Sở GD&ĐT Thừa Thiên Huế Đềthi tuyển sinh lớp 10 ---------------- Năm học: 2009 2010 . Môn: Toán. Thời gian làm bài: 120 phút Bài 1: (2,25đ) Không sử dụng máy tính bỏ túi, hãy giải các phơng trình sau: a) 5x 2 + 13x - 6=0 b) 4x 4 - 7x 2 - 2 = 0 c) 3 4 17 5 2 11 x y x y = + = Bài 2: (2,25đ) a) Cho hàm số y = ax + b. Tìm a, b biết rằng đồ thị của hàm số đã cho song song với đờng thẳng y = -3x + 5 và đi qua điểm A thuộc Parabol (P): y = 1 2 x 2 có hoàng độ bằng -2. b) Không cần giải, chứng tỏ rằng phơng trình ( 3 1+ )x 2 - 2x - 3 = 0 có hai nghiệm phân biệt và tính tổng các bình phơng hai nghiệm đó. Bài 3: (1,5đ) Hai máy ủi làm việc trong vòng 12 giờ thì san lấp đợc 1 10 khu đất. Nừu máy ủi thứ nhất làm một mình trong 42 giờ rồi nghỉ và sau đó máy ủi thứ hai làm một mình trong 22 giờ thì cả hai máy ủi san lấp đợc 25% khu đất đó. Hỏi nếu làm một mình thì mỗi máy ủi san lấp xong khu đất đã cho trong bao lâu. Bài 4: (2,75đ) Cho đờng tròn (O) đờng kính AB = 2R. Vẽ tiếp tuyến d với đờng tròn (O) tại B. Gọi C và D là hai điểm tuỳ ý trên tiếp tuyến d sao cho B nằm giữa C và D. Các tia AC và AD cắt (O) lần lợt tại E và F (E, F khác A). 1. Chứng minh: CB 2 = CA.CE 2. Chứng minh: tứ giác CEFD nội tiếp trong đờng tròn tâm (O ). 3. Chứng minh: các tích AC.AE và AD.AF cùng bằng một số không đổi. Tiếp tuyến của (O ) kẻ từ A tiếp xúc với (O ) tại T. Khi C hoặc D di động trên d thì điểm T chạy trên đờng thẳng cố định nào? Bài 5: (1,25đ) Một cái phễu có hình trên dạng hình nón đỉnh S, bán kính đáy R = 15cm, chiều cao h = 30cm. Một hình trụ đặc bằng kim loại có bán kính đáy r = 10cm đặt vừa khít trong hình nón có đầy nớc (xem hình bên). Ngời ta nhấc nhẹ hình trụ ra khỏi phễu. Hãy tính thể tích và chiều cao của khối nớc còn lại trong phễu. S GIO DC V O TO Kè THI TUYN SINH LP 10 THPT TP. HU THA THIấN HU Nm hc 2009-2010 CHNH THC Mụn: TON Đáp án và thang điểm Bài Cõu Nội dung Điểm 1 2,25 1. a Giải phơng trình 2 5 13 6 0x x+ = : Lập 2 2 13 120 289 17 17 = + = = = Phơng trình có hai nghiệm: 1 2 13 17 13 17 2 3; 10 10 5 x x + = = = = 0,25 0,50 1. b Giải phơng trình 4 2 4 7 2 0x x = (1): Đặt 2 t x= . Điều kiện là 0t . Ta đợc : 2 4 7 2 0 (2)t t = Giải phơng trình (2): 2 49 32 81 9 , 9 = + = = = , 1 7 9 1 0 8 4 t = = < (loại) và 2 7 9 2 0 8 t + = = > . Với 2 2t t= = , ta có 2 2x = . Suy ra: 1 2 2, 2x x= = . Vậy phơng trình ó cho có hai nghiệm: 1 2 2, 2x x= = 0,25 0,25 0,25 1. c Giải hệ phơng trình 3 4 17 5 2 11 x y x y = + = : 3 4 17 3 4 17 3 4 17 5 2 11 10 4 22 13 39 x y x y x y x y x y x = = = + = + = = 3 3 4 9 17 8 2 x x y y = = = = = 0,50 0,25 2 2,25 2. a + Đồ thị hàm số y ax b= + song song với đờng thẳng 3 5y x= + , nên 3a = và 5.b + Điểm A thuc (P) có hoành độ 2x = nên có tung độ ( ) 2 1 2 2 2 y = = . Suy ra: ( ) 2; 2A + Đồ thị hàm số 3y x b= + đi qua điểm ( ) 2; 2A nên: 2 6 4b b= + = Vậy: 3a = và 4b = 0,50 0,25 0,25 2. b + Phơng trình ( ) 2 1 3 2 3 0x x+ = có các hệ số: 1 3 , 2, 3a b c = + = = . Ta có: 0ac < nờn phơng trình đã cho có 2 nghiệm phân biệt 1 x và 2 x . 