 ; 2 ( 6) ; 25 16 ; 9 25 . b, 2 5 ; 2 ( 7) ; 2 3 4 ữ ữ ; 2 3 4 ữ . c, 4 5 ; 4 (2) ; ( Sử dụng HĐT 2 A A= ). Bài 2. So sánh các cặp số sau: a, 10 và 3 ; 10 và 3; 3 5 và 5 3 ; b, 8 1 và 2; -2 5 và -5 2 ; 3 và 16 2 . ( Sử dụng a, b là các số không âm, a < b a < b ). Bài 3 . Tính: a, 2 (3 2)+ ; 2 (2 3) ; ( ) 2 2 3+ ; ( ) 2 3 2 . b, 2 a (a 0); 4 2 a (a < 0) ; 2 2 x ; 6 3 x ; 2 (2 )x ; 2 6 9x x + ( x > 3); 2 2 1x x+ + ; 2 4( 2)a (a < 2); 2 (3 11) . 4 9( 5)x ; 2 2 2 ( 2 )b a ab b+ + (b > 0); 2 2 2 3 4 ( ) ( 0; 0; ) a b a b b a a b bc a > < . c, 2 (2 5)+ ; 2 (3 15) ; 3 2 2+ ; 4 2 3+ ; 11 6 2 ; 28 10 3 . ( Chú ý ĐK của các chữ trong biểu thức ) Bài 4 . Tìm điều kiện xác định của các CTBH sau: a, 3a ; 3a ; 2a ; 5 a ; 3 6a + ; 4 2a ; 2 5a ; 7 3a . b, 2 2 1a ; 4 3 b ; 2 2 1a ; 2 1 8 16b b + ; 3 4 5 a . c, 2 2x ; 2 2x ; 2 2 1x + ; 2 5 1x + . d, 2 2 x ; 2 5 3 x x ; 2 4 4 1x x + ; 2 1 2x x+ . ( Chú ý ĐK để biểu thức dới căn không âm, mẫu khác 0). Bài 5. Tìm x biết: a, 2 16 0x = ; 2 1 9 x = ; 2 16 0x + = ; 2 9 0x + = . b, 5x = ; 1 2 x = ; 5x = ; 3 2 x = ; 2 2 0x = . c, 3 2 x = ; 2 0 3 x + = ; 2 4 x = ; 1 0 2 x = . ( Chú ý sử dụng định nghĩa CBH 2 0x a x x a = = ). Bài 6. Phân tích thành nhân tử: a, 2 5x ; 7 - x (x > 0); 3 + 2x (x < 0). b, 2 3 16x ; x - 9 (x > 0). c, 4 2 3 ; 3 2 2 ; 6 2 5 ; 7 2 6 . ( Rút ra HĐT 2 ( 1) 2 ( 1)a a a+ = + ) Bài 7. Rút gọn: a, ( , 0; ) a b a b a b a b > ; 2 1 ( 0; 1) 1 x x x x x + ; ( Chú ý sử dụng HĐT 2 2 ( )( )a b a b a b = + và HĐT 2 A A= ). b, 4 7 4 3+ + ; 5 3 5 48 10 7 4 3+ + + ; 13 30 2 9 4 2+ + + . c, 2 1 2 1( 1)x x x x x+ + . ( Chú ý sử dụng HĐT 2 ( 1) 2 ( 1)a a a+ = + và HĐT 2 A A= ). Bài 8. Giải các PT sau: 1, 2 4 4 3x x + = ; 2 12 2x = ; x x= ; 2 6 9 3x x + = ; 2, 2 2 1 1x x x + = ; 2 10 25 3x x x + = + . 3, 5 5 1x x + = ( Xét ĐK pt vô nghiệm); 2 2 1 1x x x+ + = + ( áp dụng: 0( 0)A B A B A B = = ). 4, 2 2 9 6 9 0x x x + + = (áp dụng: 0 0 0 A A B B = + = = ) . 5, 2 2 4 4 0x x + = ( ĐK, chuyển vế, bình phơng 2 vế). 2 2 2 4 5 4 8 4 9 0x x x x x x + + + + + = ( 1 4 5 3 5VT + + = + ; 2 ( 2) 0 2x x= = = ) 2 2 2 9 6 2 45 30 9 6 9 8x x x x x x + + + = + ( 2 2 2 (3 1) 1 5(3 1) 4 9 (3 1)x x x + + + = ; vt 3; vp 3 x = 1/3) . 2 2 2 2 4 3 3 6 7 2 2x x x x x x + + + = + (đánh giá tơng tự). 