1. Trang chủ
  2. » Đề thi

Đề minh họa 2020 số 21

17 31 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 1,55 MB

Nội dung

Moon.vn ĐỀ THI THỬ THPT QUỐC GIA ĐỀ MINH HỌA SỐ 21 NĂM HỌC: 2019 – 2020 MƠN: Tốn Thời gian làm bài: 90 phút; không kể thời gian phát đề Câu Số phức liên hợp số phức − 4i A −1 + 4i B −1 − 4i Câu Cho ∫ f ( x ) dx = A I = −1 C + 4i 1 0 D −4 + i ∫ g ( x ) dx = −3 Tính I = ∫  f ( x ) + g ( x )  dx B I = −4 C I = D I = Câu Trong không gian Oxyz, cho mặt phẳng ( P ) : x − y + = Vectơ vectơ pháp tuyến ( P ) ? r A n = ( 1; −2;0 ) r B n = ( 1; −2;3) r C n = ( 1;0; −2 ) r D n = ( 3; −2;1) C ( −1;1) D ( −2; +∞ ) C log a D + log a Câu Cho hàm số f ( x ) có bảng biến thiên sau: Hàm số cho đồng biến khoảng đây? A ( 1; +∞ ) B ( −∞; ) Câu Với a số thực dương tùy ý, log a A log a B + log a Câu Cho cấp số cộng ( un ) với u1 = 2, d = Tính u5 A 14 B 17 C 11 D Câu Đồ thị hàm số có dạng đường cong hình vẽ ? A y = − x + x B y = − x + x − C y = x − x D y = x − x + Trang Câu Cho hình nón ( N ) có bán kính đáy đường cao Tính thể tích V khối nón ( N) A V = 36π B V = 45π C V = 15π D V = 12π C x = −2 D x = Câu Cho hàm số f ( x ) có bảng biến thiên sau: Hàm số cho đạt cực đại A x = B x = Câu 10 Trong lớp có bạn nam 27 bạn nữ Hỏi có cách chọn bạn làm lớp trưởng? A 135 B 22 C 32 D 42 Câu 11 Cho a b hai số thực dương thỏa mãn a 2b3 = Tính P = log a + 3log b A B C D 2 Câu 12 Họ tất nguyên hàm hàm số f ( x ) = 3x + x + A x + x + x + C B x + x + x + C C x + x + x + C Câu 13 Trong không gian Oxyz, cho đường thẳng d : vectơ phương d ? r A u = ( −1; 2; −3) r B u = ( 1; 2;3) D x + x + x + C x −1 y − z − = = Vectơ −1 −3 r C u = ( 1; 2; −3) r D u = ( −1; 2;3) Câu 14 Cho khối lăng trụ đứng ABC A′B′C ′ có đáy tam giác cạnh a AA′ = 3a Thể tích khối lăng trụ cho A 3a B a3 C 3a 3 D a3 2 Câu 15 Kí hiệu z1 , z2 hai nghiệm phức phương trình z − z + = Giá trị z1 + z2 A B 10 C −8 D −6 Câu 16 Cho hàm số f ( x ) có bảng biến thiên sau: Phương trình f ( x ) + = có số nghiệm thực A B C D Trang Câu 17 Tính đạo hàm hàm số y = x A y ′ = x −5 x −5 x x B y ′ = ( x − x ) ln C y ′ = ( x − ) x D y ′ = ( x − ) x −5 x 2 −5 x −1 −5 x ln Câu 18 Diện tích phần hình phẳng gạch chéo hình vẽ tính theo cơng thức đây? A 2 −1 −1 −1 ∫ f ( x ) dx + ∫ f ( x ) dx B ∫ f ( x ) dx − ∫ f ( x ) dx C ∫ f ( x ) dx D − ∫ f ( x ) dx −1 Câu 19 Giải phương trình log ( x − ) = A x = 64 B x = 66 C x = 81 D x = 83 Câu 20 Cho hai số phức z1 = + 2i, z2 = − 3i Trên mặt phẳng tọa độ Oxy, điểm biểu diễn số phức z1 + z2 có tọa độ A ( 5; ) B ( −5; ) C ( −5; −4 ) D ( 5; −4 ) Câu 21 Trong không gian Oxyz, cho mặt cầu ( S ) : ( x − 1) + ( y + 1) + ( z − 1) = 16 Tìm tọa độ tâm I 2 bán kính R ( S ) A I ( −1;1; −1) R = 16 B I ( −1;1; −1) R = C I ( 1; −1;1) R = 16 D I ( 1; −1;1) R = Câu 22 Giải phương trình 22 x−1 = A x = B x = D x = C x = 17 Câu 23 Trong không gian Oxyz, cho hai điểm A ( 1; −3; ) , B ( 3; −1; ) Trung điểm đoạn thẳng AB có tọa độ A ( 2;2;2 ) B ( 2; −2;3) C ( 1;1;1) D ( 4; −4;6 ) Câu 24 Giá trị nhỏ hàm số y = x − 12 x + đoạn [ 1; 4] A −13 B −8 C −10 D −6 Câu 25 Cho hình chóp S ABC có đáy ABC tam giác vuông cân B, cạnh AB = a, SA = a SA vng góc với mặt phẳng đáy Góc đường thẳng SB mặt phẳng (ABC) A 90° B 45° C 30° D 60° Câu 26 Cho F ( x ) nguyên hàm hàm số f ( x ) = x − thỏa mãn F ( 1) = Tìm F ( x ) Trang A F ( x ) = − 2x −1 + 3 B F ( x ) = x − + C F ( x ) = − D F ( x ) = ( x − 1) + ( x − 1) + Câu 27 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a Cạnh SA = a vng góc với mặt phẳng đáy Khoảng cách từ điểm A đến mặt phẳng ( SBD ) A a B a C a D a Câu 28 Cho hàm số f ( x ) thỏa mãn f ( ) = f ′ ( x ) = 2sin x − 3, ∀x ∈ ¡ Tích phân π ∫ f ( x ) dx A π − 4π + 16 B − π − 4π + 16 C π + 4π − 16 D − π + 4π − 16 Câu 29 Cho số phức z thỏa mãn z + z = + i ( z − ) Môđun z A B C D Câu 30 Trong không gian Oxyz, cho hai điểm A ( 1; −2;1) B ( 2;1; −1) Viết phương trình mặt phẳng qua A vng góc với đường thẳng AB A x + y + z + = B x − y + z − = C x + y − z + = D x − y − z − = Câu 31 Cho hình chóp S.ABC có đáy ABC tam giác vng B Cạnh SA vng góc với mặt phẳng đáy AB = SA = a, AC = a Thể tích khối chóp S.ABC A a3 B a3 C a3 D a3 Câu 32 Cho hàm số y = f ( x ) có bảng biến thiên sau: Tổng số tiệm cận đứng tiệm cận ngang đồ thị hàm số cho A B C D Câu 33 Trong khơng gian, cho hình chữ nhật ABCD với AB = 6, AD = Tính thể tích V khối trụ, nhận quay hình chữ nhật ABCD xung quanh trục AB A 54π B 48π C 75π D 36π Trang Câu 34 Cho hàm số f ( x ) Hàm số y = f ′ ( x ) có đồ thị hình vẽ Số điểm cực trị hàm số cho A B C D Câu 35 Cho phương trình x − m.2 x +1 + 2m = (m tham số thực) có hai nghiệm thực phân biệt x1 , x2 thỏa mãn x1 + x2 = Mệnh đề đúng? A < m ≤ B m > C < m ≤ D < m ≤ Câu 36 Trong khơng gian Oxyz, viết phương trình đường thẳng d giao tuyến mặt phẳng ( P) : x − y + z = A d : ( Q ) : x + y − z − = x −1 y − z −1 = = −1 x =  C d :  y = − t ( t ∈ ¡ ) z = 1+ t  B d : x −1 y −1 z = = 1 x =  D d :  y = + t ( t ∈ ¡ ) z = t  Câu 37 Một nhà sản suất cần thiết kế thùng đựng dầu nhớt hình trụ có nắp đậy với dung tích 3456π dm3 Để tiết kiệm nguyên liệu bán kính nắp đậy phải A 24dm B 20 dm C 12dm D 10 dm Câu 38 Cho hàm số f ( x ) có bảng xét dấu f ′ ( x ) sau: Hàm số y = f ( x − 1) đồng biến khoảng đây? A ( −∞; −1) 1  B  ;1÷ 2  1  D  −1; ÷ 2  C ( 1; +∞ ) Câu 39 Trong không gian Oxyz, cho điểm A ( 2;0;0 ) , B ( 0;3;0 ) , C ( 0;0;6 ) D ( 1;1;1) Có mặt phẳng phân biệt qua điểm O, A, B, C , D ? A B 10 C D Trang Câu 40 Cho hình nón ( N ) có đường cao 3a , đáy ( N ) có bán kính a Thiết diện qua đỉnh ( N ) tam giác nằm mặt phẳng tạo với mặt phẳng đáy góc 60° Tính theo a diện tích S tam giác a2 A S = a2 B S = 3a C S = 3a D S = Câu 41 Gọi S tập hợp tất số tự nhiên gồm chữ số Chọn ngẫu nhiên số từ S Tính xác suất để số chọn có tổng chữ số chia hết cho A 81 B 100 C 63 D 225 Câu 42 Xét x, y số thực thỏa mãn log ( x + y ) + log ( x − y ) = Tìm giá trị nhỏ Pmin biểu thức P = x − y A Pmin = B Pmin = D Pmin = C Pmin = Câu 43 Cho hàm số f ( x ) có đạo hàm f ′ ( x ) = x ( x − 3) ( x − ) , ∀x ∈ ¡ Số điểm cực trị hàm số y = f ( x + x ) A B C D Câu 44 Cho hàm số y = f ( x ) Hàm số y = f ′ ( x ) có bảng biến thiên sau: x Bất phương trình f ( x ) > + m có nghiệm với x ∈ ( −1;1) A m < f ( 1) − B m ≤ f ( 1) − C m ≤ f ( −1) − D m < f ( −1) − Câu 45 Cho hàm số y = x − 3x + m có đồ thị ( Cm ) , với m tham số thực Giả sử ( Cm ) cắt trục Ox bốn điểm phân biệt hình vẽ Gọi S1 , S , S3 diện tích miền gạch chéo cho hình vẽ Tìm tất giá trị thực tham số m để S1 + S2 = S3 Trang A m = − B m = − C m = D m = 3 2 Câu 46 Cho phương trình x + x − m x + ( 15 − 3m ) x − 6mx + 10 = Có giá trị nguyên 1  tham số m để phương trình cho có hai nghiệm thực phân biệt thuộc đoạn  ;  ? 