Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 133 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
133
Dung lượng
6,97 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ––––––––––––––– ĐỖ THỊ HỒNG HẢI TRẠNG THÁI NGƯNG TỤ EXCITON TRONG CÁC HỆ CÓ CHUYỂN PHA BÁN KIM LOẠI – BÁN DẪN LUẬN ÁN TIẾN SĨ VẬT LÝ Hà Nội – 2020 BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ––––––––––––––– ĐỖ THỊ HỒNG HẢI TRẠNG THÁI NGƯNG TỤ EXCITON TRONG CÁC HỆ CÓ CHUYỂN PHA BÁN KIM LOẠI – BÁN DẪN Chuyên ngành: Vật lý lý thuyết vật lý toán Mã số: 9.44.01.03 LUẬN ÁN TIẾN SĨ VẬT LÝ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TS Phan Văn Nhâm PGS TS Trần Minh Tiến Hà Nội – 2020 LỜI CAM ĐOAN Tôi xin cam đoan công trình nghiên cứu riêng tơi Các số liệu, kết mà công bố luận án trung thực chưa công bố cơng trình khác Hà Nội, ngày tháng năm 2020 Tác giả Đỗ Thị Hồng Hải i LỜI CẢM ƠN Để học Học viện Khoa học Công nghệ, Viện Hàn lâm Khoa học Công nghệ Việt Nam, trước hết xin cảm ơn giúp đỡ, tạo điều kiện mặt Ban giám hiệu trường Đại học Mỏ – Địa chất, Ban chủ nhiệm khoa Khoa học Cơ bản, Ban chủ nhiệm môn Vật lý, tập thể cán bộ, giảng viên mơn Vật lý Trong q trình học tập làm việc Học viện Khoa học Công nghệ, hướng dẫn PGS TS Phan Văn Nhâm PGS TS Trần Minh Tiến, học hỏi nhiều kiến thức kinh nghiệm nghiên cứu khoa học Để hoàn thành Luận án để trở thành người có khả nghiên cứu khoa học độc lập, tơi xin gửi đến hai thầy hướng dẫn lời cảm ơn sâu sắc Tôi xin gửi lời cảm ơn đến cán bộ, thầy cô Viện Vật lý giúp đỡ thời gian học tập nghiên cứu Viện Tôi xin chân thành cảm ơn cán phòng sau đại học Viện Vật lý, phòng đào tạo Học viện Khoa học Công nghệ hỗ trợ tơi hồn thành thủ tục bảo vệ Luận án Cuối cùng, xin cảm ơn gia đình, bạn bè ln bên động viên giúp đỡ tơi vượt qua khó khăn q trình học tập hoàn thành Luận án ii MỤC LỤC DANH MỤC CÁC CHỮ VIẾT TẮT v DANH MỤC CÁC HÌNH VẼ vi MỞĐẦU Chương EXCITON VÀ TRẠNG THÁI NGƯNG TỤ EXCITON 1.1.Khái niệm exciton 1.2.BEC trạng thái ngưng tụ exciton 12 1.3.Những thành tựu nghiên cứu ngưng tụ exciton 15 1.4.Kết luận 21 Chương LÝ THUYẾT TRƯỜNG TRUNG BÌNH 22 2.1.Những khái niệm 23 2.2.Gần Hartree-Fock 26 2.3.Phá vỡ trật tự đối xứng 27 2.4.Kết luận 40 Chương EXCITON NGƯNG TỤ TRONG MƠ HÌNH HAI DẢI NĂNG LƯỢNG CĨ TƯƠNG TÁC ĐIỆN TỬ – PHONON 41 3.1.Mơ hình điện tử hai dải lượng có tương tác điện tử – phonon 41 3.2.Áp dụng lý thuyết trường trung bình 44 3.3.Kết tính số thảo luận 47 3.4.Kết luận 70 Chương EXCITON NGƯNG TỤ TRONG MƠ HÌNH FALICOV-KIMBALL MỞ RỘNG CĨ TƯƠNG TÁC ĐIỆN TỬ – PHONON 73 4.1.Mơ hình Falicov-Kimball mở rộng có tương tác điện tử – phonon 74 4.2.Áp dụng lý thuyết trường trung bình 75 4.3.Kết tính số thảo luận 78 iii 4.4.Kết luận 107 DANHMỤCCƠNGTRÌNHCỦATÁCGIẢ 112 TÀILIỆUTHAMKHẢO iv 114 DANH MỤC CÁC CHỮ VIẾT TẮT Viết tắt Tiếng Anh Tiếng Việt ARPES angle-resolved photoelectron phổ quang phát xạ phân giải theo spectroscopy góc BCS John Bardeen, Leon Cooper, Robert Schrieffer BEC Bose-Einstein condensed ngưng tụ Bose-Einstein CDW charge density wave sóng mật độ điện tích DMF dynamical mean field trường trung bình động EFK extended Falicov-Kimball Falicov-Kimball mở rộng excitonic insulator điện môi exciton HFA Hartree–Fock approximation gần Hartree–Fock MF mean field trường trung bình PL photoluminescence quang phát xạ PR projector-based renormalization chiếu kết hợp tái chuẩn hóa QW quantum well giếng lượng tử SC semiconductor bán dẫn SM semimetal bán kim loại EI v DANH MỤC CÁC HÌNH VẼ Hình 1.1 Cơ chế tạo thành exciton chất rắn Hình 1.2 Giản đồ pha tổng quát hệ điện tử – lỗ trống .13 Hình 1.3 Ghép cặp điện tử – lỗ trống trạng thái ngưng tụ exciton 13 Hình 1.4 Giản đồ pha trạng thái ngưng tụ exciton mơ hình EFK 16 Hình 1.5 Độ lệch mạng ion Ti 1T -TiSe2 phụ thuộc vào nhiệt độ 16 Hình 1.6 Giản đồ pha trạng thái mơ hình EFK 17 Hình 1.7 Cường độ PL mặt phẳng lượng tọa độ 18 Hình 1.8 ARPES Ta2NiSe5 40K 300K 19 Hình 1.9 ARPES 1T -TiSe2 (a) (b) nhiệt độ chuyển pha EI 20 Hình 1.10 Giản đồ pha trạng thái EI TmSe0:45Te0:55 20 Hình 2.1 Thế hệ chưa có phá vỡ (a) phá vỡ (b) đối xứng 28 Hình 2.2 Sắp xếp mơmen từ nút lân cận gần .29 Hình 2.3 Sắp xếp mômen từ hệ trạng thái sắt từ thuận từ 31 Hình 2.4 Hình (a) (b) biểu thị nghiệm hình học phương trình .31 Hình 2.5 Ba dạng nghiệm có mơ hình Stoner 34 Hình 2.6 Các giá trị đo tham số khe cho ba kim loại khác 37 Hình 3.1 Hình (a) mô tả cấu trúc vùng lượng điện tử c điện tử f 43 Hình 3.2 Tham số trật tự d phụ thuộc vào tần số phonon !0 ứng với vài giá trị c f g " " = trạng thái 48 Hình 3.3 Giản đồ pha trạng thái mô hình mặt phẳng (!0; g) "c "f = 49 Hình 3.4 Giá trị tham số trật tự jdkj phụ thuộc xung lượng k với vài giá trị khác !0 T = 50 Hình 3.5 Tham số trật tự d (lấp đầy) độ lệch mạng xQ (rỗng) phụ thuộc vào "c "f trạng thái 51 c Hình 3.6 Giản đồ pha trạng thái mô hình mặt phẳng (" "f ; !0) g thay đổi 53 vi Hình 3.7 Tham số trật tự d phụ thuộc vào tần số phonon !0 ứng với vài giá trị c f nhiệt độ " " = g = 0:5 54 Hình 3.8 Tham số trật tự d (lấp đầy) độ lệch mạng xQ (rỗng) phụ thuộc vào g ứng với vài giá trị nhiệt độ 55 c f Hình 3.9 Giản đồ pha mơ hình mặt phẳng (!0; g) " " =1 với vài giá trị nhiệt độ 56 Hình 3.10 Giá trị tham số trật tự jdkj phụ thuộc vào xung lượng k g với vài giá trị khác nhiệt độ 57 Hình 3.11 Giá trị tham số trật tự jdkj phụ thuộc vào xung lượng k !0 với vài giá trị nhiệt độ 58 Hình 3.12 Tham số trật tự d (lấp đầy) độ lệch mạng xQ (rỗng) phụ thuộc vào "c "f ứng với vài giá trị nhiệt độ 59 Hình 3.13 Giản đồ pha trạng thái ngưng tụ exciton mơ hình mặt phẳng ("c "f ; !0) với g = 0:5 T thay đổi 60 Hình 3.14 Tham số trật tự d (lấp đầy) độ lệch mạng xQ (rỗng) phụ thuộc vào nhiệt độ ứng với vài giá trị !0 60 Hình 3.15 Giá trị tham số trật tự jdkj phụ thuộc vào xung lượng k nhiệt độ ứng với vài giá trị khác tần số phonon !0 62 Hình 3.16 Giản đồ pha trạng thái ngưng tụ exciton mơ hình mặt phẳng (!0; T ) với "c "f = g = 0:5 (hình a) g = 1:0 (hình b) 63 Hình 3.17 Tham số trật tự d (lấp đầy) độ lệch mạng xQ (rỗng) hàm nhiệt độ T !0 = 0:5 (hình a) !0 = 2:5 (hình b) 64 Hình 3.18 Giá trị tham số trật tự jdkj phụ thuộc vào xung lượng k nhiệt độ c f ứng với vài giá trị g !0 = 0:5 " " = 66 Hình 3.19 Giản đồ pha trạng thái ngưng tụ exciton mơ hình mặt phẳng (g; T ) !0 = 0:5 (hình a) !0 = 2:5 (hình b) 67 Hình 3.20 Tham số trật tự d (lấp đầy) độ lệch mạng xQ (rỗng) hàm nhiệt độ T " c "f thay đổi 68 Hình 3.21 Giản đồ pha trạng thái ngưng tụ exciton mơ hình mặt phẳng ("c "f ; T ) !0 = 0:5 g = 0:5 (hình a) g = 0:7 (hình b) .69 Hình 4.1 Năng lượng giả hạt Ek+ (đường liền nét); Ek (đường đứt nét) tham số trật tự jnkj dọc theo trục k vùng Brillouin thứ với U nhỏ 79 Hình 4.2 Năng lượng giả hạt Ek+ (đường liền nét); Ek (đường đứt nét) tham số vii thiết lập Giản đồ pha trạng thái mơ hình thảo luận Khi tăng cường độ tương tác điện tử – phonon, vùng giới hạn trạng thái ngưng tụ exciton với lệch mạng tinh thể mở rộng Đặc biệt, số tương tác điện tử – phonon lớn giá trị tới hạn trạng thái ngưng tụ exciton tìm thấy khơng có tương tác Coulomb Các kết đạt chương trình bày báo lại danh mục cơng trình tác giả 108 KẾT LUẬN Trong phạm vi nghiên cứu luận án, phát triển lý thuyết MF áp dụng cho mơ hình hai dải lượng có tương tác điện tử – phonon mơ hình EFK xét tới tương tác với phonon điện tử để khảo sát chuyển pha trạng thái ngưng tụ exciton hệ có chuyển pha SM – SC Ứng với mơ hình, áp