1. Trang chủ
  2. » Giáo án - Bài giảng

De cuong on tap GDI ( Phần II)

4 272 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 154,5 KB

Nội dung

Đề cơng ôn tập giai đoạn I Họ và tên: Lớp 9A Phần đại số Bài 16. Thực hiện phép tính: 2 2 2 2 4 a) 2 ( 3 5) ( 2 3) b) 12 3 5 6 3 c) 0,5 3.( 6) 3 ( 2 3) d) ( 15 2 5)(2 3) : ( 3 5) 1 2 + + + + Bài 17. Thực hiện phép tính: (5+2 6)(49 20 6) 5 2 6 a) 6+3 3 6 3 3 b) 9 3 11 2 5+2 6 8 2 15 3 2 3 6 c) d) 3 3 3 7 2 10 + + + + Bài 18. Rút gọn biểu thức ( ) 1 1 x 1 B : x 0 và x 1 x x x 1 x 2 x 1 ữ = > + + + + . Bài 19. Cho 2 2 a 16 A 9 a = + v 10 a 4 B 3 3 a = ữ . Tìm giá trị của a để A = B Bài 20. Giải phơng trình: x 7 1 a) 3 2x 5 8x 7 18x 28 b) x 4 ( x 3)( x 4) x 3 c) 2 x 8 4x 3 d) 2 3x 5 27x 7 12x 3 + = + = + + + + + = + = Bài 21. Chứng minh: = + + > ữ ữ 6 2x a) A x 6x : 6x voi x 0 x 3 không phụ thuộc vào biến ( ) + = > > + 2 x y 4 xy x y y x b) . x y voi x 0; y 0 x y xy 2+ x x 2 x x x x 1 c) M= . x 1 x+2 x 1 x + ữ ữ + không phụ thuộc vào biến Bài 22. Cho biểu thức: + = + ữ + x 2 x 1 1 1 A voi x > 0; x 1 x 1 x x x 1 a) Rút gọn A b) Tìm x để A < 0 Bài 23. Cho biểu thức: = + + 1 1 A voi x 1 x 1 x x 1 x a) Rút gọn A b) Tính giá trị của A với = x 5 2 3 Bài 24. Cho biểu thức: + = + + ữ ữ ữ ữ + a a a a A 1 1 voia 0; a 1 a 1 a 1 a) Rút gọn A b) Tìm a để A = - a 2 Bài 25. Cho biểu thức: = + > > ữ ữ + y y 2 xy A : voi x 0; y 0; x y x y x xy x xy a) Rút gọn A b) Tìm x và y để A = 1 Bài 26. Cho biểu thức: = + > + 1 x A voi x 0; x 1 x 1 x x a) Rút gọn A b) Tính giá trị của A khi = 1 x 2 Bài 27. Cho biểu thức: x 2 x 1 x 1 A : 2 x x 1 x x 1 1 x + = + + ữ ữ + + a) Rút gọn A b) Chứng minh A > 0 với mọi x thuộc tập xác định Bài 28. Cho biểu thức: 3 1 1 A : x 1 x 1 x 1 = + ữ + + a) Nêu điều kiện xác định và rút gọn biểu thức A b) Tìm các giá trị của x để 5 A 4 = c) Tìm giá trị nhỏ nhất của biểu thức x 12 1 M . P x 1 + = Bài 29. Cho biểu thức: 1 x x A : x x 1 x x = + ữ ữ + + a) Rút gọn A b) Tìm giá trị của A để x = 4 c) Tìm x để 13 A 3 = Bài 30. Cho biểu thức: 1 3 2 A x 1 x x 1 x x 1 = + + + + a, Tìm ĐKXĐ và rút gọn biểu thức A b, Tìm các giá trị của x để A = 1. Phần hình học Bài 16. Cho tam giác ABC vuông ở A, đờng cao AH chia cạnh BC thành hai đoạn BH = 4cm, CH = 9cm. Kẻ HD AB; HE AC (D AB; E AC) a) Tính AH b) Gọi M, N lần lợt là trung điểm của BH và CH. Chứng minh MD DE; NE DE c) Chứng minh AE.AC = AD.AB d) Tính diện tích tứ giác DENM Bài 17. Cho hình thang cân ABCD (AB // CD, AB < CD), M và N là trung điểm của hai đáy AB và CD. Biết 1 MN (CD AB) 2 = a) Chứng minh à à 0 C D 90+ = b) Biết AD = AB = 6cm, BC = 8cm. Tính diện tích hình thang ABCD Bài 18. Cho tam giác ABC cân tại A. Tia phân giác Ax của góc BAC cắt BC tại H. Trên cạnh AB lấy điểm M, trên tia đối của CA lấy điểm N sao cho BM = CN a) Nối MN cắt BC tại I, chứng minh I là trung điểm của MN b) Trung trực của MN cắt Ax tại O, chứng minh OC và AC vuông góc với nhau c) Chứng minh 2 2 2 4 1 1 BC AB BO = + d) Biết AB = 6cm, OB = 4,5cm, tính diện tích tam giác ABC Bài 19. Cho tam giác ABC vuông tại A. Kẻ AH BC . Chu vi tam giác ABH bằng 9cm, chu vi tam giác ACH bắng 12cm. Tính chu vi tam giác ABC Bài 20. Cho tam giác ABC vuông tại A. Biết tgB 2= a) Tính tỉ số lợng giác của góc C b) Kẻ AH BC . Biết AH 2 3= cm. Tính các cạnh của tam giác ABC Bài 21. Cho tam giác ABC vuông tại A, đờng cao AH, CH = 4,9cm, 7 sin B 74 = a) Tính tỉ số lợng giác của góc C b) Tính diện tích tam giác ABC Bài 22. Cho tam giác ABC nhọn. Chứng minh diện tích tam giác đó bằng 1 S AB.AC.sin A 2 = , áp dụng: a) Tính S ABC biết AB = 4cm, AC = 7cm và à 0 A 60= b) Biết S ABC = 5 2 (cm 2 ), AB = 4cm, AC = 5cm. Tính số đo của góc A Bài 23. Cho tam giác ABC có AB = 3cm, AC = 6cm, à 0 A 120= . Kẻ phân giác AD của góc A. Tính độ dài AD Bài 24. Cho tam giác ABC có à 0 A 75= , AB = 10cm. Số đo các góc B và C tỉ lệ với 4 và 3 a) Tính CA, CB b) Tính diện tích tam giác ABC Bài 25. Cho tam giác ABC có à 0 A 60= . Kẻ BH AC, CK AB a) Chứng minh KH = BC. cos ã BAC b) Gọi trung điểm của BC là M. Chứng minh tam giác MKH đều Bài 26. Cho hình bình hành ABCD có đờng chéo AC lớn hơn BD. Kẻ CH AD; CK AB a) Chứng minh tam giác CKH và BCA đồng dạng b) Chứng minh HK = AC.sin ã BAD c) Tính diện tích của tứ giác AKCH biết ã 0 BAD 60= , AB = 4cm, AD = 5cm Bài 27. Cho tam giác ABC vuông tại A. Từ trung điểm E của cạnh AC kẻ EF và BC vuông góc với nhau. Nối AF và BE a) Chứng minh AF = BE. cosC b) Biết BC = 10cm, sinC = 0,6. Tính diện tích tứ giác ABFE c) AF và BE cắt nhau tại O. Tính sin ã AOB Bài 28. Dựng góc biết 1 sin 2 = Bài 29. Cho tam giác ABC có ba góc nhọn, AB = c, AC = b, BC = a. Chứng minh rằng: = = a b c sin A sin B sinC Bài 30. Biết cot g 2 = . Tính giá trị của biểu thức: sin 4cos A 2sin cos = + . tên: Lớp 9A Phần đại số Bài 16. Thực hiện phép tính: 2 2 2 2 4 a) 2 ( 3 5) ( 2 3) b) 12 3 5 6 3 c) 0,5 3 .( 6) 3 ( 2 3) d) ( 15 2 5 )(2 3) : ( 3 5) 1 2 . BH và CH. Chứng minh MD DE; NE DE c) Chứng minh AE.AC = AD.AB d) Tính diện tích tứ giác DENM Bài 17. Cho hình thang cân ABCD (AB // CD, AB < CD), M

Ngày đăng: 30/09/2013, 00:10

TỪ KHÓA LIÊN QUAN

w