1. Trang chủ
  2. » Giáo án - Bài giảng

Tổng hợp về PTTT hay

21 577 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 7,15 MB

Nội dung

TRƯỜNG THPT LÊ QUÝ ĐÔN LỚP 12C1 – TỔ III Chủ đề: Kính chào quý thầy cô và các bạn đền với buổi thuyết trình của nhóm 3 CÂU HỎI ) Viết phương trình đường thẳng đi qua 1 M(x0;y0)có hệ số góc k??? Trả lời: y – y 0 = k( x – x 0 ) hay: y = k(x – x 0 ) + y 0 2) Cho biết ý nghĩa hình học của đạo hàm??? Trả lời: Cho hàm số y= f(x)có đạo hàm tại x 0 ,cóđồ thị © và M(x 0 ;y 0 )là một điểm thuộc ©, khi đó hệ số góc của tiếp tuyến của © tại M(x 0 ; y 0 ) là: k = f’(x 0 ). y x M O x 0 y 0 (C) CÁC BÀI TOÁN TÌM PHƯƠNG TRÌNH TIẾP TUYẾN 3) Nêu phương trình tiếp tuyến của đồ thĩ hàm số tại M(x 0 ;y 0 ) thuộc đồ thị.? Trả lời:y –y 0 = f’(x 0 )(x – x 0 )hay y= f’(x 0 )(x – x 0 ) + y 0 Hãy nêu các dạng về PTTT đã học??? ? 1. Biết tọa độ tiếp điểm (hoặc biết hoành độ x 0 hoặc biết tungđộ y 0 của tiếp điểm.Tức là tiếp tuyến tại điểm M(x 0 ;y 0 )) 2. Biết hệ số góc k của tiếp tuyến 3. Biết tiếp tuyến qua điểm M(x 0 ; y 0 ) cho trước. 4. Hai đường tiếp xúc nhau. Trả lời: O x y (C) : y = f(x) M x 0 y 0  ∗ Nếu chỉ biết x 0 , ta thay x 0 vào công thức của hàm số để tính y 0 . ∗Tính f′(x) rồi tính f′(x 0 ). ∗Thay các giá trị x 0 , y 0 , f′(x 0 ) vào phương trình (1) ta có PTTT cần tìm. 1)Trường hợp 1: Biết tọa độ (x 0; y 0 ) của tiếp điểm Phương trình cần tìm là: y = f’(x 0 ).(x – x 0 ) + y 0 (1) ∗ Nếu chỉ biết y 0 , ta thay y 0 vào công thức của hàm số để tính x 0 Ví dụ 1: Cho đường cong © : Tìm PTTT của © tại điểm có hoành độ x = 2 Giải: PTTT của ©tại điểm có hoành độ bằng x 0 là: y = f′(x 0 ).(x – x 0 ) + y 0 Vậy PTTT cần tìm là : y = 2(x – 2) + 1, hay y = 2x – 3 ( ) 1 1 − −== x xxfy Theo đầu bài x0 = 2. Suy ra y0 = 1 ,thay vào f’(x0)  Ví dụ 2: Cho ©: y= x 2 – 4x + 3. Viết phương trình tiếp tuyến với © tại các giao điểm của © với trục hoành. Giải Phương trình hoành độ giao điểm của © với trục hoành: x 2 – 4x + 3 = 0 ⇔ x = 1, x = 3 Ta có: y’ = 2x – 4 y’ (1) = -2 y’ (3) = 2 Phương trình tiếp tuyến với © tại điểm M(1,0) là : y- 0 = -2(x – 1) ⇔ y = -2x + 2 Phương trình tiếp tuyến với © tại điểm N(3,0) là : y- 0 = 2(x – 3) ⇔ y = 2x - 6 • Gọi (x 0 , y 0 ) là tọa độ tiếp điểm • • Tính f′(x) rồi giải phương trình f′(x 0 ) = k để tính x 0 . • • Thay x 0 vào hàm số để tính y 0 . • • Áp dụng vào (2) ta có PTTT. • PTTT có dạng: y = k(x – x 0 ) + y 0 (2) ; [vôùi: k = f’(x 0 ) ] 2)Trường hợp 2: Biết hệ số góc k của tiếp tuyến [...]