6, 2 2 4 5 9 6 1 1x x y y + + + = (x =2; y=1/3); 2 2 6 5 6 10 1y y x x + = (x=3; y=3). tuần 3 Hệ thức giữa cạnh và đờng cao trong tam giác vuông. I, Mục tiêu: - HS đợc củng cố, ghi nhớ hệ thống các hệ thức giữa cạnh và đờng cao trong tam giác vuông. - áp dụng các hệ thức đó vào làm đợc bài thập cơ bản tính toán các độ dài của các yếu tố trong tam giác vuông. II, Nhắc lại lí thuyết: Hệ thức giữa cạnh và đờng cao trong tam giác vuông: 2 , 2 , 2 2 2 . . b a b c a c a b c = = = + 2 , , 2 2 2 . . . 1 1 1 a h b c h b c h b c = = = + III, Bài tập. 1, Tìm x, y trong các hình vẽ sau: B C H A B C H A B C H A B C H A B C H A B C H A B C H A 2, Cho tam giác vuông với các cạnh góc vuông có độ dài là 5 và 7. Kẻ đờng cao ứng với cạnh huyền. Tính đờng cao và hai đoạn thẳng mà nó định ra trên cạnh huyền. 3, Đờng cao của một tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài là 3 và 4.Tính các yếu tố còn lại của tam giác vuông này. 4, Cho một tam giác vuông. Biết tỉ số hai cạnh góc vuônglà 3 : 4 và cạnh hguyền là 125 cm, Tính độ dài các cạnh góc vuông và hình chiếu của các cạnh góc vuông trên cạnh huyền. 5, Cho tam giác ABC vuông tại A, biết 5 6 AB AC = . đờng cao AH = 30 cm. Tính HB, HC? 6, Cho tam giác ABC vuông tại A, kẻ đờng cao AH. Biết hai cạnh góc vuông là 7 và 8. Tính các yếu tố còn lại của tam giác vuông đó. 7, Cho tam giác MNP vuông tại M, kẻ đờng cao MH. Biết hai hình chiếu của hai cạnh góc vuông là 7 và 12. Tính các yếu tố càon lại của tam giác vuông đó. 8, Cho tam giác PRK vuông tại R. Kẻ đờng cao RH, biết đờng cao RH = 5, một hình chiếu là 7.Tính các yếu tố còn lại của tam giác vuông đó. tuần 4 Các phép biến đổi đơn giản biểu thức chứa căn thức bậc hai. I, Mục tiêu: * Kiến thức - Kĩ năng: - HS đợc củng cố các phép biến đổi đơn giản biểu thức chứa căn thức bậc hai . Vận dụng tính toán,rút gọn đợc biểu thức chứa căn thức bậc hai. * Thái độ: Rèn tính cẩn thận, chính xác, linh hoạt. II, Lí thuyết cần nhớ: Căn bậc hai của một số a không âm là một số x sao cho 2 x = a. Số a > 0 có hai CBH là a và a . Số a 0 , a đợc gọi là CBHSH của a. a, b là các số không âm, a < b a < b . A xác định (hay có nghĩa) A 0 (A là một biểu thức đại số). Các công thức biến đổi đơn giản biểu thức chứa căn thức bậc hai.(GV cùng HS nhắc lại). III, Bài tập và h ớng dẫn: Bài 1. Tính. 1, 20 5 ; 12 27 ; 3 2 5 8 2 50+ ; 2 5 80 125 + ; 3 12 27 108 + ; 2 45 80 125+ ; 75 48 300+ ; 8 50 18 + ; 32 50 98 72 + ; 1 2 20 18 6 200 2 + ; 0,09 0,64 0,81 0,01 0,16 0, 25+ + . 2, 10. 40 ; 5. 45 ; 52. 13 ; 2. 162 ; 5 18 . 