THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 66 |
Dung lượng | 718,25 KB |
File đính kèm | 123.rar (8 MB) |
Nội dung
Ngày đăng: 04/02/2020, 09:55
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết |
---|---|---|
[1] Aliprantis, Ch.D., Border, K.C.: Infinite Dimensional Analysis. A Hitchhiker’s Guide (3rd Edition). Springer, Berlin (2005) | Khác | |
[2] Bot, R.I.: Conjugate Duality in Convex Optimization. Springer, Berlin (2010) [3] Bot, R.I., Grad, S.M., Wanka, G.: Duality in Vector Optimization, Springer, Berlin,Germany (2009) | Khác | |
[4] Bot, R.I., Grad, S.M., Wanka, G.: New regularity conditions for strong and total Fenchel-Lagrange duality in infinite dimensional spaces. Nonlinear Anal. 69, 323- 336 (2008) | Khác | |
[5] Craven, B.D.: Mathematical Programming and Control Theory. Chapman and Hall, London (1978) | Khác | |
[6] Dinh, N., Goberna, M.A., Long, D.H., Lopez, M.A.: Non-abstract vector Farkas lemmas via conjugate mappings and applications | Khác | |
[7] Dinh, N., Goberna, M.A., Lopez, M.A., Mo, T.H.: Farkas-type results for vector- valued functions with applications. J. Optim. Theory Appl. 173, 357-390 (2017) [8] Dinh, N., Goberna, M.A., Lopez, M.A., Mo, T.H.: From the Farkas lemma to theHahn-Banach theorem. SIAM J. Optim. 24, 678-701 (2014) | Khác | |
[9] Dinh, N., Goberna, M.A., Lopez, M.A., Voile, M.: Convex inequalities without qualification nor closedness condition, and their applications in optimization. Set- Valued Anal. 18, 423-445 (2010) | Khác | |
[10] Dinh, N., Jeyakumar, V.: Farkas’ lemma: Three decades of generalizations for mathematical optimization. Top 22, 1-22 (2014) | Khác | |
[11] Dinh, N., Jeyakumar, V., G.M. Lee, V.: Sequential Lagrangian conditions for convex programs and applications to semi-definite programming. J Op- tim. Theor.Appl. 125, 85-112 (2005) | Khác | |
[12] Dinh, N., Mo, T.H.: Qualification conditions and Farkas-type results for systems involving composite functions. Vietnam J. Math. 40, 407-437 (2012) | Khác | |
[13] Dinh, N., Nguyen, V.H., Strodiot, J.-J.: Duality and optimality conditions for generalized equilibrium problems involving DC functions. J. Glob. Op- tim. 48, 183-208 (2010) | Khác | |
[16] Jacinto, F.M.O., Scheimberg, s.: Duality for generalized equilibrium problems. Optimization 57, 795-805 (2008) | Khác | |
[17] Jahn, J.: Vector Optimization, Theory, Applications and Extensions. Springer, Berlin (2004) | Khác | |
[18] Khan, A., Tammer, Ch., Zalinescu, c.: Set-Valued Optimization: An Introduction with Applications. Springer, Heidelberg (2015) | Khác | |
[19] Lee, G.M., Kim, G.S., Dinh, N.: Optimality conditions for approximate solutions of convex semi-infinite vector optimization problems. In: Recent Developments in Vector Optimization. Springer, Berlin (2012) | Khác | |
[20] Li,G., Ng, K.F.: On extension of Fenchel duality and its application. SIAM J | Khác | |
[21] Lõhne, A.: Vector Optimization with Infimum and Supremum. Springer, Heidelberg (2011) | Khác | |
[22] Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, Inc (1985) | Khác | |
[23] Tanino, T.: Conjugate duality in vector optimization. J. Math. Anal. Appl. 167, 84-97 (1992) | Khác | |
[24] Zalinescu, c.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002) | Khác |
TỪ KHÓA LIÊN QUAN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN