Phòng GD&ĐT thạch thàn h Phòng GD&ĐT thạch thàn h Đềthichất l Đềthichất l ợng giữahọckìI ợng giữahọckìI Tr Tr ờng THCS thành vinh ờng THCS thành vinh Năm học 2010 2011 Nămhọc 2010 2011 Môn Toán9 Môn Toán9 Thời gian: 90 Thời gian: 90 Giáo viên ra đề : Giáo viên ra đề : Nguyễn Đức Tiệp Nguyễn Đức Tiệp Đề bài Đề bài I. I. t t rắc ngiệm rắc ngiệm (3đ). (3đ). Khoanh vào chữ cái đứng tr Khoanh vào chữ cái đứng tr ớc kết quả mà em cho là đúng. ớc kết quả mà em cho là đúng. 1.Biểu thức 1.Biểu thức 2 )31( có kết quả là. có kết quả là. A. A. 0 B. B. 13 C. 1 - C. 1 - 3 2. 2. 48.75 có kết quả là. có kết quả là. A. 60 A. 60 B. 3600 B. 3600 C. 123 C. 123 3. Biểu thức 3. Biểu thức 1 1 x xác định khi. xác định khi. A. x A. x 0 B. x B. x 0 ,x ,x 1 1 C. x C. x 1 1 4. 4. 35 = x thì x có giá trị là. thì x có giá trị là. A. 14 A. 14 B. B. 14 14 C. 14 C. 14 5.Công thức l 5.Công thức l ơng giác nào sau đây không đúng. ơng giác nào sau đây không đúng. A. sin A. sin + cos + cos = 1 = 1 B. tg B. tg = = cos sin C. tg C. tg .cotg .cotg = 1 = 1 6. Cho 6. Cho ABC có Â = 90 ABC có Â = 90 0 0 , AB = 3cm , AC = 4cm, BC =5cm , AB = 3cm , AC = 4cm, BC =5cm thì đ thì đ ờng cao AH có độ dài là. ờng cao AH có độ dài là. A.7 cm A.7 cm B. 2,4cm B. 2,4cm C. 12 cm C. 12 cm II Tự luận (7đ) II Tự luận (7đ) Bài 1 Bài 1 (2đ) (2đ) Thực hiện phép tính. Thực hiện phép tính. a) a) 3004875 + b) (5 b) (5 2505).522 + c) c) aaa 49169 + (với a (với a 0 ) d) ) d) 2832 146 + + Bài 2 Bài 2 (2đ). (2đ). Cho biểu thức M = Cho biểu thức M = xxx x 1 1 a. Biểu thức M xác định khi nào .Rút gọn M. a. Biểu thức M xác định khi nào .Rút gọn M. b. Tính giá trị của M khi x= b. Tính giá trị của M khi x= 223 c. Tìm những giá trị nguyên của x để M đạt giá trị nguyên. c. Tìm những giá trị nguyên của x để M đạt giá trị nguyên. Bài 3 Bài 3 ( ( 2đ) 2đ) Cho tam giác ABC có AB = 3cm, BC = 5cm, Đ Cho tam giác ABC có AB = 3cm, BC = 5cm, Đ ờng cao AH. ờng cao AH. a) a) Tính số đo góc B, C . Tính AH, AC ? Tính số đo góc B, C . Tính AH, AC ? b) b) Gọi AE là phân giác của góc A (E Gọi AE là phân giác của góc A (E BC). Tính BE và CE. BC). Tính BE và CE. Bài 4 Bài 4 (1đ) (1đ) Tỡm giỏ tr nh nht ca A = x - 2 Tỡm giỏ tr nh nht ca A = x - 2 2 x Đáp án Đáp án Đềthichất l Đềthichất l ợng giữahọckìI - toán9 ợng giữahọckìI - toán9 Năm học 2010 2011 Nămhọc 2010 2011 I. I. t t rắc ngiệm rắc ngiệm (3đ). (3đ). Mỗi ý đúng cho 0,5 điểm Mỗi ý đúng cho 0,5 điểm 1 1 2 2 3 3 4 4 5 5 6 6 A A A A B B C C A A B B II Tự luận (7đ) II Tự luận (7đ) Bài 1. Bài 1. (2đ) (2đ) Thực hiện phép tính. Thực hiện phép tính. Điểm Điểm a) a) 3004875 + = = 100.316.325.3 + = = 3103435 + 0,25 0,25 = = 