1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Lecture Control system design: State variable models - Nguyễn Công Phương

50 53 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 50
Dung lượng 625,35 KB

Nội dung

This chapter presents the following content: The state variables of a dynamic system, the state differential equation, signal – flow graph & block diagram models, alternative signal – flow graph & block diagram models, the transfer function from the state equation,...

Nguyễn Công Phương CONTROL SYSTEM DESIGN State Variable Models Contents I Introduction II Mathematical Models of Systems III State Variable Models IV Feedback Control System Characteristics V The Performance of Feedback Control Systems VI The Stability of Linear Feedback Systems VII The Root Locus Method VIII.Frequency Response Methods IX Stability in the Frequency Domain X The Design of Feedback Control Systems XI The Design of State Variable Feedback Systems XII Robust Control Systems XIII.Digital Control Systems sites.google.com/site/ncpdhbkhn State Variable Models The State Variables of a Dynamic System The State Differential Equation Signal – Flow Graph & Block Diagram Models Alternative Signal – Flow Graph & Block Diagram Models The Transfer Function from the State Equation The Time Response & the State Transition Matrix Analysis of State Variable Models Using Control Design Software sites.google.com/site/ncpdhbkhn The State Variables of a Dynamic System (1) • The state of a system is a set of variables whose values, together with the input signals & the equations describing the dynamics, will provide the future state & output of the system • The state variables describe the present configuration of a system & can be used to determine the future response, given the excitation inputs & the equations describing the dynamics sites.google.com/site/ncpdhbkhn The State Variables of a Dynamic System (2) d y (t ) dy (t ) M  b  ky (t )  u (t ) dt dt dy (t ) x1 (t )  y (t ), x2 (t )  dt Wall friction b  dx1  x2  dx  dt  M  bx2  kx1  u (t )   dt  dx2   b x  k x  u  dt M M M ic  C dvC  u ( t )  iL dt di L L   RiL  vC dt vo  RiL (t ) x1  vC , x2  iL 1  dx1   x  u (t )  dt C C   dx2  x  R x  dt L L  u (t )   v (t )  Rx  o sites.google.com/site/ncpdhbkhn  vC  k Mass M y(t) iL C u(t) L  vo  R iC State Variable Models The State Variables of a Dynamic System The State Differential Equation Signal – Flow Graph & Block Diagram Models Alternative Signal – Flow Graph & Block Diagram Models The Transfer Function from the State Equation The Time Response & the State Transition Matrix Analysis of State Variable Models Using Control Design Software sites.google.com/site/ncpdhbkhn The State Differential Equation (1)  x1  a11 x1  a12 x2   a1n xn  b11u1   b1m um  x  a x  a x   a x  b u   b u  21 22 2n n 21 2m m    xn  an1 x1  an x2   ann xn  bn1u1   bnm um  x1   a11 a12    d  x2   a21 a22         dt     xn   an1 an  a1n   x1   b11  b1m   u2      a n x2                      bn1  bnm   um   ann   xn   x  Ax  Bu y  Cx  Du x (t )  exp( At )x (0)  t t 0  exp[A(t   )Bu(r)d  Φ(t )x(0)   Φ(t   )Bu( )d X ( s )  [ sI  A ]1 x (0)[ sI  A ]1 BU( s ) sites.google.com/site/ncpdhbkhn The State Differential Equation (2) 1  dx1   x  u (t )  dt C C   dx2  x  R x  dt L L    v (t )  Rx  o 1   1  0 C  x    x   C  u (t )    1  R 0   