SỞ GIÁO DỤC VÀ ĐÀO TẠO QUẢNG TRỊ ĐỀTHI HỌC SINH GIỎI LỚP 9 THCS Năm học 2008 – 2009 Môn : Toán Thời gian làm bài 150 phút (Không kể thời gian giao đề ) Bài 1 (5 điểm) Cho biểu thức 2 9 3 2 1 5 6 2 3 x x x A x x x x − + + = − − − + − − . a) Tìm điều kiện của x để biểu thức A có nghĩa . b) Rút gọn biểu thức A . Bài 2 (4 điểm) Giả sử x 1 ; x 2 là nghiệm của phương trình : x 2 + 2kx + 4 = 0 . Tìm tất cả các giá trị của k sao cho có bất đẳng thức : 2 2 1 2 2 1 3 x x x x + ≥ ÷ ÷ . Bài 3 (3 điểm) Cho x 3 + y 3 + 3(x 2 +y 2 ) +4(x + y) + 4 = 0 và xy > 0 . Tìm giá trị lớn nhất của biểu thức : 1 1 M x y = + . Bài 4 (2 điểm) Cho phương trình : 2 2 2 2 2 2 2 x x x x + − + = + + − − . a) Tìm điều kiện của x để phương trình có nghĩa . b) Giải phương trình . Bài 5 (6 điểm) Cho hình thang ABCD (CD > AB) với AB // CD và AB BD⊥ . Hai đường chéo AC và BD cắt nhau tại G . Trên đường thẳng vuông góc với AC tại C lấy điểm E sao cho CE = AG và đoạn thẳng GE không cắt đường thẳng CD . Trên đoạn thẳng DC lấy điểm F sao cho DF = GB a) Chứng minh FDG ∆ đồng dạng với ECG ∆ . b) Chứng minh EGF F ⊥ . HẾT ĐỀ CHÍNH THỨC HƯỚNG DẪN CHẤM VÀ ĐÁP ÁN KÌ THIHSG CẤP TỈNH MÔN TOÁN LỚP 9 NĂM HỌC 2008-2009 Giải Bài 1 (5 điểm) Cho biểu thức 2 9 3 2 1 5 6 2 3 x x x A x x x x − + + = − − − + − − . c) Tìm điều kiện của x để biểu thức A có nghĩa . d) Rút gọn biểu thức A . Điều kiện : 0; 4; 9x x x≥ ≠ ≠ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 9 3 2 1 5 6 2 3 2 9 3 2 1 = 2 3 3 2 2 9 3 3 2 1 2 = 3 2 2 9 9 2 4 2 = 3 2 1 2 2 1 = 3 3 2 3 2 x x x A x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x − + + = − − − + − − − + + − + − − − − − − + − + + − − − − − + + + − − − − + − − − + = = − − − − − Bài 2 (4 điểm) Giả sử x 1 ; x 2 là nghiệm của phương trình : x 2 + 2kx + 4 = 0 . Tìm tất cả các giá trị của k sao cho có bất đẳng thức : 2 2 1 2 2 1 3 x x x x + ≥ ÷ ÷ . Phương trình : x 2 + 2kx + 4 = 0 có hai nghiệm x 1 ; x 2 , 2 2 4 0 4(*)k k⇔ ∆ = − > ⇔ > . Khi đó ta có : 1 2 1 2 2 4 x x k x x + = − = Vậy : ( ) ( ) 2 2 2 2 2 2 2 1 2 1 2 1 2 1 2 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 3 3 3 2 3 4 8 3 2 3 4 2 3 2 3 (**) 2 3 x x x x x x x x x x x x x x k k k k k k + − + + ≥ ⇔ ≥ ⇔ ≥ ÷ ÷ ÷ − ≤ − − ⇔ ≥ ⇔ − ≥ ⇔ ÷ − ≥ ≤ − ⇔ ≥ + Kết hợp (*) và (**) ta có : 2 2 4 2 k k k ≤ − ≥ ⇔ ≥ Vậy để phương trình : x 2 + 2kx + 4 = 0 có hai nghiệm x 1 ; x 2 thỏa : 2 2 1 2 2 1 3 x x x x + ≥ ÷ ÷ thì : 2x < − và 2x > . Bài 3 (3 điểm) Cho x 3 + y 3 + 3(x 2 +y 2 ) +4(x + y) + 4 = 0 và xy > 0 . Tìm giá trị lớn nhất của biểu thức : 1 1 M x y = + . Ta có : x 3 + y 3 + 3(x 2 +y 2 ) +4(x + y) + 4 = 0 ⇔ x 3 + 3x 2 + 3x +1 + y 3 + 3y 2 + 3y + 1 + x + y + 2 = 0 ⇔ (x + 1) 3 + (y + 1) 3 + (x + y + 2) = 0 ⇔ (x + y + 2)[(x + 1) 2 – (x + 1)(y + 1) + (y + 1) 2 + 1] = 0 (*) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 V x 1 – x 1 y 1 y 1 1 1 3 = 1 1 1 1 0 2 4 ì x y y + + + + + + + − + + + + > Nên (*) ⇔ x + y + 2 = 0 ⇔ x + y = - 2 1 1 2 Ta c : x y ó M x y xy xy + − = + = = vì ( ) 2 1 2 4 4 4 1 2x y xy xy xy xy − + ≥ ⇒ ≥ ⇒ ≥ ⇒ ≤ − . Vậy MaxM = -2 ⇔ x = y = -1 . Bài 4 (2 điểm) Cho phương trình : 2 2 2 2 2 2 2 x x x x + − + = + + − − . a) Tìm điều kiện của x để phương trình có nghĩa . b) Giải phương trình . a) điều kiện : 0 4x < ≤ 2 2 b) 2 2 2 2 2 2 2 2 (1) 2 4 2 2 4 2 x x x x x x x x + − + = + + − − + − ⇔ + = + + − − Đặt 4 2 x+ = a ; 4 2 x− = b ( a ; b ≥ 0) . ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 2 8 Ta c : 2 2 2 8 2 8 4 2 8 4 2 4 0 8 (I) 2 4 0 a b ó a b a b a b a b ab a b a b ab a b a b ab ab a b a b ab + = + = + − + = + − − = + − − + = ⇔ − + − + = + = ⇔ − − + = Vì ab + 4 > 0 nên : ( ) ( ) 2 2 2 2 8 2 2 2 2 2 1 3 2 2 2 2 0 1 3 (loai v a 0) 3 1 4 2 3 1 3 3 1 4 2 3 1 ab a b ab I a b a b b b a b a a a a a a a a ì a x x b x = − + = ⇔ ⇔ − = − = = = = ⇔ ⇔ ⇔ = + − = − − = = − < = + + = + ⇔ ⇔ ⇔ = = − − = − Bài 5 (6 điểm) Cho hình thang ABCD (CD > AB) với AB // CD và AB BD⊥ . Hai đường chéo AC và BD cắt nhau tại G . Trên đường thẳng vuông góc với AC tại C lấy điểm E sao cho CE = AG và đoạn thẳng GE không cắt đường thẳng CD . Trên đoạn thẳng DC lấy điểm F sao cho DF = GB c) Chứng minh FDG ∆ đồng dạng với ECG ∆ . d) Chứng minh EGF F ⊥ . ABCD : AB // CD ; CD > AB ; AB BD⊥ . AB BD⊥ ; AG = CE ; BG = DF . Chứng minh : a) FDG ∆ ~ ECG ∆ . b) EGF F⊥ Chứng minh : a) Ta có AB // CD BG GD AG GC ⇒ = , mà AG = CE ; BG = DF DF GD CE GC ⇒ = Xét FDG ∆ và ECG ∆ có : · · 0 ; 90 DF GD GDF GCE CE GC = = = FDG ⇒ ∆ ~ ECG ∆ ( c-g-c) b) Ta có FDG ∆ ~ ECG ∆ · · GFD GEC⇒ = ⇒ GFCE nội tiếp ⇒ · · GCE GFE= cùng chắn » GE mà · · 0 0 90 90GCE GFE GF FE= ⇒ = ⇒ ⊥ \\ // X X F E D C G B A . . b) Chứng minh EGF F ⊥ . HẾT ĐỀ CHÍNH THỨC HƯỚNG DẪN CHẤM VÀ ĐÁP ÁN KÌ THI HSG CẤP TỈNH MÔN TOÁN LỚP 9 NĂM HỌC 2008-2009 Giải Bài 1 (5 điểm) Cho biểu. SỞ GIÁO DỤC VÀ ĐÀO TẠO QUẢNG TRỊ ĐỀ THI HỌC SINH GIỎI LỚP 9 THCS Năm học 2008 – 2009 Môn : Toán Thời gian làm bài