0,25 Theo ®Þnh lÝ Vi-Ðt, ta cã: 1 2 2 3 1 3 1 b x x a − + = = = − + ( ) 1 2 3 3 1 3 3 3 2 2 1 3 c x x a − − − = = = − = − + 0,25 0,25 ( ) 2 2 2 1 2 1 2 1 2 2x x x x x x+ = + − ( ) 2 3 1 3 3 7 3 3= − + − = − 0,25 0,25 3 1,5 Gọi x (giờ ) và y (giờ ) lần lượt là thời gian làm một mình của máy thứ nhất và máy thứ hai để san lấp toàn bộ khu đất (x > 0 ; y > 0) Nếu làm một mình thì trong một giờ máy ủi thứ nhất san lấp được 1 x khu đất, và máy thứ hai san lấp được 1 y khu đất. Theo giả thiết ta có hệ phương trình : =+ =+ 4 1 y 22 x 42 10 1 y 12 x 12 . Đặt 1 u x = và 1 v y = ta được hệ phương trình: 1 12 12 10 1 42 22 4 u v u v + = + = Giải hệ phương trình tìm được 1 1 ; 300 200 u v= = , Suy ra: ( ) ( ) ; 300;200x y = Trả lời: Để san lấp toàn bộ khu đất thì: Máy thứ nhất làm một mình trong 300 giờ, máy thứ hai làm một mình trong 200 giờ . 0,25 0,25 0,25 0,25 0,25 0,25 4 2,75 4. a + Hình vẽ đúng. + Hai tam giác CAB và CBE có: Góc C chung và · · CAB EBC= (góc nội tiếp và góc tạo bởi tiếp tuyến với một dây cùng chắn cung » BE ) nên chúng đồng dạng. Suy ra: 2 CA CB CB CA CE CB CE = ⇔ = × 0,25 0,25 0,25 4. b Ta có: · · CAB EFB= ( hai góc n i ộ ti p cùng ch n cung BE)ế ắ M à · · 0 90CAB BCA+ = (tam giác CBA vuông t i B) nênạ · · 0 90ECD BFE+ = M t khác ặ · · 0 90BFD BFA= = (tam giác ABF n i ti p n a ng ộ ế ử đườ tròn) Nên : · · · · · 0 0 180 180ECD BFE BFD ECD DFE+ + = ⇔ + = V y t giác CEFD n i ti p cậ ứ ộ ế đượ ng tròn (O’).đườ 0,25 0,25 0,25 0,25 4. c + Xét tam giác vuông ABC: BE AC AC.AE = AB2 = 4R2 ⊥ ⇒ ( h th c l ng trong tam giác ệ ứ ượ vuông ) T ng t , trong tam giác vuông ươ ự ABD ta có: AD.AF = AB2 = 4R2 V y khi C ho c D di ng trên d ậ ặ độ ta luôn có : AC.AE = AD.AF = 4R2 ( không i )đổ + Hai tam giác ATE v ACT à ng d ng (vì có góc A chung đồ ạ v à · · ATE TCA= ) + Suy ra: 2 2 4AT AC AE R= × = (không i). Do ó T ch y trên đổ đ ạ ng tròn tâm A bán kính đườ 2R . 0,25 0,25 0,25 0,25 5 1,25 + Hỡnh v th hin mt cắt hình nón và hình trụ bởi mặt phẳng đi qua trục chung của chúng. Ta có DE//SH nên: ( ) 30 5 10( ) 15 h R r DE DB DE cm SH HB R ì = = = = Do đó: Chiều cao của hình trụ là ' 10( )h DE cm= = + Nếu gọi 1 2 , ,V V V lần lợt là thể tích khối nớc cũn li trong phu khi nhc khi tr ra khi phu, thể tích hình nón và thể tích khối trụ, ta có: ( ) 2 2 2 3 1 2 1 15 30 ' 1000 1250 3 3 V V V R h r h cm ì = = = = Khối nớc cũn li trong phu khi nhc khi tr ra khi phu là một khối nón có bán kính đáy là 1 r và chiều cao 1 h . Ta có: 1 1 1 1 1 2 r h Rh h r R h h = = = . Suy ra: 3 2 3 1 1 1 1 1 1250 15000 3 12 h V r h h = = = Vậy: Chiều cao của khi nớc cũn li trong phểu l : 3 3 1 15000 10 15 ( )h cm= = 0,25 0,25 0,25 0,25 0,25 . chung của chúng. Ta có DE/ /SH nên: ( ) 30 5 10( ) 15 h R r DE DB DE cm SH HB R ì = = = = Do đó: Chiều cao của hình trụ là ' 10( )h DE cm= = + Nếu gọi. cao của khối nớc còn lại trong phễu. S GIO DC V O TO Kè THI TUYN SINH LP 10 THPT TP. HU THA THI N HU Nm hc 2009-2010 CHNH THC Mụn: TON Đáp án và thang