L  L   y   R  x sites.google.com/site/ncpdhbkhn u (t )  vC  iL C L  vo  R iC The State Differential Equation (3) q k1 k2 M 1a1  u  f spring  f damp  M  p  u  k1 ( p  q )  b1 ( p  q ) M2 b2 p u M1 b1  M  p  b1 p  k1 p  u  k1q  b1q M q  k1 ( p  q)  b1 ( p  q )  k2 q  b2 q  M q  ( k1  k2 ) q  (b1  b2 ) q  k1 p  b1 p  x3  x1  p   x4  x2  q b1 k1 k1 b1    x  p   p  p  u  q  q  M1 M1 M1 M1 M1    x4  q   k1  k2 q  b1  b2 q  k1 p  b1 p  M2 M2 M2 M2  x1  p ,   x2  q sites.google.com/site/ncpdhbkhn The State Differential Equation (4) b1 k1 k1 b1    x  p   p  p  u  q  q  M1 M1 M1 M1 M1    x4  q   k1  k2 q  b1  b2 q  k1 p  b1 p  M2 M2 M2 M2  x1  p ,   x2  q  x3  x1  p   x4  x2  q k1 k1 b1 b1  x   x  x  x  x  u  M1 M1 M1 M1 M1    x  k1 x  k1  k2 x  b1 x  b1  b2 x  M M2 M2 M2 sites.google.com/site/ncpdhbkhn 10 Ex Alternative Signal – Flow Graph & Block Diagram Models (2) R( s) s 1 s5 Field voltage Controller T ( s)  1/ s 1/ s Y ( s) 10 2 1/ s 30 X3 Y ( s) X1 20 20 X2 Velocity Y ( s) 30( s  1) 20 10 30     R ( s ) ( s  5)( s  2)( s  3) s  s  s  X1 5 I ( s) s3 Motor & load ( ) s R( s) U ( s) s2 Field current R( s) Diagonal canonical form 3 sites.google.com/site/ncpdhbkhn ( ) s ( ) X2 10 ( ) Y ( s) ( ) s X3 30 36 Ex Alternative Signal – Flow Graph & Block Diagram Models (3)   x1  5 x1  r (t )     x2   x2  r ( t )    x3  3x3  r (t )  y (t )  20 x  10 x  30 x  R( s) s 1 s5 Field voltage Controller   5 0  1    x  1 r (t ) x          0 3 1   y (t )   20 10 30 x  U ( s) s2 Field current I ( s) s3 X1 20 Diagonal canonical form sites.google.com/site/ncpdhbkhn Y ( s) Motor & load ( ) s R( s) Velocity ( ) s ( ) X2 10 ( ) Y ( s) ( ) s X3 30 37 Alternative Signal – Flow Graph & Block Diagram Models (4) Ex x1   x1   x2  u1 (t ) x2   x1   x2  u2 (t ) x3   x1   x2  x1    d    x2      dt  x3       0  x1  1 0  u1 (t )       x2       u2 (t )  0  x3   0  ( ) U1 U1 1/ s   U2 1/ s  X2 X1    s ( ) X1  1/ s  s X3  U2 sites.google.com/site/ncpdhbkhn ( ) s  X2 X3  38 Ex Alternative Signal – Flow Graph & Block Diagram Models (5) My  ml  u (t )  my m mly  ml 2  mgl   mg l ( x1 , x2 , x3 , x4 )  ( y , y ,  , )  Mx2  mlx4  u (t )    x2  lx4  gx3  M u (t ) y (t )  x1  x2   x1  0 mg  x2   x3  u (t )    d  x2    M M    dt  x3  0  x3  x4     x4   g  u (t )  x4  x3  l Ml  0  mg / M 0 g /l sites.google.com/site/ncpdhbkhn 0  x1    0  x2   1/ M      u   x3        0  x4   1/( Ml )  39 State Variable Models The State Variables of a Dynamic System The State Differential Equation Signal – Flow Graph & Block Diagram Models Alternative Signal – Flow Graph & Block Diagram Models The Transfer Function from the State Equation The Time Response & the State Transition Matrix Analysis of State Variable Models Using Control Design Software sites.google.com/site/ncpdhbkhn 40 The Transfer Function from the State Equation (1)  x  Ax  Bu   y  Cx  Du  sX ( s )  AX ( s )  BU ( s )  Y ( s )  CX ( s )  DU ( s )  ( sI  A ) X ( s )  BU ( s )  X ( s )  [ sI  A ]1 BU ( s )  Φ( s )BU ( s )  Y ( s )  [CΦ( s )B  D]U ( s ) Y ( s)  G( s)   CΦ( s )B  D U ( s) sites.google.com/site/ncpdhbkhn 41 Ex The Transfer Function from the State Equation (2) 1    1  0 C   x    x   C  u  Ax  Bu     R  0    L L    y   R  x  Cx   s 0  [ sI  A ]     0 s    L u (t )  vC  iL L C  vo  R iC 1    s   C C     R   1 R s   L  L L  R  s    L 1    Φ( s )  [ sI  A ]  R  s2  s  L