8 5 ; 8. 18. 98 ; 2 3 . 6 3 2 + ữ ữ . 3, 45.80 ; 75.48 ; 90.6,4 ; 2,5.14, 4 . 4, ( 12 27 3) 3+ ; ( ) 20 45 5 5 + ; 9 1 2 2 2 2 + ữ ữ ; 5, ( ) ( ) 2 1 2 1+ ; 7 4. 4 7+ ; 4 3 2. 4 3 2+ ; 3 5 2 . 3 5 2 + + + . 6, 3 3 ; 2 2 1 ; 3 3 3 + ; 5 3 20 ; 3 2 2 1 ; 5 3 5 2 + ; 2 3 2 3 + ; 3 2 3 2 + . 7, 2 2 2 1 ; 10 2 1 5 ; 15 6 2 5 ; 3 2 2 3 2 3 . 8, 8 2 15+ ; 12 2 35+ ; 8 60+ ; 17 12 2 ; 9 4 2+ ; (Chú ý rút ra HĐT: ( ) 2 2a ab b a b + = ) Bài 2. Rút gọn 1, 3 9 a a ; 2 1 1 a a a + ; 4 4 4 a a a + ; 5 4 1 a a a + ; 5 6 3 a a a + ; 2, 6 24 12 8 3+ + + ; 5 3 29 12 5 ; 6 2 2 12 18 128 + + . 3, a a b b ab a b + + (a > o; b > 0). 4, x y y x xy + (x > 0; y > 0). 5, 1 : a b b a ab a b + ( ) , 0;a b a b> . 6, 1 1 1 1 a a a a a a + + ữ ữ ữ ữ + ( ) 0; 1a a . 7, 1 1 4 4 2 2 x x x + + ( 0; 4x x ). tuần 5+6 rút gọn biểu thức có chứa căn thức bậc hai. I, Mục tiêu: * Kiến thức - Kĩ năng: - HS đợc củng cố các phép biến đổi đơn giản biểu thức chứa căn thức bậc hai . Vận dụng tính toán,rút gọn đợc biểu thức có chứa căn thức bậc hai. * Thái độ: Rèn tính cẩn thận, chính xác, linh hoạt. II, Lí thuyết cần nhớ: * Cách tìm ĐKXĐ của các căn thức, phân thức. - Biểu thức dới căn không âm. - Mẫu thức khác 0. * Phân tích đa thức thành nhân tử thành thạo. * Nắm vững thứ tự thực hiện các phép tính. ( ) [ ] { } . ; ,: , n a ì + và các phép tính về đơn thức, đa thức, phân thức, căn thức. * Vận dụng linh hoạt các HĐT: 2 ( 1) 2 ( 1)a a a + = + ; ( ) 2 2a ab b a b + = ( ) ( ) a a b b a b a ab b = +m ; ( ) ( ) a b a b a b = + . III, Bài tập và h ớng dẫn: * Ph ơng pháp: - Tìm ĐKXĐ(BT dới căn có nghĩa, mẫu 0). - Rút gọn từng phân thức trong biểu thức (Nếu có thể). - Biến đổi, rút gọn cả biểu thức. - Kết luận. * Bài tập. Rút gọn các biểu thức sau: 1 1 1 1 1 1 : 1 1 1 1 1 A x x x x x = + + ữ ữ + + kq: 1 x x 2 1 1 2 : 2 a a a a a A a a a a a + + = ữ ữ + kq: 2 4 2 a a + 3 1 2 1 : 1 1 1 x x A x x x x x x = + ữ ữ ữ ữ + + kq: 1 1 x x x + + 4 1 1 2 : 1 1 1 x A x x x x x = + ữ ữ ữ + kq: 1x x ( ) 5 2 : a a b b b A a b a b a b + = + + + kq: a ab b a b + 6 : 2 a a a a a A b a a b a b a b ab = + ữ ữ ữ ữ + + + + kq: ( ) a b a b a + 7 1 1 1 : 1 1 1 a a a a a A a a a + + = + ữ ữ ữ ữ + 8 1 1 8 3 2 : 1 9 1 3 1 3 1 3 1 x x x A x x x x = + ữ ữ ữ ữ + + kq: 3 1 x x x + 9 2 9 3 2 1 5 6 2 3 x x x A x x x x + + = + kq: 1 3 x x + 10 : x x y y x y A xy x y x y + = ữ ữ + + * Các dạng toán có sử dụng kết quả của