1. Trang chủ
  2. » Giáo án - Bài giảng

CHương trinh on thi vào lớp 10

48 382 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 48
Dung lượng 1,93 MB

Nội dung

Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc Phần I. căn bậc hai_ căn bậc n Đ 1 một số kiến thức cơ bản liên quan A. Kiến thức cần nhớ: 1.Bất phơng trình tích a) Nhị thức bậc nhất: Nhị thức bậc nhất là biểu thức có dạng f(x) = ax + b (a 0). Nghiệm của phơng trình ax + b = 0 cũng gọi là nghiệm của nhị thức ( x 0 = - a b ). b) Định lí: (Định lí về dấu nhị thức bậc nhất). Nhị thức ax + b (a 0) cùng dấu với a với mọi giá trị của x lớn hơn nghiệm của nhị thức , trái dấu với a với mọi giá trị của x nhỏ hơn nghiệm của nhị thức. Ví dụ : Xét dấu các nhị thức sau: a) f(x) = 2x 3 ; b) g(x) = -3x 5 Giải Ph ơng pháp: +) Xác định dấu của hệ số a +) Tìm nghiệm của nhị thức +) Kết luận: Dựa vào định lí để kết luận a) Ta có: a = 2 > 0. Nhị thức có nghiệm x 0 = 3 2 Vậy f(x) < 0 nếu x < 3 2 ; f(x) > 0 nếu x > 3 2 ( Hay 2x 3 < 0 nếu x < 3 2 ; 2x -3 > 0 nếu x > 3 2 ). b) Ta có: a = -3 < 0. Nhị thức có nghiệm x 0 = - 3 5 . Vậy f(x) < 0 nếu x > - 3 5 ; f(x) > 0 nếu x< - 3 5 . ( Hay -3x 5 < 0 nếu x > - 3 5 ; -3x 5 > 0 nếu x< - 3 5 ). 2. Bất phơng trình chứa ẩn trong dấu giá trị tuyệt đối a) |f(x)| < a << > axfa a )( 0 ; b) |f(x)| a axfa a )( 0 ; x - x 0 + f(x) = ax + b a.f(x) < 0 a.f(x) > 0 1 Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc c) |f(x)| > a > < < axf axf a a )( )( 0 0 ; d) |f(x)| a > axf axf a a )( )( 0 0 . B. Các ví dụ: Ví dụ1: Giải các bất phơng trình sau: a) 2x 7 < 0 ; b) -4x + 3 0 ; c) (2x 7)( -4x + 3) 0 ; d) 0 62 )2)(1( < x xx Giải Ph ơng pháp: 1) Đối với câu a) và b) ta có thể sủ dụng tính chất của bất đẳng thức để biến đổi tơng đ- ơng 2) Đối với câu c) và d) ta áp dụng định lí về dấu nhị thức bậc nhất a) 2x 7 < 0 2x < 7 x < 2 7 Vậy x < 2 7 là nghiệm của bất phơng trình đã cho. b) -4x + 3 0 -4x -3 x 4 3 4 3 = . Vậy x 4 3 là nghiệm của bất phơng trình đã cho. c) (2x 7)( -4x + 3) 0 (*) Cách 1: Biến đổi tơng đơng (*) + + 034 072 034 072 x x x x 4 3 2 7 4 3 2 7 x x x x 2 7 4 3 x Vậy Bpt (*) có nghiệm là x 2 7 ; 4 3 Cách 2: Vận dụng định lí về dấu nhị thức bậc nhất 1) Tìm nghiệm của các nhị thức bậ nhất: 2x 7 = 0 x = 2 7 ; 2 Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc - 4x + 3 = 0 x = 4 3 2) Lập bảng xét dấu: x - 4 3 2 7 + 2x 7 - - 0 + -4x + 3 + 0 - - VT - 0 + 0 - 3) Kêt luận : Từ bảng xét dấu ta có tập nghiệm của bất phơng trình là: S = 2 7 ; 4 3 d) 0 62 )2)(1( < x xx 1) Nghiệm của các nhị thức bậc nhất: x 1 = 0 x = 1; 2 x = 0 x = 2; 2x 6 = 0 x = 3 2) Lập bảng xét dấu: x - 1 2 3 + x 1 - 0 + | + | + 2 x + | + 0 - | - 2x 6 - | - | - 0 + VT + | - | + || - 3) Kêt