dụng HFA (là số phương pháp gần tiêu biểu lý thuyết MF) giúp thu hệ phương trình tự hợp cho phép xác định tham số trật tự trạng thái ngưng tụ exciton độ lệch mạng Trên sở kết tính số hệ phương trình tự hợp, chúng tơi thảo luận chi tiết kịch ngưng tụ exciton ảnh hưởng nhiệt độ, tương tác Coulomb cường độ tương tác điện tử – phonon Kịch vật lý nhận hồn tồn phù hợp mặt định tính với kết thực nghiệm gần số vật liệu tương tự giới hạn đoạn nhiệt phản đoạn nhiệt Với mơ hình hai dải lượng có tương tác điện tử (exciton) – phonon, kết tính số cho thấy ảnh hưởng quan trọng nhiệt độ phonon lên trạng thái ngưng tụ exciton mơ hình Trạng thái ngưng tụ hình thành hệ nhiệt độ đủ thấp cường độ tương tác điện tử – phonon đủ lớn Kết cho thấy ổn định hệ trạng thái ngưng tụ exciton lệch mạng tinh thể có liên quan mật thiết với Bằng cách khảo sát chi tiết phụ thuộc xung lượng tham số trật tự trạng thái ngưng tụ exciton, khẳng định trạng thái ngưng tụ exciton hệ nhiệt độ thấp có dạng BCS tương tự trạng thái siêu dẫn hình thành từ cặp Cooper lý thuyết BCS Bên cạnh đó, việc thiết lập giản đồ pha mơ hình, chúng tơi khẳng định mối liên hệ mật thiết tần số phonon cường độ tương tác điện tử – phonon việc thiết lập trạng thái ngưng tụ exciton hệ Giản đồ pha (g; T ) cho thấy, ứng với giá trị xác định tần số phonon, ta ln tìm vùng ngưng tụ exciton giá trị tới hạn gc số tương tác điện tử – phonon giá trị tới hạn Tc nhiệt độ chuyển pha trạng thái EI/CDW Tăng số tương 109 tác điện tử – phonon nhiệt độ tới hạn Tc tăng lên Ở nhiệt độ nhiệt độ tới hạn T Tc số tương tác điện tử – phonon đủ lớn ( g gc), liên kết exciton trì hệ ổn định trạng thái EI/CDW Giản đồ pha cho thấy giá trị tới hạn số tương tác điện tử – phonon tăng lên tăng tần số phonon Mặt khác, với giản đồ pha ( !0; T ), kết khẳng định vùng ngưng tụ exciton mở rộng tăng cường độ tương tác điện tử – phonon hay giá trị tới hạn tần số phonon tăng lên tăng số tương tác điện tử – phonon Với mơ hình EFK xét tới tương tác điện tử – phonon, kết tính số cho thấy tương tác Coulomb tương tác điện tử – phonon có vai trò việc thiết lập pha ngưng tụ exciton với biến dạng mạng Trạng thái ngưng tụ exciton tìm thấy tương tác điện tử – phonon đủ lớn tương tác Coulomb có giá trị khoảng hai giá trị tới hạn nhiệt độ đủ thấp Kết phụ thuộc xung lượng tham số trật tự trạng thái ngưng tụ exciton giá trị khác tương tác Coulomb cho thấy chất trạng thái ngưng tụ exciton hệ Trạng thái ngưng tụ exciton có dạng BCS – dạng ngưng tụ cặp Cooper, giới hạn tương tác Coulomb yếu có dạng BEC – dạng ngưng tụ hạt boson thông thường, tương tác Coulomb đủ mạnh Giá trị tới hạn tương tác Coulomb cho giao BCS – BEC Bên cạnh đó, chúng tơi thiết lập giản đồ pha trạng thái ngưng tụ exciton mơ hình mặt phẳng (U; g) (U; T ) f Giản đồ pha (U; g) cho thấy, với giá trị xác định lượng nút " điện tử f, ta ln tìm vùng ngưng tụ exciton hai giá trị tới hạn tương tác f Coulomb (ngay khơng có tương tác điện tử – phonon) Khi tăng " , vùng ngưng tụ exciton mở rộng dạng BEC BCS Giá trị tới hạn tương tác Coulomb cho vị trí giao BCS – BEC tăng lên Giản đồ pha (U; T ) cho thấy, nhiệt độ thấp, ta ln tìm thấy vùng ngưng tụ exciton hai giá trị tới hạn tương tác Coulomb giá trị số tương tác điện tử – phonon g Khi tăng cường độ tương tác điện tử – phonon, vùng giới hạn trạng thái ngưng tụ exciton với lệch mạng mở rộng vị trí giao BCS – BEC dịch tới giá trị U lớn Đặc biệt, số tương tác điện tử – phonon lớn giá trị tới hạn, trạng thái ngưng tụ exciton tìm thấy khơng có tương tác Coulomb Tuy vậy, nghiên cứu chúng tơi, tốn giải 110 giới hạn gần MF Để có nhìn sâu sắc chất trạng thái ngưng tụ exciton, cần thiết mở rộng tốn tính tới đóng góp tương quan điện