1. Trang chủ
  2. » Giáo án - Bài giảng

Chuyên đề HHKG Luyện thi TN+ĐH

7 441 2
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 156 KB

Nội dung

Tài liệu ôn thi TN + ĐH CHƯƠNG I: KHỐI ĐA DIỆN Bài 1: Khái niệm về khối đa diện • Vấn đề 1 : Chứng minh một số tính chất liên quan đến các đỉnh, các cạnh, các mặt của khối đa diện.  PP Giải : Sử dụng TC a và b trong đònh nghóa hình đa diện. 1) CMR một khối đa diện bất kì luôn có ít nhất 4 mặt. 2) CMR Không tồn tại một hình đa diện có a) Số mặt lớn hơn hoặc bằng số cạnh. b) Số đỉnh lớn hơn hoặc bằng số cạnh 3) Cho (H) là đa diện mà các mặt của nó là những đa giác có p cạnh. CMR nếu số mặt của (H) là lẻ thì p phải là số chẵn. 4) CMR với mỗi số nguyên k>=3 luôn tồn tại một hình đa diện có 2k cạnh 5) CMR với mỗi số nguyên k>=4 luôn tồn tại một hình đa diện có 2k+1 cạnh 6) CMR mỗi hình đa diện có ít nhất 4 đỉnh • Vấn đề 2 : Chứng minh hai đa diện bằng nhau  PP giải : Chỉ ra một phép dời hình cụ thể đã được xác đònh biến đa diện này thành đa diện kia. 1) Cho lăng trụ ABCDEF. A ’ B ’ C ’ D ’ E ’ F ’ có đáy là những lục giác đều. Gọi I là trung điểm của đọan thẳng nối hai tâm của đáy. Gọi ( α ) là mặt phẳng đi qua I và cắt tất cả tất cả các cạnh bên của hình lăng trụ. CMR ( α ) chia lăng trụ thành hai đa diện bằng nhau. 2) Cho hình hộp ABCD. A ’ B ’ C ’ D ’ . CMR hai tứ diện A ’ ABD và CC ’ D ’ B ’ bằng nhau. 3) Cho lăng trụ ABC. A ’ B ’ C ’ . Gọi E, F, G lần lượt là trung điểm của AA ’ , BB ’ , CC ’ . CMR các lăng trụ ABC.EFG và EFG.A ’ B ’ C ’ bằng nhau. • Vấn đề 3 : Phân chia hoặc lắp nghép các khối đa diện 0) Cho hình chóp tứ giác F.ABCD có đáy là hình vuông. Cậnh bên FC vuông góc với đáy và có độ dài bằng AB. CMR có thể dùng ba hình chóp bằng hình chóp trên để nghép lại thành mpột hình lập phương 1) Chia hình chóp tứ giác đều thành tám hình chóp bằng nhau. 2) Chia một khối tứ diện thành bốn khối tứ diện bằng nhau. - 1 – Giáo viên: Đỗ Tất Thắng Trường THPT Ngô Quyền Tài liệu ôn thi TN + ĐH Bài 2: Khối đa diện lồi và khối đa diện đều • Vấn đề 1 : Chứng minh một số tính chất của khối đa diện đều  PP Giải : Sử dụng đònh nghóa khối đa diện đều 1) Cho bát diện đều ABCDEF . CMR a) Các điểm A, B, C, D cùng thuộc một mặt phẳng; Các điểm E,C,F,A cùng thuộc một mặt phẳng và các điểm E,D,F,B cùng thuộc một mặt phẳng. b) CMR 3 mặt phẳng (ABCD), (ECFA) và (EDFB) đôi một vuông góc với nhau. 2) Tính số cạnh của hình 12 mặt đều (loại {5;3}) 3) Tính số cạnh của hình 20 mặt đều (loại {3;5}) 4) Cho một khối bát diện đều. Hãy chỉ ra một mặt phẳng đối xứng, một tâm đối xứng và một trục đối xứng của nó. 5) Cho khối bát diện đều như hvẽ. O là giao điểm của AC và BD. Gọi M,N lần lït là trung điểm của AB và AE. Tính diện tích thiết diện tạo bởi khối bát diện đó với mp (OMN) • Vấn đề 2 : Xác đònh một khối đa diện đều  PP Giải : Sử dụng đònh nghóa khối đa diện đều 1) CMR tâm các mặt của một hình bát diện đều là các đỉnh của hình lập phương. 