bài toán rút gọn. 1. Tính giá trị của biểu thức sau khi rút gọn. + Hớng dẫn: - Nếu biếu thức đã rút gọn chứa căn, giá trị của biến chứa căn, ta biến đổi giá trị của biến về dạng HĐT. - Nếu giá trị của biến chứa căn ở mẫu, ta trục căn thức ở mẫu trớc khi thay vào biểu thức. + Ví dụ: Tính 1 A khi 7 4 3x = + . ( ta biến đổi ( ) 2 7 4 3 2 3+ = + rồi hãy thay vào tính). 2. Tìm giá trị của biến để biểu thức đã rút gọn bằng một số. + Hớng dẫn: - Thực chất là giải PT A = a. - Sau khi tìm x phải đối chiếu với ĐK đầu bài để KL. + Ví dụ: Tìm x để 4 5A = . (Ta giải PT: 1 5 x x = . ĐK: 0; 1x x> ). 3. Tìm giá trị của biến để biểu thức đã rút gọn lớn hơn, hoặc bé hơn một số ( một biểu thức). + Hớng dẫn: - Thực chất là giải BPT A > a(P) ( hoặc A < a(P)). - Sau khi tìm x phải đối chiếu với ĐK đầu bài để KL. + Ví dụ: Tìm x để 4 1A > . (Ta giải BPT: 1 5 x x > . ĐK: 0; 1x x> ). 4. Tìm giá trị nguyên của biến để biểu thức đã rút gọn nhận giá trị nguyên. + Hớng dẫn: - Tách phần nguyên, xét ớc. - Sau khi tìm x phải đối chiếu với ĐK đầu bài để KL. + Ví dụ: Tìm giá trị nguyên của biến x để biểu thức 9 A nhận giá trị nguyên. ( Ta có 9 1 4 1 3 3 x A x x + = = . 9 A nguyên 3x là ớc của 4. Sau đó xét ớc của 4, rồi đối chiếu với ĐK để KL). 5. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức đã rút gọn. + Hớng dẫn: Có thể đánh giá bằng nhiều cách, tuỳ bài toán cụ thể mà ta chọn cách nào đó cho phù hợp. 6. So sánh biểu thức đã rút gọn với một số hoặc một biểu thức. + Hớng dẫn: Xét hiệu A - m - Nếu A - m > 0 thì A > m. - Nếu A - m < 0 thì A < m. - Nếu A - m = 0 thì A = m. + Ví dụ: So sánh 4 A với 1. ( Lập hiệu 1 1 x x , rồi xét xem hiệu này > 0; < 0; = 0 KL). tuần 7 + 8 +9 Bài tập tổng hợp. Bài 1. Cho biểu thức: 1 1 3 : 1 1 x x x x x A x x x x x + = ữ ữ ữ ữ + + kq: 1 1 x x + 1, Tìm ĐK XĐ của biểu thức A. 2, Rút gọn A. 3, Tính giá trị của biểu thức A khi 1 6 2 5 x = 4, Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên. 5, Tìm giá trị của x để giá trị biểu thức A bằng -3. 6, Tìm giá trị của x để giá trị biểu thức A nhỏ hơn -1. 7, Tìm giá trị của x để giá trị biểu thức A lớn hơn 2 1x + 8, Tìm giá trị của x để giá trị biểu thức A - 1 Max 9, So sánh A với 1x + Bài 2. Cho biểu thức: 4 1 2 1 : 1 1 1 x x x B x x x = + ữ ữ kq: 3 2 x x 1, Tìm x để biểu thức B xác định. 2, Rút gọn B. 3, Tính giá trị của biểu thức B khi x = 11 6 2 4, Tìm giá trị nguyên của x để biểu thức B nhận giá trị nguyên. 