1. Trang chủ
  2. » Giáo án - Bài giảng

Sơ đồ các bước khảo sát sự biến thiên và vẽ đồ thị hs

5 745 4
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 304 KB

Nội dung

ĐỒ CÁC BƯỚC KHẢO SÁT SỰ BIẾN THIÊN VẼ ĐỒ THỊ CỦA HÀM SỐ 1. Hàm bậc ba : y = ax 3 + bx 2 + cx + d (a ≠ 0) a. TXĐ : D = R b. Sự biến thiên : +. Chiều biến thiên: Đạo hàm y’ = A x 2 + Bx + C ( Tính ∆ ) , Sau đây là các khả năng có thể xẩy ra : TH1:    < <∆ 0A 0 ⇒ y’ < 0 với mọi x ∈ R ⇒ HS nghòch biến trên R (1) TH2:    > <∆ 0A 0 ⇒ y’ > 0 với mọi x ∈ R ⇒ HS đồng biến trên R (2) TH3:    < =∆ 0A 0 ⇒ y’ ≤ 0 với mọi x ∈ R ⇒ HS nghòch biến trên R (3) TH4:    > =∆ 0A 0 ⇒ y’ ≥ 0 với mọi x ∈ R ⇒ HS đồng biến trên R (4) TH5, 6: ∆ > 0 . Cho y’= 0 ⇔    =⇒= =⇒= )x(fyxx )x(fyxx 22 11 (5) (6) Căn cứ vào BBT để kết luận các khoảng mà hàm số tăng hoặc giảm +. Cực trò : * Các TH1, TH2, TH3, TH4 : Kết luận không có cực trò * TH5: Hàm số đạt cực đại tại x = x 1 y CĐ = f(x 1 ) Hàm số đạt cực tiểu tại x = x 2 y CT = f(x 2 ) * TH6: Hàm số đạt cực tiểu tại x = x 1 y CT = f(x 1 ) Hàm số đạt cực đại tại x = x 2 y CĐ = f(x 2 ) +. Giới hạn: a > 0 : = ∞−→ Limy x -∞ , = ∞+→ Limy x + ∞ ; a < 0 : = ∞−→ Limy x +∞ , = ∞+→ Limy x - ∞ +. Bảng biến thiên : (Ứng với các trường hợp đạo hàm phía trên ) c. Đồ thò : +. Điểm đặc biệt : Tìm gđ của đồ thò (C) với Ox Oy; điểm CT ; lấy thêm vài điểm khác +. Vẽ đồ thò : Gồm các bước : Vẽ hệ tục ; Lấy điểm đặc biệt ; Vẽ đồ thò . (Các dạng đồ thò ) )x(f 1 ∞+ ∞− CT CĐ )x(f 2 ∞− ∞+ CĐ CT )x(f 1 )x(f 2 _ ∞+ ∞− + ∞+ ∞− x 'y y )1( ∞+ ∞− − ∞+ ∞− x 'y y )2( A2 B − ∞+ ∞− + ∞+ ∞− x 'y y )3( + 0 A2 B − _ ∞+ ∞− ∞+ ∞− x 'y y )4( 0 −− ∞+ ∞− + x 'y y )5( + 0 0 − 1 x 2 x ∞+ ∞− + x 'y y )6( + 0 0 − 1 x 2 x )1( )2( )3( )4( )5( )6( 2. Hàm trùng phương : y = ax 4 + bx 2 + c (a ≠ 0 ) a. TXĐ : D = R b. Sự biến thiên: +. Chiều biến thiên: Đạo hàm y’ = 4ax 3 + 2bx = x (4ax 2 + 2b). Có thể xẩy ra 1 trong 4 trường hợp sau: TH1: Nếu a < 0 b < 0 thì y’= 0 ⇔ x = 0 ⇒ y = f(0) . Xem BBT để kết luận khoảng tăng , giảm (1) TH2: Nếu a > 0 b > 0 thì y’= 0 ⇔ x = 0 ⇒ y = f(0) . Xem BBT để kết luận khoảng tăng , giảm (2) TH3: Nếu a < 0 b > 0 thì y’= 0 ⇔      =⇒= =⇒= =⇒= )x(fyxx )0(fy0x )x(fyxx 22 11 . Xem BBT để kết luận khoảng tăng , giảm (3) TH4: Nếu a > 0 b < 0 thì y’= 0 ⇔      =⇒= =⇒= =⇒= )x(fyxx )0(fy0x )x(fyxx 22 11 . Xem BBT để kết luận khoảng tăng , giảm (4) +. Cực trò : TH 1: Hàm số đạt cực đại tại x = 0 y CĐ = f(0) TH 2: Hàm số đạt cực tiểu tại x = 0 y CT = f(0) TH 3: Xem BBT để kết luận TH 4: Xem BBT để kết luận +. Giới hạn: a> 0 : = ∞−→ Limy x +∞ = ∞+→ Limy x + ∞ ; a< 0 : = ∞−→ Limy x -∞ = ∞+→ Limy x - ∞ +. Bảng biến thiên : c. Đồ thò : * Điểm đặc biệt : Tương tự như HS bậc ba * Vẽ đồ thò : Thứ tự các bước vẽ như HS bậc ba. Các dạng đồ thò của hàm trùng phương ứng với các trường hợp như sau : y’ x y ∞+ + 0 ∞− 0 _ ∞− ∞− CĐ f(0 ) (1) y’ x y ∞+ + 0 ∞− 0 _ ∞+ ∞+ CT f(0) (2) y’ x y ∞+ + ∞− 0 _ ∞− ∞− (3) x 1 0 0 0 x 2 + _ CT f(0) 0 y’ x y ∞+ + 0 _ ∞+ ∞+ CĐ f(0) (4) x 1 0 0 0 x 2 + _ 0 ∞− )x(f CD 1 )x(f CD 2 )x(f CT 1 )x(f CT 2 )1( )2( )3( )4( c a ∞− ∞+ _ ∞+ ∞− + x 'y y )1( + ∞− ∞+ _ ∞+ ∞− x 'y y )2( − − c a c a c a c d − c d − 3. Hàm nhất biến : y = dcx bax + + ( c ≠ 0 ; ad –bc ≠ 0 ) a. TXĐ : D = R \       − c d b. Sự biến thiên: +. Chiều biến thiên: Đạo hàm : y’ = 2 )dcx( bcad + − . Có thể xẩy ra 1 trong 2 trường hợp sau : TH1: ad - bc > 0 ⇒ y’> 0 với mọi x∈D⇒ HS tăng trên 2 khoảng: (-∞, c d − );( c d − ,+∞ ) (1) TH2: ad - bc < 0 ⇒ y’< 0 với mọi x∈D⇒ HS giảm trên 2 khoảng: (-∞, c d − );( c d − ,+∞ ) (2) +. Cực trò: Không có +. Tiệm cận : ( có TCĐ TCN ) * y’ > 0 : +∞= −       −→ ylim c d x −∞= +       −→ ylim c d x ⇒ đường thẳng x = c d − là TCĐ y’ < 0 : −∞= −       −→ ylim c d x va +∞= +       −→ ylim c d x ⇒ đường thẳng x = c d − là TCĐ * c a ylim x = ±∞→ ⇒ đường thẳng y = c a là TCN +. Bảng biến thiên : c. Đồ thò : * Điểm đặc biệt : Tìm giao điểm của đồ thò với các trục toạ độ ; Lấy thêm vài điểm khác * Vẽ đồ thò : Gồm các bước : Vẽ hệ trục ; vẽ hai đường tiệm cận ; lấy điểm đặc biệt , từ đó vẽ đồ thò. Các dạng đồ thò ứng với 2 trường hợp trên như sau: Đôi điều tâm sự: Tại sao học sinh đi thi TN lại không được điểm 2, đi thi ĐH lại bò điểm không 0, thật đơn giản là không nắm vững bài toán khảo sát hàm số . Đây là bài toán luôn có trong cácthi nhưng nhiều học sinh vẫn không nắm được. Qua kinh nghiệm giảng dạy mình đã lập đồ này cho học sinh photo, đặc biệt là học sinh yếu thì đều làm ro ro hết. Bây giờ mình xin chia xẻ cùng đồng nghiệp nhé. Nếu thấy hiệu nghiệm, xin một lời cảm ơn vào đòa chỉ : hoangsen95@gmail.com (1) (2) TCĐ TCN TCĐ TCN . SƠ ĐỒ CÁC BƯỚC KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ 1. Hàm bậc ba : y = ax 3 + bx 2 + cx + d (a ≠ 0) a. TXĐ : D = R b. Sự biến thiên :. Bảng biến thiên : c. Đồ thò : * Điểm đặc biệt : Tìm giao điểm của đồ thò với các trục toạ độ ; Lấy thêm vài điểm khác * Vẽ đồ thò : Gồm các bước : Vẽ hệ

Ngày đăng: 19/09/2013, 04:10

HÌNH ẢNH LIÊN QUAN

+. Bảng biến thiên: (Ứng với các trường hợp đạo hàm phía trên ) - Sơ đồ các bước khảo sát sự biến thiên và vẽ đồ thị hs
Bảng bi ến thiên: (Ứng với các trường hợp đạo hàm phía trên ) (Trang 1)
+. Bảng biến thiên: - Sơ đồ các bước khảo sát sự biến thiên và vẽ đồ thị hs
Bảng bi ến thiên: (Trang 2)

TỪ KHÓA LIÊN QUAN

w