2  A B C D Câu 47 Gọi S tập hợp tất giá trị thực tham số m để giá trị nhỏ hàm số y = x3 − 3x + m đoạn [ −2;3] Tính tổng tất phần tử S A 18 B 24 C 20 D 22 Câu 48 Giả sử hàm số y = f ( x ) liên tục, đồng biến, nhận giá trị dương khoảng ( 0; +∞ ) thỏa mãn f ( 3) =  f ′ ( x )  = ( x + 1) f ( x ) Giá trị f ( ) A 49 B 36 C D 10 Câu 49 Xét số phức z thỏa mãn z − = Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn số phức w = ( + 3i ) z + + 4i đường tròn bán kính A 17 B 10 C 5 D 13 Câu 50 Trong không gian Oxyz, cho hai điểm A ( 5; −3; ) , B ( 3;0; −4 ) nằm hai phía mặt phẳng ( P) Khoảng cách từ điểm A đến mặt phẳng (P) khoảng cách từ điểm B đến mặt phẳng (P) Mặt phẳng (P) qua điểm có tọa độ đây? A ( −2; 4; −1) B ( 2; −4;1) C ( −2; −4;1) D ( 2; −4; −1) Trang Đáp án 1-C 11-A 21-D 31-A 41-B 2-A 12-B 22-A 32-B 42-A 3-A 13-A 23-B 33-A 43-B 4-A 14-C 24-A 34-C 44-C 5-C 15-A 25-D 35-B 45-D 6-A 16-C 26-D 36-D 46-A 7-C 17-D 27-D 37-C 47-C 8-D 18-B 28-B 38-C 48-A 9-B 19-B 29-C 39-C 49-D 10-C 20-D 30-C 40-B 50-D LỜI GIẢI CHI TIẾT Câu 1: Đáp án C Số phức liên hợp số phức − 4i + 4i Câu 2: Đáp án A 1 0 Ta có I = ∫  f ( x ) + g ( x )  dx = ∫ f ( x ) dx + ∫ g ( x ) dx = −1 Câu 3: Đáp án A r Mặt phẳng ( P ) : x − y + = có VTPT n = ( 1; −2;0 ) Câu 4: Đáp án A Hàm số f ( x ) đồng biến ( 1; +∞ ) Câu 5: Đáp án C Ta có log a = log a Câu 6: Đáp án A Ta có u5 = u1 + 4d = 14 Câu 7: Đáp án C Ta có y ( ) = ⇒ Loại B D Mà y ( 1) = −2 Câu 8: Đáp án D  V = π r h ⇒ V = 12π Ta có   r = 3; h = Câu 9: Đáp án B Hàm số f ( x ) đạt cực đại x = Câu 10: Đáp án C Theo quy tắc cộng, ta có + 27 = 32 cách chọn bạn làm lớp trưởng Câu 11: Đáp án A 3 Ta có P = log a + 3log b = log a + log b = log ( a b ) = log = Câu 12: Đáp án B Ta có ∫ ( 3x + x + 1) dx = x + x + x + C Trang Câu 13: Đáp án A Đường thẳng d : r x −1 y − z − = = có VTCP u = ( −1; 2; −3) −1 −3 Câu 14: Đáp án C Ta có VABC A′B′C ′ = AA′.S ABC = AA′ AB 3a 3 = 4 Câu 15: Đáp án A  z1 + z2 = ⇒ z12 + z22 = ( z1 + z2 ) − z1 z2 = Ta có   z1 z2 = Câu 16: Đáp án C Đường thẳng y = − cắt đồ thị hàm số y = f ( x ) điểm phân biệt Câu 17: Đáp án D Ta có y = x −5 x ⇒ y′ = ( x − ) x −5 x ln Câu 18: Đáp án B Ta có S = 2 −1 −1 ∫ f ( x ) dx + ∫ f ( x ) dx = ∫ f ( x ) dx − ∫ f ( x ) dx Câu 19: Đáp án B Phương trình ⇔ x − = 43 ⇔ x = 66 Câu 20: Đáp án D Ta có z1 + z2 = + 2i + ( − 3i ) = − 4i Điểm biểu diễn số phức z1 + z2 có tọa độ (5;−4) Câu 21: Đáp án D Mặt cầu ( S ) có tâm I ( 1; −1;1) bán kính R = 16 = Câu 22: Đáp án A Ta có 22 x −1 = ⇔ 22 x −1 = 23 ⇔ x − = ⇔ x = Câu 23: Đáp án B  + −3 − +  ; ; Trung điểm đoạn thẳng AB I  ÷⇒ I ( 2; −2;3) 2   Câu 24: Đáp án A Trang Hàm số cho xác định liên tục [ 1; 4]  x ∈ ( 1; ) ⇔ x = Ta có   y′ = 3x − 12 = y = −13 Tính y ( 1) = −8; y ( ) = 19; y ( ) = −13 ⇒ [ 1;4] Câu 25: Đáp án D · tan SBA · Ta có SA ⊥ ( ABC ) ⇒ (·SB; ( ABC ) ) = SBA = SA a · = = ⇒ SBA = 600 AB a Câu 26: Đáp án D Ta có I = F ( x ) = ∫ x − 1dx  t2 +1  t3 t = x − ⇒ I = td = t tdt = + C ⇒ F ( x) = Đặt ∫  ÷ ∫ 3 Mà F ( 1) = 4 ⇒ + C = ⇒ C = 1⇒ F ( x) = 3 3 ( x − 1) ( x − 1) + C + Câu 27: Đáp án D Gọi O = AC ∩ BD, kẻ AH ⊥ SO ⇒ d ( A; ( SBD ) ) = AH = d Cạnh OA = AB 1 1 =a ⇒ = + = + ⇒ d = a 2 d SA OA 2a 2a Câu 28: Đáp án B Ta có f ( x ) = ∫ ( 2sin x − 3) dx = ∫ ( − cos x − ) dx = − sin x − x + C Mà f ( ) = ⇒ C = ⇒ f ( x ) = − sin x − x + Trang 10 π ⇒∫ π π π2 π π − 4π +   1 4 f ( x ) dx = ∫  − sin x − x + 1÷dx =  cos x − x + x ÷ = − + − =− 16 4 16  4 0 0 Câu 29: Đáp án C Giả sử z = a + bi ( a, b ∈ ¡ ) Ta có z + z = + i ( z − ) ⇔ a + bi + ( a − bi ) = + i ( a + bi − ) ⇔ a + bi + 4a − 4bi = + − b − 7i ⇔ 5a − 3bi = − b + ( a − ) i 5a = − b a = ⇔ ⇔ ⇒ z = a + b = − b = a − b =   Câu 30: Đáp án C Mặt phẳng (P) qua A ( 1; −2;1) nhận uuur AB = ( 1;3; −2 ) VTPT ⇒ ( P ) :1 ( x − 1) + ( y + ) − ( z − 1) = ⇔ x + y − z + = Câu 31: Đáp án A 1 Ta có VS ABC = SA.S ABC = SA AB.BC 3 Cạnh BC = AC − AB = 2a ⇒ VS ABC = a3 Câu 32: Đáp án B y = ⇒ TCN : y =  xlim →−∞ ⇒ Chọn B ĐTHS có tiệm cận đứng x = −2 Từ  y = ⇒ TCN : y =  xlim →+∞ Câu 33: Đáp án A Ta có V = π r h = π AD AB = 54π Trang 11 Câu 34: Đáp án C Ta có f ′ ( x ) = ⇒ x = x; = 1; x = 2; x = Qua x = 0; x = 1; x = f ′ ( x ) đổi dấu nên f ( x ) đạt cực trị x = 0; x = 1; x = Câu 35: Đáp án B Điều kiện: x ∈ ¡ ( *) Phương trình ⇔ ( x ) − 2m.2 x + 2m = Đặt t = x > 0, ta t − 2mt + 2m = ( 1) Phương trình cho có hai nghiệm thực phân biệt ⇔ (1) có hai nghiệm thực dương phân biệt ∆′ = m − 2m >   m ( m − ) > ⇔ t1 + t2 = 2m > ⇔  ⇔m>2  m > t t = 2m > 12 ( **) Ta có x1 + x2 = log t1 + log t2 = log ( t1t2 ) = log ( 2m ) = ⇒ m = thỏa mãn (**) Câu 36: Đáp án D x − y = x = ⇒ ⇒ d qua A ( 1;1;0 ) Cho z = ⇒  x + y − =  y = x − y +1 = x = ⇒ ⇒ d qua B ( 1; 2;1) Cho z = ⇒  x + y − =  y = uuur Đường thẳng d qua A ( 1;1;0 ) nhận AB = ( 0;1;1) VTCP x =  ⇒ d :  y = 1+ t ( t ∈ ¡ ) z = t  Câu 37: Đáp án C Ta có V = π r h = 3456π Để tiết kiệm nguyên liệu Stp = 2π r ( h + r ) phải nhỏ  3456   3456  Ta có Stp = 2π r  + r ÷ = 2π  r + ÷ r   r   1728 1728   1728 1728 = 2π  r + + = 864dm ÷ ≥ 2π 3 r r r  r r  Dấu ′′=′′ xảy ⇔ r = 1728 ⇔ r = 12dm r Câu 38: Đáp án C  0< x<  −1 < x − <  ′ ′ ′ ⇔ Ta có xy = f ( x − 1) > ⇔ f ( x − 1) > ⇔   2 x − > x > Trang 12 Câu 39: Đáp án C Bốn điểm O, A, B, C bốn đỉnh tứ diện x y z Phương trình mặt phẳng ( ABC ) : + + = Ta thấy D không thuộc mặt phẳng ( ABC ) , ( OAB ) , ( OBC ) , ( OCA ) Vậy có mặt phẳng phân biệt ( ABC ) , ( OAB ) , ( OAC ) , ( OAD ) , ( OBC ) , ( OBD ) , ( OCD ) Có tất mặt phẳng phân biệt Câu 40: Đáp án B Thiết diện qua đỉnh ( N ) ∆SCD hình vẽ SO SO a · ⇒ OP = = Kẻ OP ⊥ CD ⇒ (· = 600 ⇒ tan 60 = ( SCD ) ; ( OCD ) ) = SPO OP 3a a ⇒ CP = OC − OP = a − = ⇒ CD = 2CP = a 2 Lại có sin 600 = 2 SO SO a2 = ⇒ SP = = a Từ CD ⊥ SP ⇒ S SCD = CD.SP = SP 2 Câu 41: Đáp án B Có tất 9.10.10 = 900 số tự nhiên có chữ số c = Số cần tìm có dạng abc ⇒  c = Trang 13 Nên có số thỏa mãn + TH1: c = ⇒ a + b = ⇒ ( a; b ) ∈ { ( 1;6 ) , ( 2;5 ) , ( 3; ) , ( 4;3 ) , ( 5; ) , ( 6;1) , ( 7;0 ) } + TH2 c = ⇒ a + b = ⇒ ( a; b ) ∈ { ( 1;1) , ( 2;0 ) } Nên có số thỏa mãn = 900 100 Do có tất số thỏa mãn Vậy xác suất cần tìm Câu 42: Đáp án A x + y > Điều kiện  x − y > ⇒ ( x + y ) + ( x − y ) > ⇒ x > Khi từ x − y = ⇒ x = y + ⇒ P = y + − y Đặt t = y ≥ ⇒ P = t + − t = f ( t ) ⇒ f ′( t ) = 2t t +1 −1 = ⇒ t =   ⇒ f ( t) ≥ f  ÷ = 3  3 Câu 43: Đáp án B Ta có y ′ = ( x + ) f ′ ( x + x ) = ( x + 1) ( x + x ) (x + x − 3) (x + 2x − 8) = ⇒ x = −1; x = 0; x = −2; x = 1; x = −3; x = 2; x = −4 Tổng số nghiệm đơn nghiệm bội lẻ y ′ = Vậy hàm số y = f ( x + x ) có điểm cực trị Câu 44: Đáp án C x x Xét hàm số g ( x ) = f ( x ) − , x ∈ ( −1;1) ⇒ g ′ ( x ) = f ′ ( x ) − ln Với x ∈ ( −1;1) ( −1;1) ⇒ g ( x ) ≤ g ( −1) = f ( −1) − Khi m ≤ f ( −1) − f ′ ( x ) < ⇒ g ′ ( x ) < 0, ∀x ∈ ( −1;1) ⇒ g ( x) nghịch biến 2 Câu 45: Đáp án D a b  S3 = S1 + S2 ⇒ ∫ x − x + m dx = ∫ x − x + m dx Ta có  S = S  a Trang 14 a b b a ⇒ ∫ ( x − 3x + m ) dx = − ∫ ( x − 3x + m ) dx ⇒ ∫ ( x − 3x + m ) dx = b  x5  b5 ⇒  − x + mx ÷ = ⇒ − b3 + mb = ⇒ b − 5b + 5m =  0 2 4 2 Mà b − 3b + m = ⇒ m = 3b − b ⇒ b − 5b + ( 3b − b ) = ⇒ 10b − 4b4 = ⇒ b = 5 ⇒m= Câu 46: Đáp án A Biến đổi x + x + 15 x + 10 = m3 x + 3m x + 6mx ⇔ ( x + ) + ( x + ) = = ( mx + 1) + ( mx + 1) ⇔ g ( x + ) = g ( mx + 1) ⇔ x + = mx + ⇒m= 1  x2 + = f ( x ) , với x ∈  ;  2  x  1   x ∈  ; ÷   ⇔ x = Ta có   f ′( x) = 1− =  x2 1 Tính f  ÷ = ; f ( ) = ; f ( 1) = 2 2 Câu 47: Đáp án C  x ∈ ( −2;3) x = ⇔⇔  Xét hàm số f ( x ) = x − x + m, x ∈ [ −2;3] ta có  x =  f ′ ( x ) = x − x = Tính ⇔ f ( −2 ) = m − 20; f ( 3) = m ; f ( ) = m; f ( ) = m − Như m − 20 ≤ f ( x ) ≤ m, ∀x ∈ [ −2;3]  f ( x) ≥ f ( x ) = ⇒ f ( x ) ≥ 2, ∀x ∈ [ −2;3] ⇒  , ∀x ∈ [ −2;3] Ta có [ −2;3]  f ( x ) ≤ −2  m − 20 =  m = 22 ⇒ ⇒  m = −2  m = −2 Câu 48: Đáp án A Trang 15 Ta có f ′ ( x ) = ⇒∫ f ′( x) f ( x) ( x + 1) f ( x ) 8 3 dx = ∫ x + 1dx ⇒ ∫ ⇒ f ( x) ⇒ f ( 8) − ⇒ ( x + 1) = +1 f ′( x) f ( x) f ( x) ⇒  f ( 8) −  = x +1 d  f ( x )  = ∫ ( x + 1) dx f ( 3)  =  ( x + 1) 19 = ⇒ f ( ) = 49 Câu 49: Đáp án D Giả sử z = a + bi ( a, b ∈ ¡ ) ⇒ z − = a − + bi ⇒ z − = Ta có z − = a − bi − = a − − bi ⇒ z − = Biến đổi w = ( + 3i ) z + + 4i ( a − 1) ( a − 1) + b = + b = ⇔ w = ( + 3i ) ( z − 1) + ( + 3i ) + + 4i ⇔ w − ( + 7i ) = ( + 3i ) ( z − 1) ⇒ w − ( + 7i ) = + 3i z − = 2 + 32 = 13 ( ) Giả sử w = x + yi ( x, y ∈ ¡ ) ⇒ x − + ( y − ) i = 13 ⇔ ( x − ) + ( y − ) = 13 2 Tập hợp điểm biểu diễn số phức w = ( + 3i ) z + + 4i đường tròn có tâm I ( 5;7 ) bán kính R = 13 Câu 50: Đáp án D  AH = d ( A; ( P ) ) = Kẻ AH ⊥ ( P ) , BK ⊥ ( P ) , với H , K ∈ ( P ) ⇒   BK = d ( B; ( P ) ) = Gọi M = AB ∩ HK , ta có AH ≤ AM , BK ≤ BM ⇒ AH + BK ≤ AM + BM = AB ⇒ AB ≥ + = uuur 2 Mà AB = ( −2;3; −6 ) ⇒ AB = ( −2 ) + 32 + ( −6 ) = Do cần phải có H A B Trang 16 29   xH = 7 ( xH − ) = −6  uuur uuur  12   29 12  Khi AH = AB ⇔ 7 ( yH + 3) = ⇔  yH = − ⇒ H  ; − ; − ÷ 7 7    z − = − 18 ( ) H    zH = −  uuur  29 12  Mặt phẳng (P) qua H  ; − ; − ÷ nhận AB = ( −2;3; −6 ) VTPT 7  29   12   4  ⇒ ( P ) : −2  x − ÷+  y + ÷−  z + ÷ =   7  7  ⇔ −2 x + y − z + 10 = ⇔ x − y + z − 10 = Trang 17 ... Câu 41 Gọi S tập hợp tất số tự nhiên gồm chữ số Chọn ngẫu nhiên số từ S Tính xác suất để số chọn có tổng chữ số chia hết cho A 81 B 100 C 63 D 225 Câu 42 Xét x, y số thực thỏa mãn log ( x... 36π Trang Câu 34 Cho hàm số f ( x ) Hàm số y = f ′ ( x ) có đồ thị hình vẽ Số điểm cực trị hàm số cho A B C D Câu 35 Cho phương trình x − m.2 x +1 + 2m = (m tham số thực) có hai nghiệm thực... C Pmin = Câu 43 Cho hàm số f ( x ) có đạo hàm f ′ ( x ) = x ( x − 3) ( x − ) , ∀x ∈ ¡ Số điểm cực trị hàm số y = f ( x + x ) A B C D Câu 44 Cho hàm số y = f ( x ) Hàm số y = f ′ ( x ) có bảng

Ngày đăng: 20/04/2020, 19:43

TỪ KHÓA LIÊN QUAN

w