tử, chẳng hạn áp dụng phương pháp PR Khi hiệu ứng tương quan ảnh hưởng tới kịch ngưng tụ exciton xem xét cách đầy đủ, chi tiết Đây nội dung nghiên cứu Nghiên cứu sinh sau hồn thành Luận án 111 DANH MỤC CƠNG TRÌNH CỦA TÁC GIẢ Trong khn khổ nội dung nghiên cứu luận án, kết tác giả cơng bố cơng trình sau: Đăng tạp chí quốc tế: Thi-Hong-Hai-Do, Huu-Nha-Nguyen, Thi-Giang-Nguyen and VanNham-Phan, Temperature effects in excitonic condensation driven by the lattice distortion, Physica Status Solidi B 253, 1210, 2016 Thi-Hong-Hai-Do, Dinh-Hoi-Bui and Van-Nham-Phan, Phonon effects in the excitonic condensation induced in the extended Falicov-Kimball model, Europhysics Letters 119, 47003, 2017 Thi-Hong-Hai Do, Huu-Nha Nguyen and Van-Nham Phan, Thermal Fluc-tuations in the Phase Structure of the Excitonic Insulator Charge Density Wave State in the Extended FalicovKimball Model, Journal of Electronic Materials 48, 2677, 2019 Đăng tạp chí nước: Đỗ Thị Hồng Hải Phan Văn Nhâm, Chuyển pha trạng thái ngưng tụ exciton kim loại chuyển tiếp dichalcogenides, Tạp chí Khoa học – Cơng nghệ, Đại học Duy Tân (25), 17–21, 2017 Đỗ Thị Hồng Hải Phan Văn Nhâm, Các dạng ngưng tụ BCS BEC exciton kim loại chuyển tiếp dichalcogenide, Tạp chí Khoa học – Cơng nghệ, Đại học Duy Tân (25), 30–35, 2017 Đỗ Thị Hồng Hải, Nguyễn Thị Hậu, Hồ Quỳnh Anh, Ảnh hưởng nhiệt độ lên trạng thái ngưng tụ exciton mơ hình Falicov-Kimball mở rộng có xét đến tương tác điện tử – phonon, Tạp chí Nghiên cứu Khoa học Cơng nghệ Quân sự, Số Đặc san CBES2, 204–209, 2018 Đỗ Thị Hồng Hải Phan Văn Nhâm, Tính chất hàm phổ mơ hình Falicov-Kimball mở rộng có tương tác điện tử – phonon: Sự hình thành 112 trạng thái điện mơi exciton, Tạp chí Khoa học – Cơng nghệ, Đại học Duy Tân (31), 89–94, 2018 Đỗ Thị Hồng Hải Phan Văn Nhâm, Giản đồ pha trạng thái ngưng tụ exciton mơ hình Falicov-Kimball mở rộng có tương tác điện tử – phonon, Tạp chí Khoa học – Công nghệ, Đại học Duy Tân (31), 95–100, 2018 Đỗ Thị Hồng Hải Phan Văn Nhâm, Ảnh hưởng tần số phonon lên trạng thái điện mơi exciton, Tạp chí Khoa học Cơng nghệ Đại học Duy Tân (34), 87–92, 2019 10 Đỗ Thị Hồng Hải Phan Văn Nhâm, Exciton ngưng tụ mơ hình hai dải lượng có tương tác điện tử – phonon, Tạp chí Khoa học Công nghệ Đại học Duy Tân (34), 106–111, 2019 Báo cáo Hội nghị: 11 Do Thi Hong Hai and Phan Van Nham, Effects of phonons in the excitonic insulator in the 2D extended Falicov-Kimball model, 41th National Conference on Theoretical Physics, Nha Trang, – August 2016 12 Do Thi Hong Hai and Phan Van Nham, Excitonic condensation phase diagram in the extended Falicov-Kimball model with electron – phonon interaction, 42th National Conference on Theoretical Physics, Can Tho, 31 July – August, 2017 13 Do Thi Hong Hai and Phan Van Nham, Phase diagram of excitonic condensation state in transition metal dichalcogenides, 43th National Conference on Theoretical Physics, Quy Nhon, 30 July – August, 2018 113 TÀI LIỆU THAM KHẢO [1] S De Palo, F Rapisarda, and G Senatore Excitonic condensation in a symmetric electron-hole bilayer Phys Rev Lett., 88:206401, 2002 [2] P B Littlewood, P R Eastham, J M J Keeling, F M Marchetti, B D Simons, and M H Szymanska Models of coherent exciton condensation J Phys Condens Matter, 16:S3597, 2004 [3] M Crisana and I Tifreaab Excitonic condensation in quasi-two- dimensional systems Physics Letters A, 346:310–314, 2005 [4] Y Tomio, K Honda, and T Ogawa Excitonic BCS-BEC crossover at finite temperature: Effects of repulsion and electron-hole mass difference Phys Rev B, 73:235108, 2006 [5] F X Bronold and H Fehske Possibility of an excitonic insulator at the semiconductor-semimetal transition Phys Rev B, 74:165107, 2006 [6] B Hulsen,ă F X Bronold, H Fehske, and K Yonemitsu Phase diagram of the excitonic insulator Physica B: Condensed Matter, 378-380:267–268, 2006 [7] D Ihle, M Pfafferott, E Burovski, F X Bronold, and H Fehske Bound state formation and nature of the excitonic insulator phase in the extended Falicov-Kimball model Phys Rev B, 78:193103, 2008 [8] C.-H Zhang and Y N Joglekar Excitonic condensation of massless fermions in graphene bilayers Phys Rev B, 77:233405, 2008 [9] C Monney, H Cercellier, F Clerc, C Battaglia, E F Schwier, C Didiot, M G Garnier, H Beck, P Aebi, H Berger, L Forró, and L Patthey Spon-taneous exciton condensation in 1T -TiSe2: BCS-like approach Phys Rev B, 79:045116, 2009 114 [10] C Monney, E F Schwier, M G Garnier, N Mariotti, C Didiot, H Cercel-lier, J Marcus, H Berger, A N Titov, H Beck, and P Aebi Probing the exciton condensate phase in 1T -TiSe2 with photoemission New J Phys., 12:125019, 2010 [11] C Monney, C Battaglia, H Cercellier, P Aebi, and H Beck Exciton con-densation driving the periodic lattice distortion of 1T -TiSe2 Phys Rev Lett., 106:106404, 2011 [12] G Monney, C Monney, B Hildebrand, P Aebi, and H Beck Impact of electron-hole correlations on the 1T -TiSe2 electronic structure Phys Rev Lett., 114:086402, 2015 [13] J Kunesˇ Excitonic condensation in systems of strongly correlated electrons Journal of Physics: Condensed Matter, 27:33, 2015 [14] V.-N Phan, K W Becker, and H Fehske Exciton condensation due to electron-phonon interaction Phys Rev B, 88:205123, 2013 [15] N V Phan, K W Becker, and H Fehske Spectral signatures of the BCS-BEC crossover in the excitonic insulator phase of the extended Falicov-Kimball model Phys Rev B, 81:205117, 2010 [16] N V Phan, H Fehske, and K W Becker Excitonic resonances in the 2D extended Falicov-Kimball model Europhys Lett., 95:17006, 2011 [17] B Zenker, D Ihle, F X Bronold, and H Fehske Slave-boson field fluctu-ation approach to the extended Falicov-Kimball model: Charge, orbital, and excitonic susceptibilities Phys Rev B, 83:235123, 2011 [18] B Zenker, D Ihle, F X Bronold, and H Fehske Electron-hole pair conden-sation at the semimetal-semiconductor transition: A BCSBEC crossover scenario Phys Rev B, 85:121102(R), 2012 [19] B Zenker, H Fehske, H Beck, C Monney, and A R Bishop Chiral charge order in 1T -TiSe2: Importance of lattice degrees of freedom Phys Rev B, 88:075138, 2013 [20] B Zenker, D Ihle, F X Bronold, and H Fehske On the existence of the excitonic insulator phase in the extended Falicov-Kimball model: a SO(2)-invariant slave-boson approach Phys Rev B, 81:115122, 2010 115 [21] B Zenker, H Fehske, and H Beck Fate of the excitonic insulator in the presence of phonons Phys Rev B, 90:195118, 2014 [22] T Kaneko, T Toriyama, T Konishi, and Y Ohta Orthorhombic-tomonoclinic phase transition of Ta2NiSe5 induced by the BoseEinstein con-densation of excitons Phys Rev B, 87:035121, 2013 [23] T Kaneko, T Toriyama, T Konishi, and Y Ohta Erratum: Orthorhombicto-monoclinic phase transition of Ta2NiSe5 induced by the Bose-Einstein condensation of excitons Phys Rev B, 87:199902, 2013 [24] T Kaneko, S Ejima, H Fehske, and Y Ohta Exact-diagonalization study of exciton condensation in electron bilayers Phys Rev B, 88:035312, 2013 [25] T Kaneko, B Zenker, H Fehske, and Y Ohta Competition between ex-citonic charge and spin density waves: Influence of electronphonon and Hund’s rule couplings Phys Rev B, 92:115106, 2015 [26] K Seki, R Eder, and Y Ohta BCS-BEC crossover in the extended Falicov-Kimball model: Variational cluster approach Phys Rev B, 84:245106, 2011 [27] K Seki, Y Wakisaka, T Kaneko, T Toriyama, T Konishi, T Sudayama, N L Saini, M Arita, H Namatame, M Taniguchi, N Katayama, M No-hara, H Takagi, T Mizokawa, and Y Ohta Excitonic Bose-Einstein con-densation in Ta2NiSe5 above room temperature Phys Rev B, 90:155116, 2014 [28] D Snoke and G M Kavoulakis Bose-Einstein condensation of excitons in Cu2O: Progress over 30 years Rep Prog Phys., 77:116501, 2014 [29] M Combescot and S Y Shiau Excitons and Cooper Pairs: Two Composite Bosons in Many-Body Physics Oxford University Press, NewYork, 2016 [30] B Debnath, Y Barlas, D Wickramaratne, M R Neupane, and R K Lake Exciton condensate in bilayer transition metal dichalcogenides: strong cou-pling regime Phys Rev B, 96:174504, 2017 [31] K Hamada, T Kaneko, S Miyakoshi, and Y Ohta Excitonic insulator state of the extended Falicov–Kimball model in the cluster dynamical impurity approximation Journal of the Physical Society of Japan, 86:074709, 2017 116 ¯ [32] K Domon, T Yamada, and Y Ono Excitonic phase diagram of the quasi-one-dimensional three-chain Hubbard model for semiconducting and semimetallic Ta2NiSe5 Journal of the Physical Society of Japan, 87:054701, 2018 [33] G Wang, A Chernikov, M M Glazov, T F Heinz, X Marie, T Amand, and B Urbaszek Colloquium: Excitons in atomically thin transition metal dichalcogenides Rev Mod Phys., 90:021001, 2018 [34] P Wachter Exciton condensation in an intermediate valence compound: TmSe0:45Te0:55 Solid State Commun., 118:645, 2001 [35] P Wachter, B Bucher, and J Malar Possibility of a superfluid phase in a Bose condensed excitonic state Phys Rev B, 69:094502, 2004 [36] P Wachter, A Jung, and F Pfuner Exciton condensation in intermediate valent Sm0:90La0:10S Physics Letters A, 359:528–533, 2006 [37] H Cercellier, C Monney, F Clerc, C Battaglia, L Despont, M G Garnier, H Beck, P Aebi ans L Patthey, H Berger, and L Forró Evidence for an excitonic insulator phase in 1T -TiSe2 Phys Rev Lett., 99:146403, 2007 [38] C Monney, E F Schwier, M G Garnier, N Mariotti, C Didiot, H Beck, P.Aebi, C Cercellier, J Marcus, C Battaglia, H Berger, and A N Titov Temperature-dependent photoemission on 1T -TiSe2: Interpretation within the exciton condensate phase model Phys Rev B, 81:155104, 2010 [39] K Rossnagel, L Kipp, and M Skibowski Charge-density-wave phase tran-sition in 1T -TiSe2: Excitonic insulator versus band-type Jahn-Teller mecha-nism Phys Rev B, 65:235101, 2002 [40] T E Kidd, T Miller, M Y Chou, and T.-C Chiang Electron-hole coupling and the charge density wave transition in TiSe Phys Rev Lett., 88:226402, 2002 [41] K Yoshioka, E Chae, and M Kuwata-Gonokami Transition to a Bose–Einstein condensate and relaxation explosion of excitons at sub-Kelvin temperatures Nature Commun., 2:328, 2011 117 [42] H Stolz, R Schwartz, F Kieseling, S Som, M Kaupsch, S Sobkowiak, D Semkat, N Naka, T Koch, and H Fehske Condensation of excitons in Cu2O at ultracold temperatures: experiment and theory New J Phys., 14:105007, 2012 [43] Y Wakisaka, T Sudayama, K Takubo, T Mizokawa, M Arita, H Na-matame, M Taniguchi, N Katayama, M Nohara, and H Takagi Excitonic insulator state in Ta2NiSe5 probed by photoemission spectroscopy Phys Rev Lett., 103:026402, 2009 [44] Y Wakisaka, T Sudayama, K Takubo, T Mizokawa, N Saini, M Arita, H Namatame, M Taniguchi, N Katayama, M Nohara, and H Takagi Pho-toemission spectroscopy of Ta 2NiSe5 J Supercond Nov Magn, 25:1231, 2012 [45] A Kogar, M S Rak, S Vig, A A Husain, F Flicker, Y I Joe, L Venema, G J MacDougall, T C Chiang, E Fradkin, J van Wezel, and P Abba-monte Signatures of exciton condensation in a transition metal dichalco-genide Science, 358:1314, 2017 [46] S A Moskalenko and D W Snoke Bose-Einstein Condensation of Exci-tons and Biexcitons Cambridge Univ Press, Cambridge, 