2) Cho khối bát diện đều ABCDEF cạnh bằng a, trong đó E,F là hai đỉnh không cùng nằm trên một cạnh (như hvẽ). Gọi A’,B’,C’,D’,A ” ,B ” ,C ” ,D ” lần lượt là trung điểm các cạnh EA, EB, EC,ED,FA,FB,FC,FD. CMR: A’B’C’D’A ” B ” C ” D ” là một hình hộp chữ nhật và tính ba kích thước của hình hộp chữ nhật đó theo a. - 2 – Giáo viên: Đỗ Tất Thắng Trường THPT Ngô Quyền Tài liệu ôn thi TN + ĐH Bài 3: Khái niệm về thể tích của khối đa diện • Nhắc lại : - Thể tích của hình chóp có diện tích đáy là B, chiều cao h: 1 3 V Bh = - Thể tích của hình chóp vuông có 3 cạnh bên lần lượt là a,b,c: 1 . . 6 V a b c = - Thể tích của khối lăng trụ có diện tích đáy B, chiều cao h: V Bh = - Thể tích của khối hộp chữ nhật có 3 dạng a,b,c: . .V a b c = - Tỉ số thể tích của 2 khối đa diện đồng dạng bằng lập phương tỉ số đồng dạng. - Cho khối chóp S.ABC. Trên các đọan thẳng SA,SB,SC lần lượt lấy 3 điểm A ’ , B ’ , C ’ khác với S. Khi đó ' ' ' ' ' ' . . S A B C S ABC V SA SB SC V SA SB SC = • Vấn đề 1 : Tính thể tích của một khối đa diện  PP Giải : - Chia khối đa diện đã cho thành các khối lăng trụ hoặc các hình chóp đơn giản hơn. -Ghép thêm vào khối đa diện đã cho các khôi đa diện quen biết để được một khối đa diện khác đơn giản hơn - Tìm tỉ số thể tích giữa khối đa diện đã cho với một khối đa diện đã biết thể tích. 1) Cho hình hộp chữ nhật ABCD. A ’ B ’ C ’ D ’ có AB=a; BC=b; AA ’ =c. Gọi E và F lần lượt là trung điểm của B ’ C ’ và C ’ D’. Mp (AEF) chia khối hộp đó ra làm hai khối đa diện (H) và (H’), trong đó (H) là khối đa diện chứa đỉnh A ’ . Tìm thể tích của (H) và (H ’ ) 2) Cho hình chóp tam giác đều S.ABCD có đáy là tam giác đều cạnh bằng a, các cạnh bên tạo với đáy một góc 60 o . Hãy tính thể tích của khối chóp đó. 3) Cho khối chóp S.ABC có đáy là tam giác cân. AB=AC=5a,BC=6a và các mặt bên tạo với đáy một góc 60 o . Hãy tính thể tích của khối chóp đó. • Vấn đề 2 : Dùng cách tính thể tích để giải một số bài tóan hình học  PP Giải : - Tính các đại lượng hình học của khối đa diện theo thể tích của khối đa diện ấy. - Dùng hai cách để tính thể tích của cùng một khối đa diện rồi so sánh chúng với nhau để rút ra đại lượng hình học cần tìm. - 3 – Giáo viên: Đỗ Tất Thắng Trường THPT Ngô Quyền Tài liệu ôn thi TN + ĐH 1) Cho tứ diện ABCD , M là một điểm trong tứ diện đó. Gọi h A ,h B ,h C ,h D lần lượt là khỏang cách từ A,B,C,D đến các mp đối diện và m A ,m B ,m C ,m D lần lượt là khỏang cách từ M đến (BCD); (CDA); (DAB);(ABC). CMR: 1 C A B D A B C D m m m m h h h h + + + = 2) Cho hình hộp chữ nhật ABCD. A ’ B ’ C ’ D ’ có AB=a, BC=2a, AA ’ =a. Lấy điểm M trên cạnh AD sao cho AM=3MD. a) Tính thể tích khối chóp M.AB’C. b) Tính khỏang cách từ M đến mp (AB ’ C) 3) Cho hình chóp tam giác S.ABC có đáy là tam giác vuông ở B. Cạnh SA vuông góc với đáy. Biết rằng AB=a; SA=b. Hãy tính khỏang cách từ A đến Mp (SBC). 4) CMR tổng các khỏang cách từ một điểm trong bất kì của một tứ diện đều đến các mặt của có là một số không đổi. • Vấn đề 3 : Tìm tỉ số thể tích của hai khối đa diện  PP Giải : -Tính thể tích của từng khối đa diện. -Sử dụng bài toán. Cho khối chóp S.ABC. Trên các đọan thẳng SA,SB,SC lần lượt lấy 3 điểm A ’ , B ’ , C ’ khác với S. Khi đó ' ' ' ' ' ' . . S A B C S ABC V SA SB SC V SA SB SC = 1) Cho hình chóp tứ giác đều S.ABCD. Mp (P) qua A và vuông góc với SC cắt SB,SC,SD lần lượt tại B ’ , C ’ , D ’ . Biết AB=a; ' 2 3 SB SB = a) Tính tỉ số thể tích hai khối chóp S.AB ’ C ’ D ’ và S.ABCD. b) Tính thể tích của khối chóp S.AB ’ C ’ D ’ . 