1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Lecture Control system design: Frequency response methods - Nguyễn Công Phương

52 37 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 52
Dung lượng 1,87 MB

Nội dung

Lecture Control system design: Frequency response methods presents the following content: Frequency response plots, performance specifications in the frequency domain, frequency response methods using control system software.

Nguyễn Công Phương CONTROL SYSTEM DESIGN Frequency Response Methods Contents I Introduction II Mathematical Models of Systems III State Variable Models IV Feedback Control System Characteristics V The Performance of Feedback Control Systems VI The Stability of Linear Feedback Systems VII The Root Locus Method VIII.Frequency Response Methods IX Stability in the Frequency Domain X The Design of Feedback Control Systems XI The Design of State Variable Feedback Systems XII Robust Control Systems XIII.Digital Control Systems s i tes.google.com/site/ncpdhbkhn Frequency Response Methods Introduction Frequency Response Plots Performance Specifications in the Frequency Domain Frequency Response Methods Using Control System Software s i tes.google.com/site/ncpdhbkhn Introduction (1) • The frequency response of a system: the steady – state response of the system to a sinusoidal input signal • The sinusoid is a unique input signal, and the resulting output signal for a linear system, as well as signals throughout the system, is sinusoidal in the steady state • It differs from the input waveform only in amplitude and phase angle s i tes.google.com/site/ncpdhbkhn Introduction (2) T ( s) = m (s ) = q( s ) m (s ) n ∏ (s + p ) i i =1 r(t ) = Asin ωt → R(s ) = → Y (s) = R (s )T ( s) = Aω s2 + ω k1 k αs + β + + n + s + p1 s + pn s + ω  αs + β  → y (t ) = k1e− p1t + + kne − pnt + L−1  2 s +ω   αs + β  ysteady − state (t ) = lim y(t ) = lim L−1  2 t →∞ t →∞ s +ω  = A T ( jω ) sin(ω t + φ ), φ = ∠T ( jω ) s i tes.google.com/site/ncpdhbkhn Frequency Response Methods Introduction Frequency Response Plots Performance Specifications in the Frequency Domain Frequency Response Methods Using Control System Software s i tes.google.com/site/ncpdhbkhn Frequency Response Plots (1) G ( jω ) = G ( s ) s = jω = Re[G ( jω )] + Im[G ( jω )] = R(ω ) + jX (ω ) = G ( jω ) e jφ (ω ) = G ( jω ) ∠[φ (ω )] = R (ω ) + X (ω )∠{tan −1 [ X (ω ) / R (ω )]} s i tes.google.com/site/ncpdhbkhn Frequency Response Plots (2) Ex 1 V1( s) I (s) = Cs Cs + R Cs V2 (s ) → G( s) = = V1 (s ) RCs + + V2 (s ) = Vcapacitor (s ) = = = = j ( ω / ω1 ) + V1 ( s ) jω ( RC ) + , 1 + (ω / ω1 ) ∠ tan (−ω / ω1 ) −1 C − Positive ω 0.5 Negative ω 0.4 ω1 = RC ω / ω1 − j + (ω / ω1) + (ω / ω1 ) V2 ( s ) − 0.3 0.2 0.1 X(ω) → G( jω ) = G ( s ) s = jω = + R -0.1 -0.2 -0.3 -0.4 -0.5 0.2 0.4 0.6 0.8 R(ω) s i tes.google.com/site/ncpdhbkhn Frequency Response Plots (3) Semilog plots of the magnitude (in decibels) and phase (in degrees) of a transfer function versus frequency TdB = 20log10 T T =T φ →  φ ( )( )( ) T = T1T2 T3 = T1 φ1 T2 φ2 T3 φ3 = ( T1T2T3 ) φ1 + φ2 + φ3 +  20 log10 T = 20log10 T1 + 20log10 T2 + 20log10 T3 + → φ = φ1 + φ2 + φ3 + s i tes.google.com/site/ncpdhbkhn Frequency Response Plots (4) 2      j ω j ζ ω j ω + K ( jω) ±1 1 +  1 +    z1   ωk   ωk    T(ω) =  jω   j2ζ 2ω  jω   + 1 +  1 +   p1   ωn   ωn    K : gain : pole at the origin jω jω : zero at the origin jω 1+ p1 : simple pole 1+ j 2ζ 2ω ωn  jω  +  ω  n : quadratic pole jω 1+ : simple zero + j2ζ 1ω +  jω  : quadratic zero z1 ωk  ωk  s i tes.google.com/site/ncpdhbkhn 10 Frequency Response Plots (32) Ex T(ω ) = 1000( jω + 20) 8(1 + jω / 20) = jω(1 + jω / 5)2 1 + jω /10 + ( jω /10)2  jω ( jω + 5)  ( jω ) + 40 jω + 100      40 TdB 20 log 10 20 log10 20 (1 + jω / 5)2 20 log 10 + ω 20 log10  j 2ζ ω  jω 2  1 + +   ω  k  ωk   N -20 jω 20 jω -40 ωk ω -60 −40 N dB/decade -80 20 log 10 -100 0.1 1 + jω4 /10 + ( jω /10) s i tes.google.com/site/ncpdhbkhn 10 20 50 100 38 Frequency Response Plots (33) Ex T(ω ) = 1000( jω + 20) 8(1 + jω / 20) = jω(1 + jω / 5)2 1 + jω /10 + ( jω /10)2  jω ( jω + 5)  ( jω ) + 