luận : Từ bảng xét dấu ta có tập ghiệm S = (1;2)(3; +) Ví dụ2: Giải các bất phơng trình sau: a) 2x 2 3x + 1 < 0 ; b) x 2 + 4x +5 0 ; c) -2x 2 +4x 6 0 ; d) 2x 2 5x + 2 < 0 H ớng dẫn giải Ph ơng pháp: Phân tích vế trái của các bất đẳng thức thành tích các nhị thức rồi thực hiện cách giải nh ví dụ 1. a) 2x 2 3x + 1 < 0 (1) (1) 2x 2 2x x + 1 < 0 2x(x 1) (x 1) < 0 (2x 1)(x 1) < 0 b) x 2 + 4x +5 0 x 2 + 4x + 4 + 1 0 (x + 2) 2 + 1 0 Luôn đúng với mọi x. c) -2x 2 +4x 6 0 -2(x 2 2x + 1) 4 0 -2(x - 1) 2 4 0 vô lí. d) 2x 2 5x + 2 < 0 2x 2 4x x + 2 < 0 2x(x - 2) (x 2) < 0 3 Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc (2x 1)(x - 2) < 0. Ví dụ3: Giải các bất phơng trình sau: a) |1 - 3x| < 2 ; b) |5x + 3| > 4 ; c) |x 2 5x + 5| 1 ; d) x x + 2 13 < 3. Giải a) |1 - 3x| < 2 - 2 < 1 3x < 2 - 3 < -3x < 1 - 3 1 < x < 1 Vậy bất phơng trình có nghiệm x (- 3 1 ; 1). b) |5x + 3| > 4 <+ >+ 435 435 x x < > 5 7 5 1 x x Vậy bất phơng trình có nghiệm x (-;- 5 7 )( 5 1 ;+). c) |x 2 5x + 5| 1 + + 155 155 2 2 xx xx + + 065 045 2 2 xx xx Vậy bất phơng trình có nghiệm x (-;1] [2;3] [4; +) . d) x x + 2 13 < 3 < + > + 3 2 13 3 2 13 x x x x < + >+ + 03 2 13 03 2 13 x x x x < + > ++ 0 2 )2(3)13( 0 2 )2(3)13( x xx x xx (*) < > 0 2 56 0 2 7 x x x < > 0)2)(56( 02 xx x < > 056 02 x x x < 6 5 Vậy bất phơng trình có nghiệm x (-; 6 5 ). Chú ý: Nhiều bạn thờng hay mắc sai lầm ở phép biến đổi: < + > + 3 2 13 3 2 13 x x x x <+ >+ )2(313 )2(313 xx xx < > 56 61 x Điều đó chỉ đúng khi 2 x > 0 x < 2. C. Bài tập Giải các bất phơng trình sau: 1) 3x 7 > 0 ; 2) x 2 4x 21 > 0 ; 3) x 2 4x + 1 < 0 ; 4) 3x 2 + x 1 < 0; 5) 2x 2 5x + 4 < 0; 6)|3x + 4| < 6 ; 7) x xx xx < + 65 2 2 2 . 4 Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc Đ 2 biến đổi đồng nhất các biểu thức đại số A. Kiến thức cần nhớ: 1) Hằng đẳng thức đáng nhớ: +) (a b) 2 = a 2 2ab + b 2 . +) (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 +) a 2 b 2 = (a - b)(a + b) +) a 3 b 3 = (a b)(a 2 ab + b 2 ) 2) Các quy tắc về luỹ thừa(a, b, c 0, mZ). +) a m .a n = a m+n ; +) a m : a n = a m-n . +) (a m ) n = a m.n = a n.m ; +) (abc) m = a m b m c m . +) m m m b a b a = ; +) a -m = m a 1 . 3) Các quy tắc về căn bậc hai: +) Điều kiện có nghĩa của A là A 0. +) Quy ớc a 0. +) == a a aa 2 Với các điều kiện có nghĩa thì: +) abba =. ; ( ) n n aa = ; +) ( ) nnn n cbacba = +) b a ba =: (b 0); +) baba = 2 +) a = ba ba b 2 2 +) b ba b a = +) cb cba cb a = )( ; 2 )( cb cba cb a = (đk : mẫu thức khác 0) b.các dạng toán: Dạng 1: Phân tích thành nhân tử I.Các ví dụ: Phân tích thành nhân tử các đa thức sau: a) ab + ac + b 2 + 2bc + c 2 ; b) x 3 6x 2 + 11x 6; c) x 6 x 4 2x 3 + 2x 2 d) x 6 y 6 d) x(y 2 z 2 ) + y(z 2 x 2 ) + z(x 2 y 2 ). Giải a) Nhóm các số hạng: (ab + ac) + (b 2 + 2bc + c 2 ) = a(b + c) + (b + c) 2 = (b + c)(a + b + c). b) Tách các số hạng -6x 2 và 11x ta có: x 3 x 2 5x 2 + 5x + 6x 6 = x 2 (x - 1) 5x(x - 1) + 6(x - 1) =(x - 1)(x - 2)(x - 3). c) Đặt x 2 làm nhân tử chung: 5 nếu a 0 nếu a < 0 nếu a 0 nếu a < 0 Ví dụ 1: Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc x 6 x 4 2x 3 + 2x 2 = x 2 (x 1) 2 (x 2 + 2x + 2) c) Dùng hằng đẳng thức: x 6 y 6 = (x - y)(x + y)(x 2 xy + y 2 )(x 2 + xy + y 2 ) d) Chú ý rằng: y 2 z 2 = -(z 2 x 2 + x 2 y 2 ), thay vào đẳng thức. Chú ý: Trong thực hành với đa thức bậc n, ta có thể sử dụng kết quả sau đây: Xét đa thức P(x) = a n x n + a n-1 x n-1 + + a 2 x 2 + a 1 x + a 0 . - Nếu P(x) có nghiệm x = a, tức P(a) = 0 thì P(x) chia hết cho (x a) và ngợc lại. Khi đó P(x) = (x - a)Q(x) trong đó Q(x) có bậc n 1. - Nếu tổng các hệ số a n + a n-1 + + a 2 + a 1 + a 0 = 0 thì P(x) có nghiệm x = 1. - Nếu tổng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ thì P(x) có nghiệm x = - 1 Phân tích thành nhân tử các đa thức sau: a) a 3 + 3a 2 6a 8 ; b) a - 3 a + 2; c) xxx 2 3 ; d) a + 4 a + 3 e) a a - 2b b - 3b a . Giải a) a 3 + 3a 2 6a 8 = (a + 1)(a 2 + 2a - 8) = (a + 1)(a + 4)(a - 2). b) a - 3 a + 2 = ( a - 1)( a - 2). c) xxx 2 3 = x (x - x - 2) = x ( x + 1)( x - 2) . d) a + 4 a + 3 = ( a + 1)( a + 3) e) a a - 2b b - 3b a = a a - 2b b - 2b a - b a = a (a - b) 2b( a + b ) = a ( a - b )( a + b ) -2b( a + b ) = ( a + b )(a - ab - 2b) = ( a + b )(a - ab - b - b) = ( a + b )[a b - b ( a + b )] = ( a + b ) 2 ( a - 2 b ). II.Bài tập vận dụng: Bài 1: Phân tích thành nhân tử: a) a 2 2ab c 2 + b 2 ; b) 3xy 2 + 6xy + 3x; c) -6x 2 + 5x + 1; d) abx 2 -(a 2 + b 2 )x + ab; e) x 2 (y - z) + y 2 (z - x) + z 2 (x y) . Bài 2: Phân tích thành nhân tử: a) a 9 với a > 0; b) a - 5 a + 4 ; c) -6x +5 x + 1 ; d) 7 x - 6x 2; e) 2a + ab - 6b với a > 0; b > 0; f) 6y 2 5y x - x; g) 6 xy - 4x x - 9y y + 6xy ; h) x - 2 1x - a 2 . Bài 3: Phân tích thành nhân tử: a) x 4 4x 2 + 12x 9 ; b) x 4 4x 1 ; c) x 3 3x 2 + 2; Dạng 2: Rút gọn biểu thức 1.Biểu thức không chứa biến số: I.Các ví dụ: 6 Ví dụ 2: Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc Ph ơng pháp: áp dụng hằng đẳng thức để phâp tích các biểu thức trong căn bậc hai thành các tổng_hiệu bình phơng. Rút gọn các biểu thức a) A = 526526 + ; b) B = 625625 + . Giải a) 6 + 2 5 = 5 + 2 5 + 1 = ( 5 + 1) 2 b) 5 - 2 6 = 3 - 2 2.3 + 2. c) Rút gọn các biểu thức a) C = 3232 ++ ; b) D = 31221269269 + Giải a) ( ) ( ) 2 31 2 1 324 2 1 32 == b) 33.626269 ++=+ ; 93.32.21231221 += Thực hiện các phép tính: a) ( )( ) 154610154 + ; b) ( )( ) 53210.53 + ; Giải a) ( )( ) 154610154 + = ( ) 610154154.154 ++ = ( ) 352.1.154 + = ( ) ( )( ) 3535351528 +=+ = 2. b) ( )( ) 53210.53 + = 8. Thực hiện các phép tính: a) M = 2 2 5 2 6 5 2 6 3 2 3 2 + ữ ữ ữ ữ + ; b) N = ( ) 2 7 2 6 7 2 6 + + . Giải a) Chú ý rằng : 5 + 6 = ( ) 2 3 2+ ; 5 - 6 = ( ) 2 3 2 b) Chú ý: 7 ( ) 2 2 6 6 1 = . Thực hiện các phép tính: a) P = 40 2 57 40 2 57 + ; b) N = 1 1 1 1 2 2 3 2007 2008 + + + + + + . Giải a)Nhận xét: 40 2 < 57 nên: P 2 = 57 - 40 2 + 40 2 + 57 -2 ( ) 2 2 57 (40 2) 114 14 100 = = . Do P < 0 nên: p = -10. 7 Ví dụ 1: Ví dụ 3: Ví dụ 2: Ví dụ 4: Ví dụ 5: Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc b) Trục căn thớc khỏi mẫu sốbằng cách nhân cả tử, cả mẫu với các biểu thức liên hợp: 2 1; 3 2; ; 2008 2007 . Từ đó: Q = 2 1 3 2 2008 2007 2008 1 + + + = . II.Bài tập vận dụng: Rút gọn các biểu thức sau: 1) 10211 ; 2) 1429 ; 3) 10275262 62526113 +++ +++ ; 4) 3471048535 ++ ; 5) 5210452104 ++++ ; 6) 5429454294 + ; 7) 322 32 322 32 + ++ + ; 8) 5 3 5 3 5 1 5 3 5 3 5 1 + + + ; 9) 2 2 9 2 14 9 2 14 7 2 7 2 + + ữ ữ ữ ữ + ; 10) 12 5 29 12 5 29 + . 2.Biểu thức có chứa biến số: I.Các ví dụ: Ph ơng pháp: +) Phân tích đa thức thành nhân tử +) Giản ớc các biểu thức đồng dạng L u ý: Đối với biểu thức có chứa biển đới dấu căn bậc hai nên đặt điều kiện để căn thức có nghĩa. Cho biểu thức: A = 44 2 + xxx a) Tìm tập xác định của biểu thức A. b) Rút gọn các biểu thức A. Giải a) Biến đổi biểu thức: A = 44 2 + xxx = 2 )2( xx = 2 xx Điều kiện để A có nghĩa: x |x - 2| + 44 0 22 xxx x x 1 Tập xác định của A: { x |x R; x 1}. b) Nếu x 2 thì A = )2( xx = 2 Nếu 1 x < 2 thì A = )2( xx = 22 x . Rut gọn biểu thức: 8 Ví dụ 1: Ví dụ 2: Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc a) A= 4 65 + x xx ; b) B= 144 123 + xx xx ; c)C= ( ) ( ) ( ) ( ) ( ) xyyyxx xyyyxx 266 3255 ++++ +++++ và tính giá trị của biểu thức nếu 2008=+ yx . Giải a) A= 4 65 + x xx = )2)(2( 632 + + xx xxx = 2 3 + x x b) B= 144 123 + xx xx = 2 2 )12( 1)(22 + x xxx = 2 )12( )12()12( x xxx c)C= ( ) ( ) ( ) ( ) ( ) xyyyxx xyyyxx 266 3255 ++++ +++++ . Ta có: MT = )6)(( +++ yxyx TT = )6)(1( +++ yxyx VậyC= ( ) ( ) ( ) ( ) ( ) xyyyxx xyyyxx 266 3255 ++++ +++++ = yx yx + + 1 Với 2008=+ yx ; C = 2008 2007 . Rut gọn biểu thức: a) A = |x - 1| - |1 2x| với x < 2 1 ; b) P = 143 12 2 2 + xx xx và chứng minh rằng nếu a > 1 thì P(a).P(-a) < 0. c) Q = 1 144 22 +++ x xxx với x > 2 2 . d) B = 22 1025168 xxxx +++ với 4 < x < 5. Giải a)Vì x < 2 1 nên x 1 < 0 |x - 1| = 1 x 1 2x > 0 |1 2x| = 1 2x Vậy A = 1 x (1 2x) = x b) 2x - 2 x - 1 = 2x - |x| - 1 = 13 1 x x 3x 2 4x + 1 = 3x 2 - x 3x + 1 = (x - 1)(3x - 1) 9 Ví dụ 3: nếu x 0 nếu x < 0 Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc Vậy P = 1 1 13 1 x x Có P(a) = 13 1 a >0 (vì a > 1) P(-a) = 1 1 1 1 + = aa < 0 (vì -a < -1 < 0) Suy ra: P(a).P(-a) < 0. c) Có thể viết Q = 1 12 ++ x xx vì x > 2 2 |x| = x;|2 - x| = x 2, đồng thời 2x 1 0, do đó : Q = 1 12 12 12 12 = = ++ x x x xx d) Có thể viết B = |x - 4| + |5 - x|. Vì 4 < x < 5 nên x 4 > 0 và 5 x > 0 do đó : B = (x - 4) + (5 x ) = 1. II.Bài tập vận dụng: Bài 1: Rút gọn biểu thức B = + + + + + + + + 1 11 1 :1 11 1 ab aab ab a ab aab ab a Tính giá trị của B nếu a = 324 + ; b = 324 Bài 2: Rút gọn biểu thức B = 422422 + xxxx Bài 3: Rút gọn các biểu thức: A = 2 1 1 1 1 + a a a a aa B = ( ) + + + ++ + yx yx xyyx yx ỹyxy yx 11 . 2 2 1 . 11 : 3 với x = 2 - 3 ; x = 2 + 3 . C = 12 11 xx x . D = )(2 2222 yx yxxyxx + với x > y > 0. E = + + + 1 1 1 1 : 1 1 1 1 xxxx với x = ab ba 2 22 + ; b > a > 0. F = xx xa + + 2 2 1 12 với x = a a a a 1 1 2 1 0 < a < 1. 10 nếu x 0 nếu x < 0 [...]... ax y = b hoặc ytùy ý c ax x = b Tập hợp các điểm M(x;y) trong đó x, y thỏa mãn (2) là một đờng thẳng 5 Hệ phơng trình bậc nhất hai ẩn: (1) ax + by = c Có dạng: ax + by = c (2) (I) a b : Hệ (I) có nghiệm duy nhất, ĐT(1) cắt ĐT(2) a' b' a b c = : Hệ (I) vô nghiệm, ĐT(1) song song với ĐT(2) a' b' c' 22 Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc a b c = = : Hệ (I) có vô... ẩn từ một phơng trình rồi thế vào phơng ttrình còn lại Phơng pháp cộng đại số: cân bằng hệ số của một ẩn ở cả hai phơng trình rồi trừ theo vế hai phơng trình để khử bớt một ẩn.Tìm ẩn còn lại B các ví dụ về giải toán Ví dụ 1: Cho hàm số y = (m - 1)x + m (d) a) Xác định m để hàm số đồng biến, nghịch biến b) Xác định m để đờng thẳng (d) : 1) Song song với trụ hoành 2) Song song với đờng thẳng có phơng trình:... Vậy : A= (2 x + 3 y )( x + 3) (6 xy )( x 3) ( x + 9)( y + 2) ( x 3)( x + 3)( y + 2) =0 Suy ra A không phụ thuộc vào biến số (đpcm) Ví dụ 2: Chứng minh biểu thức sau không phụ thuộc vào biến số: B= 2 1 1 : xy x y 2 ( x+ y x y ) 2 với x > 0; y > 0; x y Giải 11 Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc 2 xy B = = ( : y x Ví dụ 3: 2 xy 2 xy x y ( ) x y ) 2 ( x+ y y x ) 2... , tìm điểm cố định đó Giải a) -Hàm số đồnh biến nếu: m 1 > 0 m > 1 -Hàm số đồnh biến nếu: m 1 < 0 m < 1 b)Tìm m: 1) Đờng thẳng (d) song song với Ox khi và chỉ khi m 1 = 0 m = 1 2) Viết lại đờng thẳng (d) dới dạng: y = 1 1 x2 2 Hai đờng thẳng (d) và (d) song song với nhau khi và chỉ khi : 1 m 1 = 2 3 m= 2 m 1 2 3 ;0) Do đờng thẳng (d) đi qua A nên ta có: 2 3 21 2 3 0 = (m - 1) (2 )+m... bài toán trên ở chổ : Khi biến đổi không nhất thi t phải làm cho biểu thức thật gọn mà ta phải hớng mục tiêu cuối cùng là làm xuất hiện vế còn lại Để biến đổi A = B ta có thể áp dụng các phơng pháp sau: 1) Chỉ ra A B = 0 2) Biến đổi A thành B (hoặc ngợc lại) 3) Biến đổi A = C và đồng thời B = C I.Các ví dụ Ví dụ 1: Chứng minh đẳng thức: 12 Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc ... 1)( a 1) a + a + 1 = = a +1 ( a 1) 2 a 1 a+2 a + a +1 < 0 (1) 1 < 0 b) N < 1 a 1 a 1 N= Vì a + 2 > 0 nên a 1 < 0 0 a < 1 14 Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc Vậy 0 a < 1 thì N < 1 c)Nhận xét: a = 19 - 8 3 = (4 3) 2 Thay vào biểu thức , ta đợc : N= 19 8 3 + 4 3 + 1 24 9 3 15 3 = = 2 4 3 1 3 3 Ví dụ 3: Cho biểu thức: P= 3x + 9 x 3 x +1 x 2 + x+ x 2 x + 2 1... cho bởi công thức y = ax + b (a 0) a Tập xác định: D = R b Chiều biến thi n: +) Nếu a > 0 thì hàn số đồng biến +) Nếu a < 0 thì hàm số nghịch biến c.Đồ thị: Đồ thị hàm số bậc nhất là một đờng thẳngcắt cả trục tung và trục hoành lần lợt tại b a A(0;b),B(- ;0) y y A(0;b) A(0;b) B(-;0) O a > 0 x O a < 0 B(-;0) x 21 Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc Nhận xét: Đồ thị hàm số đồng... đờng thẳng (d), khi đó: y0 = (m - 1)x0 + m mR (m - 1)x0 + m y0 = 0 (*) m R Vì (*) đúng với mọi m R nên: Với m = 0: - x0 y0 = 0 x0 = -y0 (a) Với m = 1: 1 y0 = 0 y0 = 1 thay vào (a) ta có: x0 = -1 23 Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc Vậy đờng thẳng (d) luôn đi qua một điển cố định M(-1;1) Cách 2: (Phơng pháp đồng nhất thức) Gọi M(x0;y0) là điểm cố định (nếu có) của đờng... Cho hàm số y = (m - 2)x + n () trong đó hai số m , n là hai số thực cho trớc a) Tìm m và n để đờng thẳng () đi qua hai điểm A(1;-2) và B(3; -4) b) Tìm m và n để đờng thẳng () cắt trục tung tại điểm M có tung độ y = 1 - 2 và cắt trụ hoành tại điểm N có hoành độ x = 2 + 2 c) Tìm m, n để đờng thẳng () : 1) Vuông góc với đờng thẳng có phơng trình x 2y = 3 (1) 2) Song song với dờng thẳng có phơng trình... = x 1 ( 1) ; c) x 1 + y + 3 = 0 (3); b) x 2 2 x + 1 3 + 2 2 = 1 (2); d) 2 x y + 1 + x y = 0 (4) Giải a) Cách1: Xét dấu biểu thức trong dấu giá trị tuyệt đối: Nếu 1 2x 0 x 1 2 2 1 : 1 2 x = x 1 1 2x = x 1 x = (lọai vì > ) 2 3 3 2 25 Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc Nếu 1 2x < 0 x > 1 1 : 1 2 x = x 1 2x 1= x 1 x = 0 (loại vì 0 < ) 2 2 Vậy phơng trình . tính: a) ( )( ) 154 6101 54 + ; b) ( )( ) 53 210. 53 + ; Giải a) ( )( ) 154 6101 54 + = ( ) 6101 54154.154 ++ = ( ) 352.1.154 + = ( ) ( )( ) 3535351528 +=+ = 2. b) ( )( ) 53 210. 53 + = 8. . . II.Bài tập vận dụng: Rút gọn các biểu thức sau: 1) 102 11 ; 2) 1429 ; 3) 102 75262 62526113 +++ +++ ; 4) 34 7104 8535 ++ ; 5) 5 2104 5 2104 ++++ ; 6) 5429454294 + ; 7) 322 32 322 32 + ++ + ;. 40 2 + 40 2 + 57 -2 ( ) 2 2 57 (40 2) 114 14 100 = = . Do P < 0 nên: p = -10. 7 Ví dụ 1: Ví dụ 3: Ví dụ 2: Ví dụ 4: Ví dụ 5: Ti liu ụn thi lp 10 GV: Lờ Thng THCS Phng Khoan Vinh phỳc b)

Ngày đăng: 04/07/2014, 15:00

TỪ KHÓA LIÊN QUAN

w