LC  L sites.google.com/site/ncpdhbkhn 1  R  s     C L    ( s)  s   L  1  C   s   42 Ex The Transfer Function from the State Equation (3) 1    1  0 C   x    x   C  u  Ax  Bu     R  0    L L    y   R  x  Cx R  s     L  Φ( s )  ( s)   L 1  C   s   u (t )  vC  R  s   L  ( s )  G ( s)  0 R     L ( s )   Y ( s) G( s)   CΦ( s )B  D U ( s) sites.google.com/site/ncpdhbkhn iL C L  vo  R iC  1    C  ( s )   C     s 0  ( s )  R /( LC ) R s  s L LC 43 State Variable Models The State Variables of a Dynamic System The State Differential Equation Signal – Flow Graph & Block Diagram Models Alternative Signal – Flow Graph & Block Diagram Models The Transfer Function from the State Equation The Time Response & the State Transition Matrix Analysis of State Variable Models Using Control Design Software sites.google.com/site/ncpdhbkhn 44 The Time Response & the State Transition Matrix (1) x (t )  exp( At )x (0)  t  exp[A(t   )Bu( r)d  Φ(t )x (0)  t  Φ(t   )Bu( )d Φ(t): the state transition matrix sites.google.com/site/ncpdhbkhn 45 Ex The Time Response & the State Transition Matrix (2) 1    1  0 C   x    x   C  u  Ax  Bu     R  0    L L    y   R  x  Cx u (t )  vC  iL C L  vo  R iC  2  2 R  3, L  1, C  0.5  A   , B    , C  1 0   3  0  s  3 2  1   s  3   Φ( s )  [ sI  A ]     ( s)   s s s  3s     1 (2e  t  e 2t ) ( 2e  t  2e 2t )   Φ(t )    t 2 t t 2 t  ( e  e ) (  e  2e )  sites.google.com/site/ncpdhbkhn 46 Ex The Time Response & the State Transition Matrix (3) 1    1  0 C   x    x   C  u  Ax  Bu     R  0    L L    y   R  x  Cx u (t )  vC  iL C L  vo  R iC (2e  t  e 2t ) ( 2e  t  2e 2t )  Φ(t )    t 2 t t 2 t  ( e  e ) (  e  2e )  x (t )  Φ(t )x (0)  t  Φ(t   )Bu( )d 2 t  x1 (t )  1  e  x1 (0)  x2 (0)  1, u (t )     Φ(t )        t 1  e   x2 ( t )  sites.google.com/site/ncpdhbkhn 47 The Time Response & the State Transition Matrix (3) Ex u (t ) 1 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.6 0.5 x2(t) x1(t) x1(t)  x1 (t )  1  e   x (t )   Φ(t ) 1   2t     e    0.5 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.5 t 1.5 0 0.5 t 1.5 sites.google.com/site/ncpdhbkhn L C  vo  R iC 0.5 0.4 iL  vC  2 t 0 0.2 0.4 0.6 0.8 x1(t) 48 State Variable Models The State Variables of a Dynamic System The State Differential Equation Signal – Flow Graph & Block Diagram Models Alternative Signal – Flow Graph & Block Diagram Models The Transfer Function from the State Equation The Time Response & the State Transition Matrix Analysis of State Variable Models Using Control Design Software sites.google.com/site/ncpdhbkhn 49 Ex Analysis of State Variable Models Using Control Design Software Y ( s) 3s  s  T ( s)   R ( s ) s  10 s  21s  sites.google.com/site/ncpdhbkhn 50 ... Feedback Control Systems XI The Design of State Variable Feedback Systems XII Robust Control Systems XIII.Digital Control Systems sites.google.com/site/ncpdhbkhn State Variable Models The State Variables... Mathematical Models of Systems III State Variable Models IV Feedback Control System Characteristics V The Performance of Feedback Control Systems VI The Stability of Linear Feedback Systems VII... & the State Transition Matrix Analysis of State Variable Models Using Control Design Software sites.google.com/site/ncpdhbkhn The State Variables of a Dynamic System (1) • The state of a system

Ngày đăng: 12/02/2020, 16:05

TỪ KHÓA LIÊN QUAN