2) Cho hình hộp chữ nhật ABCD. A ’ B ’ C ’ D ’ có AB=a, BC=b, AA ’ =c. Gọi E và F lần lượt là những điểm thuộc các cạnh BB’ và DD’ sao cho ' ' 1 1 , 2 2 BE EB DF FD = = . Mp(AEF) chia khối hình hộp chữ nhật ABCD. A ’ B ’ C ’ D ’ thành hai khối đa diện (H) và (H ’ ). Gọi (H ’ ) là khối đa diện chứa đỉnh A ’ , Hãy tính thể tích của (H) và tỉ số thể tích của (H) và (H ’ ). 3) Cho hình chóp tam giác S.ABC có đáy là tam giác vuông ở B. Cạnh SA vuông góc với đáy. Từ A kẻ các đọan thẳng AD vuông góc với SB và AE vuông góc với SC. Biết rằng AB=a, BC=b, SA=c. a) Hãy tính thể tích khôi chóp S.ADE. b) Tính khỏang cách từ E đến mp (SAB). 4) Cho hình hộp chữ nhật ABCD. A ’ B ’ C ’ D ’ có AB=a, BC=b, AA ’ =c. Gọi M và N theo thứ tự là trung điểm A ’ B’ và B ’ C ’ . Tính tỉ số giữa thể tích khối chóp D ’ .DMN và thể tích khối hộp chữ nhật ABCD. A ’ B ’ C ’ D ’ . 5) Cho hình hộp ABCD. A ’ B ’ C ’ D ’ . Gọi E và F lần lượt là trung điểm của B ’ C ’ và C ’ D ’ . MP (AEF) chia hình hộp đó thành hai hình đa diện (H) và (H ’ ) Trong đó (H ’ ) là khối đa diện chứa đỉnh A ’ . Tính tỉ số thể tích của (H) và (H ’ ). - 4 – Giáo viên: Đỗ Tất Thắng Trường THPT Ngô Quyền Tài liệu ôn thi TN + ĐH - 5 – Giáo viên: Đỗ Tất Thắng Trường THPT Ngô Quyền Tài liệu ôn thi TN + ĐH BÀI TẬP ÔN TẬP CHƯƠNG 1) Hình được tạo thành từ hình lập phương ABCD. A ’ B ’ C ’ D ’ khi ta bỏ đi các điểm trong mặt phẳng (ABCD) có phải là một hình đa diện không ? 2) CMR mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất ba cạnh. 3) CMR mỗi hình đa diện có ít nhất 6 cạnh. 4) CMR không tồn tại hình đa diện có 7 cạnh. 5) Cho 2 đọan thẳng AB và CD chéo nhau, AC là đường vuông góc chung của chúng. Biết rằng AC=h, AB=a,CD=b và góc giữ hai đường thẳng AB và CD bằng 60 o . Tính thể tích của tứ diện ABCD. 6) Tính thể tích khối lăng trụ có chiều cao bằng h, đáy là ngũ giác đều nội tiếp trong một đường tròn bán kính r. 7) Cho tứ diện đều ABCD. Gọi (H) là hình bát diện đều có các đỉnh là trung điểm các cạnh của tứ diện đều đó. Tính tỉ số ( )H ABCD V V 8) Cho lăng trụ đứng ABC. A ’ B ’ C ’ có đáy là tam giác đều cạnh bằng a. Gọi M, N và E theo thứ tự là trung điểm của BC,CC ’ , và C ’ A ’ . Đường thẳng EN cắt đường thẳng EC tại F, đường thẳng MN cắt đường thẳng B ’ C ’ tại L. Đường thẳng FM kéo dài cắt AB tại I, đường thẳng LE kéo dài cắt A ’ B ’ tại J. a) CMR các hình đa diện IBM.JB ’ L và A ’ EJ.AFI là những hình chóp cụt. b) Tính thể tích hình chóp F.AIJA ’ c) CMR Mp (MNE) chia khối lăng trụ đã cho thành hai khối đa diện có thể tích bằng nhau. 9) Cho lăng trụ ABC.A’B’C’ có độ dài cạnh bên bằng 2a, đáy ABC là tam giác vng tại A, AB = a, AC = 3a và hình chiếu vng góc của đỉnh A’ trên mặt phẳng (ABC) là trung điểm của cạnh BC. Tính theo a thể tích khối chóp A’. ABC và tính cosin của góc giữa hai đường thẳng AA’, B’C’. (Đề Thi Tuyển Sinh Đại Học Khối A Năm 2008) 10) Cho hình chóp S.ABCD có đáy ABCD là hình vng cạnh 2a, SA=a, SB = 3a và mặt phẳng (SAB) vng góc với mặt phẳng đáy. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Tính theo a thể tích của khối chóp S.BMDN và tính cosin của góc giữa hai đường thẳng SM, DN. (Đề Thi Tuyển Sinh Đại Học Khối B Năm 2008) 11) Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vng, AB = BC = a, cạnh bên AA' = 2a . Gọi M là trung điểm của cạnh BC. Tính theo a thể tích của khối lăng trụ ABC.A'B'C' và khoảng cách giữa hai đường thẳng AM, B'C. (Đề Thi Tuyển Sinh Đại Học Khối D Năm 2008) 12) Cho hình chóp S.ABCD có đáy là hình vng cạnh a, mặt bên SAD là tam giác đều và nằm trong mặt phẳng vng góc với đáy. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, BC, CD. Chứng minh AM vng góc với BP và tính thể tích của khối tứ diện CMNP. (Đề Thi Tuyển Sinh Đại Học Khối A Năm 2007) 13) Cho hình chóp tứ giác đều S.ABCD có đáy là hình vng cạnh a. Gọi E là điểm đối xứng của D qua trung điểm của SA, M là trung điểm của AE, N là trung điểm của BC. Chứng minh MN vng góc với BD và tính (theo a) khoảng cách giữa hai đường thẳng MN và AC. (Đề Thi Tuyển Sinh Đại Học Khối B Năm 2007)) - 6 – Giáo viên: Đỗ Tất Thắng Trường THPT Ngô Quyền Tài liệu ôn thi TN + ĐH 14) Cho hình chóp S.ABCD có đáy là hình thang, · · ABC = BAD = 90 , có BA = BC = a, AD = 2a. Cạnh bên SA vng góc với đáy và SA = 2a . Gọi H là hình chiếu vng góc của A trên SB. Chứng minh tam giác SCD vng và tính (theo a) khoảng cách từ H đến mặt phẳng (SCD) (Đề Thi Tuyển Sinh Đại Học Khối D Năm 2007)) 15) . Cho hình trụ có các đáy là hai hình tròn tâm O và O' , bán kính đáy bằng chiều cao và bằng a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy tâm O' lấy điểm B sao cho AB 2a. = Tính thể tích của khối tứ diện OO'AB. (Đề Thi Tuyển Sinh Đại Học Khối A Năm 2006)) 16) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a , SA= a và SA vng góc với mặt phẳng (ABCD). Gọi M và N lần lượt là trung điểm của AD và SC; I là giao điểm của BM và AC. Chứng minh rằng mặt phẳng (SAC) vng góc với mặt phẳng (SMB). Tính thể tích của khối tứ diện ANIB. (Đề Thi Tuyển Sinh Đại Học Khối B Năm 2006) 17) Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA = 2a và SA vng góc với mặt phẳng (ABC). Gọi M và N lần lượt là hình chiếu vng góc của A trên các đường thẳng SB và SC. Tính thể tích của khối chóp A.BCNM. (Đề Thi Tuyển Sinh Đại Học Khối D Năm 2006) - 7 – Giáo viên: Đỗ Tất Thắng Trường THPT Ngô Quyền . Quyền Tài liệu ôn thi TN + ĐH Bài 2: Khối đa diện lồi và khối đa diện đều • Vấn đề 1 : Chứng minh một số tính chất của khối đa diện đều  PP Giải : Sử. (OMN) • Vấn đề 2 : Xác đònh một khối đa diện đều  PP Giải : Sử dụng đònh nghóa khối đa diện đều 1) CMR tâm các mặt của một hình bát diện đều là các đỉnh

Ngày đăng: 18/09/2013, 11:10

HÌNH ẢNH LIÊN QUAN

1) CMR tâm các mặt của một hình bát diện đều là các đỉnh của hình lập phương. - Chuyên đề HHKG Luyện thi TN+ĐH
1 CMR tâm các mặt của một hình bát diện đều là các đỉnh của hình lập phương (Trang 2)
2) Tính số cạnh của hình 12 mặt đều (loại {5;3}) 3)Tính số cạnh của hình 20 mặt đều (loại {3;5}) - Chuyên đề HHKG Luyện thi TN+ĐH
2 Tính số cạnh của hình 12 mặt đều (loại {5;3}) 3)Tính số cạnh của hình 20 mặt đều (loại {3;5}) (Trang 2)
- Thể tích của hình chóp có diện tích đáy là B, chiều cao h: 1 - Chuyên đề HHKG Luyện thi TN+ĐH
h ể tích của hình chóp có diện tích đáy là B, chiều cao h: 1 (Trang 3)

TỪ KHÓA LIÊN QUAN

w