5, Tìm giá trị của x để giá trị biểu thức B bằng -2. 6, Tìm giá trị của x để giá trị biểu thức B âm. 7, Tìm giá trị của x để giá trị biểu thức B nhỏ hơn -2. 8, Tìm giá trị của x để giá trị biểu thức B lớn hơn 1x Bài 3. Cho biểu thức: 3 3 2 1 1 1 1 1 x x x C x x x x x + + = ữ ữ ữ ữ + + + kq: 1x 1, Biểu thức C xác định với những giá trị nào của x? 2, Rút gọn C. 3, Tính giá trị của biểu thức C khi x = 8 2 7 4, Tìm giá trị của x để giá trị biểu thức C bằng -3. 5, Tìm giá trị của x để giá trị biểu thức C lớn hơn 1 3 . 6, Tìm giá trị của x để giá trị biểu thức C nhỏ hơn 2 3x + . 7, Tìm giá trị của x để giá trị biểu thức C nhỏ nhất. 8, So sánh C với 2 x . Bài 4. Cho biểu thức: 2 4 2 3 1 : 4 6 3 2 x x x x x D x x x x x = ữ ữ ữ ữ + kq: 2 3x 1, Tìm ĐK XĐ của biểu thức D. 2, Rút gọn D. 3, Tính giá trị của biểu thức D khi x = 13 48 . 4, Tìm giá trị của x để giá trị biểu thức D bằng 1. 5, Tìm giá trị của x để giá trị biểu thức D âm. 6, Tìm giá trị của x để giá trị biểu thức D nhỏ hơn -2 . 7, Tìm giá trị nguyên của x để biểu thức D nhận giá trị nguyên. 8, Tìm giá trị của x để giá trị biểu thức D lớn nhất. 9, Tìm x để D nhỏ hơn 1 x . Bài 5. Cho biểu thức: 1 1 8 3 1 : 1 1 1 1 1 a a a a a E a a a a a + = ữ ữ ữ ữ + kq: 1, Tìm a để biểu thức E có nghĩa. 2, Rút gọn E. 3, Tính giá trị của biểu thức E khi a = 24 8 5 4, Tìm giá trị của a để giá trị biểu thức E bằng -1. 5, Tìm giá trị của a để giá trị biểu thức E dơng. 6, Tìm giá trị của a để giá trị biểu thức E nhỏ hơn 3a + . 7, Tìm giá trị của a để giá trị biểu thức E nhỏ nhất. 8, So sánh E với 1 . Bài 6. Cho biểu thức: 1 1 1 4 1 1 a a F a a a a a + = + ữ ữ ữ + kq: 4a 1, Tìm ĐK XĐ của biểu thức F. 2, Rút gọn F. 3, Tính giá trị của biểu thức F khi a = 6 2 6+ 4, Tìm giá trị của a để giá trị biểu thức F bằng -1. 5, Tìm giá trị của a để giá trị biểu thức E nhỏ hơn 1a . 6, Tìm giá trị của a để giá trị biểu thức E nhỏ nhất. 7, Tìm giá trị của a để F F> . ( 2 1 0 0 4 F F a > < < ). 8, So sánh E với 1 a . Bài 7. Cho biểu thức: 2 2 2 2 1 1 2 2 1 x x x x M x x x + + = ữ ữ + + kq: x x + 1, Tìm x để M tồn tại. 2, Rút gọn M. 3, CMR nếu 0 <x < 1 thì M > 0. ( 1 0; 0 0x x M > > > ) 3, Tính giá trị của biểu thức M khi x = 4/25. 4, Tìm giá trị của x để giá trị biểu thức M bằng -1. 5, Tìm giá trị của x để giá trị biểu thức M âm ; M dơng. 6, Tìm giá trị của x để giá trị biểu thức M lớn hơn -2 . 