2000 [47] E Hanamura and H Haug The structure of electronic excitation levels in insulating crystals Physics Reports, 33:209, 1977 [48] H Bruus and K Flensberg Many-body quantum theory in Condensed mat-ter physics Oxford University Press, New York, 2004 [49] M P Marder Condensed Matter Physics John Wiley & Sons, New Jersey, 1999 [50] J M Blatt, K W Boer,ă and W Brandt Bose-Einstein condensation of excitons Phys Rev., 126:1691, 1962 [51] N F Mott The transition to the metallic state Philos Mag., 6:287, 1961 [52] R Knox In F Seitz and D Turnbull, editors, Solid State Physics, page Suppl p 100 Academic Press, New York, 1963 118 [53] W Kohn Metals and insulators In C de Witt and R Balian, editors, Many Body Physics Gordon & Breach, New York, 1968 [54] B I Halperin and T M Rice In F Seitz, D Turnbull, and H Ehrenreich, editors, Solid State Physics, volume 21, page 115 Academic, New York, 1968 [55] J Neuenschwander and P Wachter Pressure-driven semiconductormetal transition in intermediate-valence TmSe xTex and the concept of an exci-tonic insulator Phys Rev B, 41:12693, 1990 [56] B Bucher, P Steiner, and P Wachter Excitonic insulator phase in TmSe0:45Te0:55 Phys Rev Lett., 67:2717, 1991 [57] J Bardeen, L N Cooper, and J R Schrieffer Theory of superconductivity Phys Rev., 108:1175, 1957 [58] J Bardeen, L N Cooper, and J R Schrieffer Microscopic theory of super-conductivity Phys Rev., 106:162, 1957 [59] H Watanabe, K Seki, and S Yunoki Charge-density wave induced by combined electron-electron and electron-phonon interactions in 1T -TiSe2: A variational Monte Carlo study Phys Rev B, 91:205135, 2015 [60] J Frenkel On the transformation of light into heat in solids Phys Rev., 37:17;1276, 1931 [61] N W Ashcroft and N D Mermin Solid State Physics Brooks Cole, 1976 [62] G H Wannier The structure of electronic excitation levels in insulating crystals Phys Rev., 52:191, 1937 [63] J F Annett Superconductivity, Superfluids and Condensates Oxford Uni-versity Press, New York, 2004 [64] W Kohn and D Sherrington Two kinds of bosons and Bose condensates Rev Mod Phys., 42:1, 1970 [65] F X Bronold, H Fehske, and G Ropkeă Excitonic versus electronhole liquid phases in Tm[Se,Te] compounds J Phys Soc Jpn Suppl A, 76:27, 2007 119 [66] P Farkasovskýˇ Hartree-Fock study of electronic ferroelectricity in the Falicov-Kimball model with f f hopping Phys Rev B, 77:155130, 2008 [67] C D Batista, J E Gubernatis, J Bonca,ˇ and H Q Lin Intermediate coupling theory of electronic ferroelectricity Phys Rev Lett., 92:187601, 2004 [68] J van Wezel, P Nahai-Williamson, and S S Saxena An alternative in-terpretation of recent ARPES measurements on TiSe2 Europhys Lett., 89:47004, 2010 [69] L V Butov, C W Lai, A L Ivanov, A C Gossard, and D S Chemla Towards Bose-Einstein condensation of excitons in potential traps Nature, 417:47, 2002 [70] A Altland and B Simons Condensed Matter Field Theory Cambridge University Press, Cambridge, 2010 [71] A Georges, G Kotliar, W Krauth, and M J Rozenberg Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions Rev Mod Phys., 68:13, 1996 [72] D Vollhardt, K Byczuk, and M Kollar Dynamical mean-field theory preprint, 2011 [73] L P Kadanoff More is the same; phase transitions and mean field theories J Stat Phys., 137:777, 2009 [74] J Hubbard Electron correlations in narrow energy bands Proc Roy Soc London, Ser A, 276:238, 1963 [75] M C Gutzwiller Effect of correlation on the ferromagnetism of transition metals Phys Rev Lett., 10:159, 1963 [76] P Coleman Introduction to Many-Body Physics Cambridge University Press, Cambridge, 2015 [77] J Sólyom Fundamental of the physics of solids, Volume Springer-Verlag, Berlin, 2010 [78] N N Bogoliubov, V V Tolmachev, and D V Shirkov New Method in the Theory of Superconductivity Consultants Bureau, New York, 1959 120 [79] D Jérome, T M Rice, and W Kohn Excitonic Insulator Physical Review, 158:462, 1967 [80] N Tsuda, K Nasu, A Yanase, and K Siratori Electronic Conduction in Oxides Springer-Verlag, Berlin, 1991 [81] R Peierls Quantum theory of solids Oxford University Press, Oxford, 1955 [82] F J Di Salvo, D E Moncton, and J V Waszczak Electronic properties and superlattice formation in the semimetal TiSe Phys Rev B, 14:4321, 1976 [83] P Wachter and B Bucher Exciton condensation and its influence on the specific heat Physica B, 408:51, 2013 [84] Y Yoshida and K Motizuki Electron lattice interaction and lattice instabil-ity of 1T -TiSe2 J Phys Soc Japan, 49:898, 1980 [85] N Suzuki, A Yamamoto, and K Motizuki Microscopic theory of the CDW state of 1T -TiSe2 J Phys Soc Japan, 54:4668, 1985 [86] M Holt, P Zschack, H Hong, M Y Chou, and T C Chiang X-Ray studies of phonon softening in TiSe2 Phys Rev Lett., 86:3799, 2001 [87] F Weber, S Rosenkranz, J.-P Castellan, R Osborn, G Karapetrov, R Hott, R Heid, K.-P Bohnen, and A Alatas Electron-phonon coupling and the soft phonon mode in TiSe2 Phys Rev Lett., 107:266401, 2011 [88] A Zunger and A J Freeman Band structure and lattice instability of TiSe2 Phys Rev B, 17:1839, 1978 [89] B I Halperin and T M Rice Possible anomalies at a semimetalsemiconductor transistion Rev Mod Phys., 40:755, 1968 [90] T Holstein Studies of polaron motion Part I The molecular-crystal model Ann Phys (N.Y.), 8:325, 1959 [91] T Holstein Studies of polaron motion Part II The “small” polaron Ann Phys (N.Y.), 8:343, 1959 121 [92] H Frohlichă Interaction of electrons with lattice vibrations Proc R Soc London A, 215:291, 1952 [93] G Gruneră Density Waves in Solids Addison-Wesley Publishing Company, 1994 [94] V M Agranovich and A A Maradudinl Modern problems in condensed matter sciences North-Holland, The Netherlands, 1989 [95] H Min, R Bistritzer, J J Su, and A H MacDonald Room-temperature superfluidity in graphene bilayers Phys Rev B, 78:121401(R), 2008 [96] N V Phan and H Fehske Coulomb interaction effects in graphene bilayers: electron-hole pairing and plasmaron formation New J Phys., 14:075007, 2012 [97] J M Kosterlitz and D J Thouless Ordering, metastability and phase tran-sitions in two-dimensional systems J Phys C, 6:1181, 1973 [98] L M Falicov and J C Kimball Simple model for semiconductormetal transitions: SmB6 and transition-metal oxides Phys Rev Lett., 22:997, 1969 [99] R Ramirez, L M Falicov, and J C Kimball Metal-insulator transitions: A simple theoretical model Phys Rev B, 2:3383, 1970 [100] C D Batista Electronic Ferroelectricity in the Falicov-Kimball Model Phys Rev Lett., 89:166403, 2002 [101] P M R Brydon Slave-boson theory of the extended FalicovKimball model Phys Rev B, 77:045109, 2008 [102] D N Zubarev Double-time Green functions in statistical physics Usp Fiz Nauk, 71:71, 1960 [103] G D Mahan Many-particle physics Kluwer Academic/Plenum Publishers, New York, 2000 122 ... trạng thái siêu dẫn hoàn toàn khác Nếu trạng thái siêu dẫn, hệ dẫn điện lý tưởng trạng thái ngưng tụ exciton, hệ lại trạng thái điện môi Trong số trường hợp, người ta gọi trạng thái ngưng tụ exciton. .. nhiệt độ, trạng thái ngưng tụ bị phá vỡ thăng giáng nhiệt Khi hệ trạng thái ngưng tụ exciton dạng BEC, thăng giáng nhiệt làm hệ chuyển lên trạng thái khí exciton tự do, trạng thái ngưng tụ exciton. .. tụ exciton cho mơ hình Từ đó, kịch giao BCS – BEC trạng thái ngưng tụ exciton mơ hình trình bày cách chi tiết CHƯƠNG EXCITON VÀ TRẠNG THÁI NGƯNG TỤ EXCITON Để hiểu rõ chất trạng thái ngưng tụ hệ