3)1045( + = = 3 0,25 0,25 b) b) ( ( 2505).5225 + = = 10.255.525.2.5 + 0,25 0,25 = = 1055.2.10.5 + = 10 = 10 0,25 0,25 c) c) aaa 49169 + = = aaa 743 + (với a (với a 0 ) ) 0,25 0,25 = = a)743( + = = a6 0,25 0,25 d) d) 2832 146 + + = = 7232 7.26 + + = = )73(2 )73(2 + + 0,25 0,25 = = 2 2 0,25 0,25 Bài 2 Bài 2 (2đ) (2đ) a. a. ĐKXĐ : x ĐKXĐ : x 0 ,x ,x 1 1 0,25 0,25 M = M = )1( 1 1 xxx x = = )1( 1 2 xx x 0,25 0,25 = = )1( 1 2 xx x = = )1( )1)(1( + xx xx 0,25 0,25 = = x x 1 + 0,25 0,25 b. b. x= x= 223 = = 2 )12( => => 2 x = = 2 )12( = = 12 0,25 0,25 Thay vào biểu thức M ta có : Thay vào biểu thức M ta có : M = M = 12 112 + = = 12 2 = = 12 )12(2 2 + = = )12(2 + 0,25 0,25 c. c. M = M = x x 1 + = 1 + = 1 + x 1 0,25 0,25 Để M đạt giá trị nguyên Để M đạt giá trị nguyên 1 1 x x = Ư(1) = = Ư(1) = { } 1 Do x Do x 0 ,x ,x 1 nên 1 nên x = 1 = 1 => x = 1 ( Không thoả mãn ĐKXĐ ) => x = 1 ( Không thoả mãn ĐKXĐ ) Vậy không tìm đ Vậy không tìm đ ợc x nguyên để M đạt giá trị nguyên. ợc x nguyên để M đạt giá trị nguyên. 0,25 0,25 Bài 3 Bài 3 . . (2đ) (2đ) A A C C B B 3cm 3cm 5cm 5cm E E H H a. a. Có sinB = Có sinB = BC AC = = 5 4 => => B = 53 B = 53 0 0 0,25 0,25 => => C = 90 C = 90 0 0 - - B => B => C = 27 C = 27 0 0 0,25 0,25 b. b. Có AC = Có AC = 22 ABBC = = 22 35 = 4 (cm) = 4 (cm) 0,25 0,25 Có AH.BC = AB.AC => AH = AB.AC : BC Có AH.BC = AB.AC => AH = AB.AC : BC AH = 3.4:5 AH = 3.4:5 => AH = 2,4 (cm) => AH = 2,4 (cm) 0,5 0,5 c. c. áp dụng tính chất phân giác của góc trong tam giác ta có: áp dụng tính chất phân giác của góc trong tam giác ta có: CE BE AC AB = => => CE CEBC AC AB = => => CE CE = 5 4 3 0,25 0,25 3CE = 4.( 5 - CE) => 7 CE = 3CE = 4.( 5 - CE) => 7 CE = 20 20 CE = 2,86 (cm) CE = 2,86 (cm) 0,25 0,25 Khi đó: BE = BC - CE Khi đó: BE = BC - CE = 5 - 2,86 = 5 - 2,86 = 2,14 (cm) = 2,14 (cm) 0,25 0,25 Bài 4 Bài 4 .(1đ) .(1đ) - ĐKXĐ : x - ĐKXĐ : x 2 0,25 0,25 A = x - 2 A = x - 2 2 x = (x - 2 - 2 = (x - 2 - 2 2 x + 1) + 1 + 1) + 1 = = ( ) 112 2 + x 0,25 0,25 Do Do ( ) 012 2 x với mọi x với mọi x 2 => => ( ) 112 2 + x 1 với mọi x với mọi x 2 => A => A 1 Dấu bằng xảy ra khi và chỉ khi Dấu bằng xảy ra khi và chỉ khi 012 = x <=> <=> 12 = x <=> <=> 12 = x <=> x= 3 ( TM đkxđ) <=> x= 3 ( TM đkxđ) 0,25 0,25 Vậy A đạt GTNN bằng 1 khi và chỉ khi x = 3 Vậy A đạt GTNN bằng 1 khi và chỉ khi x = 3 0,25 0,25 . Toán 9 Môn Toán 9 Th i gian: 90 Th i gian: 90 Giáo viên ra đề : Giáo viên ra đề : Nguyễn Đức Tiệp Nguyễn Đức Tiệp Đề b i Đề b i I. I. t t rắc ngiệm rắc ngiệm. h Đề thi chất l Đề thi chất l ợng giữa học kì I ợng giữa học kì I Tr Tr ờng THCS thành vinh ờng THCS thành vinh Năm học 2010 2011 Năm học 2010 2011 Môn