7, Tìm giá trị nguyên của x để biểu thức M nhận giá trị nguyên. 8, Tìm giá trị của x để giá trị biểu thức M lớn nhất. 9, Tìm x để M nhỏ hơn -2x ; M lớn hơn 2 x . 10, Tìm x để M lớn hơn 2 x . Tuần 10 + 11 . Tỉ số lợng giác của góc nhọn. I, Mục tiêu: * Kiến thức - Kĩ năng: - HS đợc củng cố các định nghĩa tỉ số lợng giác của góc nhọn, tính chất tỉ số lợng giác của góc nhọn, các hệ thức giữa cạnh và góc trong tam giác . - Vận dụng tính toán,tìm đợc tỉ số lợng giác của một góc, dựng một góc biết tỉ số lợng giác của góc đó . * Thái độ: Rèn tính cẩn thận, chính xác, linh hoạt. II, Lí thuyết cần nhớ: *Đ/n tỉ số lợng giác của góc nhọn. * T/ c tỉ số lợng giác của góc nhọn: + 0 sin , 1cos < < ; 2 2 sin 1cos + = ; sin : cos tg = ; : sin coscos tg = . + Nếu và là hai góc phụ nhau thì sin cos = ; cottg g = + .cot 1tg g = . * Hệ thức giữa cạnh và góc trong tam giác vuông. III, Bài tập và h ớng dẫn: Bài tập 1: Cho hình vẽ sau, chỉ ra các hệ thức sai. B A C 1, sin BC A AC = ; 2, cos AB C AC = ; 3, AB tgC BC = ; 4, cot BC gA AB = ; 5, .cot 1tgA gB = 6, 0 sin cos(90 )A C= ; 7, 2 2 sin cos 1A C+ = ; 8, sin cos A tgA C = ; 9, sin cot cos A gA A = ; 10, cottgA gC= Bài tập 2: Cho hình vẽ sau, các hệ thức nào sau đây là đúng. B A C H 1, .cosAB BC C = ; 2, .AC AH tgC= ; 3, .AH AB tgB= ; 4, .BH AH tgB= ; 5, .sinAC BC B = ; 6, .AB AC tgC= ; 7, .cosBH AB B = ; 8, cos AB BC C = ; 9, cot AC AB gC = ; 10, AB AC tgC = Bài tập 3: Cho tam giác ABC vuông tại A. AB = 30 cm góc B bằng . Biết 5 12 tg = . Tính cạch AB, AC. Bài tập 4: Tìm x trong hình vẽ sau: Bài tập 5: Cho tam giác ABC vuông tại A. Kẻ đờng cao AH. Tính sin ,sinB C trong các trờng hợp sau: A, AB = 13 ; BH = 5. B, BH = 3 ; CH = 4. Bài tập 6: Dựng góc nhọn biết : a, 1 sin 2 = ; b, 2 cos 3 = ; c, 4 5 tg = ; d, 3 cot 4 g = Bài tập7: a, Sắp xếp các tỉ số lợng giác sau theo thứ tự từ nhỏ đến lớn : 1 1, 0 0 0 ' 0 0 sin 35 ,cos 28 ,sin 34 72 , cos 62 ,sin 45 2, 0 0 ' 0 0 0 cos37 ,cos 65 30 ,sin 72 ,cos59 ,sin 47 b, Sắp xếp các tỉ số lợng giác sau theo thứ tự từ lớn đến nhỏ : 1, 0 0 0 0 ' 0 42 ,cot 71 , 38 , cot 69 15 , 28tg g tg g tg 2, 0 0 0 ' 0 0 cot 57 , 46 ,cot 73 43 , 64 ,cot 75g tg g tg g Bài tập 8: Cho tam giác ABC vuông tại A, kẻ đờng cao AH. Biết hai cạnh góc vuông là 7 và 8. Tính các yếu tố còn lại của tam giác vuông đó. Bài tập 9: Cho tam giác MNP vuông tại M, kẻ đờng cao MH. Biết hai hình chiếu của hai