... y • M M yM) và tiếp xúc với (C) Phương trình đường O xM thẳng(d) là: y = k(x − xM) +yM hay: y = kx – kxM + yM (a) (d) Tiếp xúc với © khi hệ sau đây có nghiệm x y yM M x O f(x) = kx - kxM + yM xM  f' (x) =k Giải hệ phương trình tính được k, thay k vào phương trình (a), ta tìm được PTTT của © qua M 4) Trường hợp 4 : Hai đường cong tiếp xúc Hai đường cong được gọi là tiếp xúc nhau tại điểm M nếu... f(x)= x +2 Tìm PTTT của © Biết tiếp tuyến ấy song song với đường phân giác thứ nhất Giải: Vì tiếp tuyến song song với y = x, nên k =1 Gọi (x0; y0) là tọa độ tiếp điểm Phương trình có dạng y = (x – x0) + y0 Theo giả thiết: f′(x0) = 1 (1) 4 (1) ⇔ =1 2 ( x0 + 2) ⇔ x0 = 0 hoặc x0 = – 4 Với x0 = 0 thì y0 = – 1 Với x0 = – 4 thì y0 = 3 Vậy ta có hai tiếp tuyến là : y = x – 1 và = x + 7 3)Trường hợp 3: Biết tiếp... 2x + 4 = 2 x ( 2)  3 (2) ⇔ x2 − 4x + 4 = 0 ⇔ x = 2 Thay x = 2 vào(1), ta được : 8 NX : Khi a = thì (C ) tx ( P ) 3 8 a= 3 Dạng bổ sung: Tiếp tuyến đi qua điểm A(α, β) cho trước (hoặc phải tìm)  Cách giải 1: - Tiếp tuyến có pt dạng : y –f(x0) = f ‘(x0)(x – x0) - Tiếp tuyến qua A nên : β - f(x0) = f ‘(x0)(α – x0) (*) Giải (*) để tìm ra xo rồi suy ra PTTT  Cách giải 2: - Tiếp tuyến qua A (α , β) có pt... nên : β - f(x0) = f ‘(x0)(α – x0) (*) Giải (*) để tìm ra xo rồi suy ra PTTT  Cách giải 2: - Tiếp tuyến qua A (α , β) có pt dạng : y - β = k( x - α) (T) - Lý luận (T) tiếp xúc với © để tìm k, rồi suy ra PTTT Cho (C): y = f(x) = x3 − 3x2 + 2 Tìm trên đường thẳng y = − 2 các điểm từ đó có thể kẻ đến đồ thị hai tiếp tuyến vuông góc Giải: Goi A(a; – 2) là điểm cần tìm Phương trình tiếp tuyến qua A là : y . • • Thay x 0 vào hàm số để tính y 0 . • • Áp dụng vào (2) ta có PTTT. • PTTT có dạng: y = k(x – x 0 ) + y 0 (2) ; [vôùi: k = f’(x 0 ) ] 2)Trường hợp 2:. ta thay x 0 vào công thức của hàm số để tính y 0 . ∗Tính f′(x) rồi tính f′(x 0 ). ∗Thay các giá trị x 0 , y 0 , f′(x 0 ) vào phương trình (1) ta có PTTT

Ngày đăng: 28/09/2013, 18:10

HÌNH ẢNH LIÊN QUAN

Hình ảnh: Thanh Xuân                   Thanh Vân - Tổng hợp về PTTT hay
nh ảnh: Thanh Xuân Thanh Vân (Trang 20)

TỪ KHÓA LIÊN QUAN

w