40 jω + 100      40 TdB 20 ω -20 -40 -60 -80 -100 0.1 Frequency Response s i tes.google.com/site/ncpdhbkhn 10 20 50 100 39 Frequency Response Plots (34) Ex 1000( jω + 20) 8(1 + jω / 20) = jω(1 + jω / 5)2 1 + jω /10 + ( jω /10)2  jω ( jω + 5)  ( jω ) + 40 jω + 100      T(ω ) = φ 90 50 ω -50 1 + jω   z   N -90 90N o -200 0o z 10 -180 z 10z ω -270 -300 -360 0.1 0.2 0.5 s i tes.google.com/site/ncpdhbkhn 10 50 100 200 40 500 Frequency Response Plots (35) Ex T(ω ) = 1000( jω + 20) 8(1 + jω / 20) = jω(1 + jω / 5)2 1 + jω /10 + ( jω /10)2  jω ( jω + 5)  ( jω ) + 40 jω + 100      φ 90 50 ω -50 ( jω ) N -90 -180 ω −90N o -200 -270 -300 -360 0.1 0.2 0.5 s i tes.google.com/site/ncpdhbkhn 10 50 100 200 41 500 Frequency Response Plots (36) Ex T(ω ) = 1000( jω + 20) 8(1 + jω / 20) = jω(1 + jω / 5)2 1 + jω /10 + ( jω /10)2  jω ( jω + 5)  ( jω ) + 40 jω + 100      φ 90 50 ω -50  jω  1+ p    p 10 o p -90 N -180 10p -200 ω −90N o -270 -300 -360 0.1 0.2 0.5 s i tes.google.com/site/ncpdhbkhn 10 50 100 200 42 500 Frequency Response Plots (37) Ex T(ω ) = 1000( jω + 20) 8(1 + jω / 20) = jω(1 + jω / 5)2 1 + jω /10 + ( jω /10)2  jω ( jω + 5)  ( jω ) + 40 jω + 100      φ 90 50 ω -50  j 2ζ ω  jω 2  1 + +   ωk   ωk   ωk 10 0o ωk N 10ωk -90 -180 ω − 180N o -200 -270 -300 -360 0.1 0.2 0.5 s i tes.google.com/site/ncpdhbkhn 10 50 100 200 43 500 Frequency Response Plots (38) Ex Find the transfer function from the Bode plot? 40 ( jω) N H dB Sl ope = 30 20 20N dB/decade ω 10 jω ω -10 -20 0.1 s i tes.google.com/site/ncpdhbkhn 10 20 100 200 44 500 Frequency Response Plots (39) Ex Find the transfer function from the Bode plot? 40 K H dB Sl ope = 20 log10 10 30 20 20 log10 K ω 10 jω ω -10 -20 0.1 s i tes.google.com/site/ncpdhbkhn 10 20 100 200 45 500 Frequency Response Plots (40) Ex Find the transfer function from the Bode plot? 40 Sl ope = 20 log10 10 30 N  jω  1 + p    20 p ω −20N dB/decade H dB 10 jω ω 20log10 -10 -20 0.1 1 + jω / 5 s i tes.google.com/site/ncpdhbkhn 10 20 100 200 46 500 Frequency Response Plots (41) Ex T(ω ) = Find the transfer function from the Bode plot? 40  jω   1+ p    Sl ope = 20 log10 10 30 N 20 p ω −20N dB/decade H dB 10 jω (1 + jω / 5)(1 + jω /10) 10 jω 20 log10 1 + jω /10 ω 20log10 -10 -20 0.1 1 + jω / 5 s i tes.google.com/site/ncpdhbkhn 10 20 100 200 47 500 Frequency Response Methods Introduction Frequency Response Plots Performance Specifications in the Frequency Domain Frequency Response Methods Using Control System Software s i tes.google.com/site/ncpdhbkhn 48 Performance Specifications in the Frequency Domain (1) ωresonant = ωn − 2ζ , ζ < 0.707 ( M pω = G ( jωr ) = 2ζ − 2ζ 20 G (ω ) = ) −1 , ζ < 0.707 ζ = 0.05 TdB 10 ζ = 0.2 ζ = 0.4 j2ζ 2ω  jω  1+ +  ωn ω  n -10 -20 ζ = 0.707 ζ = 1.5 -30 -40 ω 0.1ω n s i tes.google.com/site/ncpdhbkhn ωn 10ω n 100ω n 49 Performance Specifications in the Frequency Domain (2) ( M pω = G( jωr ) = 2ζ − 2ζ 5.5 ) −1 , ζ < 0.707 4.5 3.5 M pω 2.5 1.5 0.1 0.2 0.3 0.4 ζ 0.5 0.6 0.7 y( t ) = + Be −ζωn t cos(ω1t + θ ) Resonant magnitudes should be relatively small: Mpω < 1.5, for example s i tes.google.com/site/ncpdhbkhn 50 Frequency Response Methods Introduction Frequency Response Plots Performance Specifications in the Frequency Domain Frequency Response Methods Using Control System Software s i tes.google.com/site/ncpdhbkhn 51 Ex T (s ) = Frequency Response Methods Using Control System Software 500s (s + 5)( s + 10) s i tes.google.com/site/ncpdhbkhn 52 ... ω  1+ = tan φ −  p1   p1   φ 0.1p1 p1 -1 0 10 p1 100 p1 ω -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -9 0 -1 00 s i tes.google.com/site/ncpdhbkhn 15 Frequency Response Plots (10) TdB  jω TdB = 20log10... tes.google.com/site/ncpdhbkhn Frequency Response Methods Introduction Frequency Response Plots Performance Specifications in the Frequency Domain Frequency Response Methods Using Control System Software s... XIII.Digital Control Systems s i tes.google.com/site/ncpdhbkhn Frequency Response Methods Introduction Frequency Response Plots Performance Specifications in the Frequency Domain Frequency Response Methods

Ngày đăng: 13/02/2020, 00:49