cạnh góc vuông là 7 và 12. Tính các yếu tố còn lại của tam giác vuông đó. Bài tập 10: Cho tam giác PRK vuông tại R, kẻ đờng cao RH. Biết đờng cao RH là 5 và một hình chiếu là 7. Tính các yếu tố còn lại của tam giác vuông đó. Bài tập 11: Tính giá trị biểu thức: a, 2 0 0 2 0 0 cos 52 sin 45 sin 52 cos 45A = + b, 0 2 0 2 0 0 sin 45 cos 47 sin 47 cos 45B = + [...]... này thì lập PT bằng đại lợng kia) *Bài tập: Bài 1 Hai ô tô cùng khởi hành từ A đến B dài 100 km, Ô tô thứ nhất nhanh hơn ô tô thứ hai 10 km /h nên đến B trớc ô tô thứ hai là 30 phút Tính vận tốc của mỗi ô tô Xe thứ nhất V x + 10 (km/h) S 100 km Xe thứ hai x 100 km (km/h) T 100 (h) x + 10 100 (h) x 100 100 1 = x x + 10 2 Bài 2 Một ô tô tải chạy từ A đến B dài 200 km Sau 30 phút một tắc xi chạy từ B về... = 10 2 1 5 ( x + 2 y ) = 2( x + y ) Bài 8 Hai lớp 9A và 9B có tổng cộng 70 HS nếu chuyển 5 HS từ lớp 9A sang lớp 9B thì số HS ở hai lớp bằng nhau Tính số HS mỗi lớp Bài 9 Hai trờng A, B có 250 HS lớp 9 dự thi vào lớp 10, kết quả có 210 HS đã trúng tuyển Tính riêng tỉ lệ đỗ thì trờng A đạt 80%, trờng B đạt 90% Hỏi mỗi trờng có bao nhiêu HS lớp 9 dự thi vào lớp 10 Bài 10 Hai vòi nớc cùng chảy vào. .. tô phải tăng thêm 10 km/ h trên đoạn đờng còn lại Tính vận tốc dự định đi của ô tô V x (km/h) (x > 0) S 150 km Đoạn đầu x (km/h) 2 150 = 100 km 3 Đoạn sau x +10 (km/h) 150 - 100 = 50 km Dự định Thực tế T 150 x (h) 100 (h) x 50 x + 10 (h) (Chú ý: loại bài tập này, thời gian đoạn 1+ thời gian đoạn 2 + thời gian nghỉ = thời gian dự định ) 100 50 1 150 1 + + = PT : (15 phút = giờ) 4 x x + 10 4 x Bài 7 Xe... tam giác đó Tâm đờng tròn ngoại tiếp tam giác Đờng tròn tâm O bán kính 3 cm Hình tròn tâm A bán kính 2 cm *Mệnh đề nào sai? 1, Trong một đờng tròn, đờng kính vuông góc với một dây thì đi qua trung điểm của dây ấy 2, Trong một đờng tròn, đờng kính đi qua trung điểm của một dây thì vuông góc với dây ấy *Điền vào chỗ trống trong bảng sau (R là bán kính của đờng tròn, d là khoảng cách từ tâm đến đờng thẳng):... = OQ OD 6 BC cắt AD ở N CMR: MN song song với AC, MN vuông góc với AB 7 MN cắt AB tại H CMR: NH = NM 8 Tìm M trên ằ sao cho C ABCD nhỏ nhất AB Tuần 19 Hệ phơng trình bậc nhất hai ẩn I, Mục tiêu: * Kiến thức: HS nắm vững các khái niệm về HPT BN hai ẩn Các cách giải HPTBN hai ẩn * Kĩ năng: Giải thành thạo các HPTBN hai ẩn Tránh đợc các sai sót hay mắc phải: Thi u ĐK, trình bày tắt, kết luận nghiệm không... 3 x = 2 x = 2 3 x + 2 x 3 = 7 5 x = 10 y = 2.2 3 y = 1 x = 2 Vậy HPT đã cho có nghiệm là: y =1 2 x y = 3 5 x = 10 x = 2 x = 2 3 x + y = 7 3 x + y = 7 3.2 + y = 7 y =1 x = 2 y =1 Vậy HPT đã cho có nghiệm là: b Để giải loại HPT này ta thờng sử dụng PP cộng cho thuận lợi 2 x + 3 y = 2 10 x + 15 y = 10 11 y = 22 y = 2 x = 2 5 x + 2 y = 6 10 x + 4 y = 12 5 x + 2 y = 6 5 x + 2.(2 =... x 3 y 3x + y 8 7 5 x y + 2 x + y 1 = 4,5 3 2 + =4 x y + 2 x + y 1 Tuần 20 + 21 Giải bài toán bằng cách lập hệ phơng trình I, Mục tiêu: * Kiến thức: HS giải đợc các bài toán thực tế bằng cách lập HPT * Kĩ năng: - HS đợc củng cố kĩ năng phân tích tìm lời giải, trình bày lời giải bài toán bằng cách lập HPT * Thái độ: Rèn tính cẩn thận, chính xác, lô gíc chặt chẽ, rõ ràng II, Lí thuyết cần... hai điểm M và N sao cho AM =BN Qua M, N kẻ các đờng thẳng song song với nhau chúng cắt nửa đờng tròn lần lợt tạiC và D CMR: MC và ND cùng vuông góc với CD Tuần 15 +16 I, Mục tiêu: ÔN TậP CHƯƠNG I: CĂN BậC HAI * Hệ thống lại các công thức va các dạng bài tập chơngI * Ôn lại bài toán rút gọn biểu thức CTBH và các dạng bài tập có sử dụng KQ bài toán rút gọn 1, GV hệ thống lại các công thức về CTBH 2, Bài... hớng dẫn: Dạng 1: Toán chuyển động *Phơng pháp: Lập bảng, tóm tắt tìm lời giải - Tìm dạng chuyển động, hoặc đối tợng chuyển động lập trên cột đầu, các đại lợng lập trên cột đầu - Tìm đại lợng đã biết điền vào bảng - Chọn ẩn vào một ô trên bảng (Thờng chọn ẩn trực tiếp, hỏi gì chọn ấy), biểu diễn các đại lợng cha biết qua ẩn và đại lợng đã biết vào các ô còn lại trên bảng - Lập phơng trình( Chọn ẩn bằng... đờng tròn Số điểm chung 3 cm 7 cm Tiếp xúc nhau Hệ thức giữa d và R *Điền vào các ô trống trong bảng, biết rằng đờng tròn tâm O có bán kính R, đờng tròn tâm O có bán kính r và OO = d, R > r Vị trí tơng đối của hai đờng tròn Tiếp xúc ngoài Số điểm chung Hệ thức giữa d, R, r d=R-r 2 d>R+r (O) đựng (O) * Điền tiếp vào các câu sau để đợc mệnh đề đúng: - Nếu hai tiếp tuyến của một đờng tròn cắt nhau . giữa cạnh và đờng cao trong tam giác vuông. - áp dụng các hệ thức đó vào làm đợc bài thập cơ bản tính toán các độ dài của các yếu tố trong tam giác vuông căn ở mẫu, ta trục căn thức ở mẫu trớc khi thay vào biểu thức. + Ví dụ: Tính 1 A khi 7 4 3x = + . ( ta biến đổi ( ) 2 7 4 3 2 3+ = + rồi hãy thay vào tính).

Ngày đăng: 09/10/2013, 18:11

TỪ KHÓA LIÊN QUAN

w